Skip to main content

Metabolic Acidosis and Progression of Chronic Kidney Disease

  • Chapter
  • First Online:
Metabolic Acidosis
  • 1829 Accesses

Abstract

Metabolic acidosis invariably develops as chronic kidney disease (CKD) progresses. Complications of acid retention during the course of CKD include protein-energy wasting, abnormal bone-mineral metabolism, and uremic bone disease, and also an association with higher mortality. An additional adverse effect of metabolic acidosis is kidney damage. This has been described experimentally decades ago, but it has only recently surfaced as a clinically important complication which, if treated, can result in amelioration of progressive CKD. Administration of alkali represents an affordable and probably low-risk intervention in patients with kidney disease, and hence it could become a mainstay of CKD therapy. Since it is possible, and indeed likely that large clinical trials of bicarbonate supplementation will not be conducted in the near future, a uniformly sanctioned clinical indication for kidney protection may never come to fruition for this kind of intervention. Therefore, good understanding of the physiologic background, of the practical benefits, and especially of the potential risks of bicarbonate therapy is crucial for practitioners who wish to implement such therapy. We will briefly review the physiology and pathophysiology of acid–base homeostasis in CKD, emphasizing the mechanisms responsible for kidney damage, and discuss the results of clