Skip to main content

The Use of Bedside Urinary Parameters in the Evaluation of Metabolic Acidosis

  • Chapter
  • First Online:
Metabolic Acidosis

Abstract

The evaluation of metabolic acidosis requires an assessment of the kidneys response in terms of acid excretion and bicarbonate excretion. Because of bedside measurements of ammonium excretion and bicarbonate are often not available because clinical laboratories do not perform these tests routinely, surrogates like the urine anion gap were developed as an indirect measure of the ammonium excretion. Bicarbonate can be calculated based on the urine pH and PCO2 of the urine. The significance and limitations of the urine pH as an index of collecting tubule H+ secretion as discussed. Moreover, the use of provocative tests such as the furosemide test as a tool to assess sodium dependent collecting tubule H+ secretion is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coe FL, Parks JH. The kidney: physiology and pathophysiology. In: Seldin DW, Giebisch G, editors. Pathogenesis and treatment of nephrolithiasis. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 1841–67.

    Google Scholar 

  2. Batlle D, Chen S, Haque SK. Physiologic principles in the clinical evaluation of electrolyte, water, and acid–base disorders. In: Seldin DW, Giebisch G, editors. The kidney: physiology and pathophysiology. 5th ed. New York: Raven Press; 2012.

    Google Scholar 

  3. Yi JH, Shin HJ, Kim SM, Han SW, Kim HJ, Oh MS. Does the exposure of urine samples to air affect diagnostic tests for urine acidification? Clin J Am Soc Nephrol. 2012;7(8):1211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rodriguez JS, et al. Proximal renal tubular acidosis. A defect in bicarbonate reabsorption with normal urinary acidification. Pediatr Res. 1967;1(2):81–98.

    Article  Google Scholar 

  5. Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant. 2012;27(12):4273–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Batlle DC, von Riotte A, Schlueter W. Urinary sodium in the evaluation of hyperchloremic metabolic acidosis. N Engl J Med. 1987;316(3):140–4.

    Article  CAS  PubMed  Google Scholar 

  7. Batlle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant. 2012;27:3691–704.

    Article  CAS  PubMed  Google Scholar 

  8. Maalouf NM, Cameron MA, Moe OW, Sakhaee K. Metabolic basis for low urine pH in type 2 diabetes. Clin J Am Soc Nephrol. 2010;5(7):1277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goorno WE, Rector Jr FC, Seldin DW. Relation of renal gluconeogenesis to ammonia production in the dog and rat. Am J Physiol. 1967;213(4):969–74.

    CAS  PubMed  Google Scholar 

  10. Mitra A, Batlle D. Acid–base and electrolytes disorders. In: Aldosterone deficiency and resistance. Philadelphia: Saunders; 2002. p. 413–33.

    Google Scholar 

  11. Batlle DC. Sodium-dependent urinary acidification in patients with aldosterone deficiency and in adrenalectomized rats: effect of furosemide. Metabolism. 1986;35(9):852–60.

    Article  CAS  PubMed  Google Scholar 

  12. Batlle DC, Arruda JA, Kurtzman NA. Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N Engl J Med. 1981;304(7):373–80.

    Article  CAS  PubMed  Google Scholar 

  13. Crawford MA, Milne MD, Scribner BH. The effects of changes in acid–base balance on urinary citrate in the rat. J Physiol. 1959;149:413–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Batlle DC, Itsarayoungyuen K, Downer M, Foley R, Arruda J, Kurtzman N, 1983. Suppression of distal urinary acidification after recovery from chronic hypocapnia. Am J Physiol 1983;245(4):F433–42.

    Google Scholar 

  15. Batlle DC, Hizon M, Cohen E, Gutterman C, Gupta R. The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med. 1988;318(10):594–9.

    Article  CAS  PubMed  Google Scholar 

  16. Adrogue H, Nicolaos M. Tools for clinical assessment. In: Acid–base disorders and their treatment. London: Taylor & Francis Group; 2005. p. 801–48.

    Google Scholar 

  17. Nash MA, Torrado AD, Greifer I, Spitzer A, Edelmann Jr CM. Renal tubular acidosis in infants and children. Clinical course, response to treatment, and prognosis. J Pediatr. 1972;80(5):738–48.

    Article  CAS  PubMed  Google Scholar 

  18. Lemann Jr J, Adams ND, Wilz DR, Brenes LG. Acid and mineral balances and bone in familial proximal renal tubular acidosis. Kidney Int. 2000;58(3):1267–77.

    Article  CAS  PubMed  Google Scholar 

  19. Brenes LG, Sanchez MI. Impaired urinary ammonium excretion in patients with isolated proximal renal tubular acidosis. J Am Soc Nephrol. 1993;4(4):1073–8.

    CAS  PubMed  Google Scholar 

  20. Ahya SN, Soler MJ, Levitsky J, Batlle D. Acid–base and potassium disorders in liver disease. Semin Nephrol. 2006;26(6):466–70.

    Article  CAS  PubMed  Google Scholar 

  21. Gauthier P, Simon EE, Lemann J. Acid–base and electrolyte disorder in acidosis of chronic renal failure. Philadelphia: Suanders; 2002. p. 207–16.

    Google Scholar 

  22. Batlle DC, Sabatini S, Kurzman N. On the mechanism of toluene-induced renal tubular acidosis. Nephron. 1988;49:210–8.

    Article  CAS  PubMed  Google Scholar 

  23. Moorthi K, Batlle D. Renal tubular acidosis. In: Gennari FJ, Adrogue HJ, Galla JH, Madias NE, editors. Acid–base disorders and their treatment. Boca Raton: Taylor & Francis Group; 2005. p. 417–67.

    Chapter  Google Scholar 

  24. Batlle DC. Segmental characterization of defects in collecting tubule acidification. Kidney Int. 1986;30(4):546–54.

    Article  CAS  PubMed  Google Scholar 

  25. Schlueter W, Keilani T, Hizon M, Kaplan B, Batlle DC. On the mechanism of impaired distal acidification in hyperkalemic renal tubular acidosis: evaluation with amiloride and bumetanide. J Am Soc Nephrol. 1992;3(4):953–64.

    CAS  PubMed  Google Scholar 

  26. Batlle DC. Hyperkalemic hyperchloremic metabolic acidosis associated with selective aldosterone deficiency and distal renal tubular acidosis. Semin Nephrol. 1981;1:260–74.

    Google Scholar 

  27. Schwartz WB, Jenson RL, Relman AS. Acidification of the urine and increased ammonium excretion without change in acid–base equilibrium: sodium reabsorption as a stimulus to the acidifying process. J Clin Invest. 1955;34(5):673–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walsh SB, Shirley DG, Wrong OM, Unwin RJ. Urinary acidification assessed by simultaneous furosemide and fludrocortisone treatment: an alternative to ammonium chloride. Kidney Int. 2007;71(12):1310–6.

    Article  CAS  PubMed  Google Scholar 

  29. Rastogi S, Bayliss JM, Nascimento L, Arruda JA. Hyperkalemic renal tubular acidosis: effect of furosemide in humans and in rats. Kidney Int. 1985;28(5):801–7.

    Article  CAS  PubMed  Google Scholar 

  30. Halperin ML, Goldstein MB, Haig A, Johnson MD, Stinebaugh BJ. Studies on the pathogenesis of type I (distal) renal tubular acidosis as revealed by the urinary PCO2 tensions. J Clin Invest. 1974;53(3):669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Batlle D, Gaviria M, Grupp M, Arruda JA, Wynn J, Kurtzman NA. Distal nephron function in patients receiving chronic lithium therapy. Kidney Int. 1982;21(3):477–85.

    Article  CAS  PubMed  Google Scholar 

  32. Donckerwolcke RA, Valk C, van Wijngaarden-Penterman MJ, van Stekelenburg GJ. The diagnostic value of the urine to blood carbon dioxide tension gradient for the assessment of distal tubular hydrogen secretion in pediatric patients with renal tubular disorders. Clin Nephrol. 1983;19(5):254–8.

    CAS  PubMed  Google Scholar 

  33. Batlle DC, Grupp M, Gaviria M. Distal renal tubular acidosis with intact capacity to lower urinary pH. Am J Med. 1982;72:751–8.

    Article  CAS  PubMed  Google Scholar 

  34. Batlle DC, Sehy JT, Roseman MK, et al. Clinical and pathophysiologic spectrum of acquired distal renal tubular acidosis. Kidney Int. 1981;20:389–96.

    Article  CAS  PubMed  Google Scholar 

  35. Stinebaugh BJ, Scholoeder FX, Gharafry E, et al. Mechanism by which neutral phosphate infusion elevates urine PCO2. J Lab Clin Med. 1977;89:946–58.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Saleem M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Batlle, D., Saleem, K., Relia, N. (2016). The Use of Bedside Urinary Parameters in the Evaluation of Metabolic Acidosis. In: E. Wesson, D. (eds) Metabolic Acidosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3463-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3463-8_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3461-4

  • Online ISBN: 978-1-4939-3463-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics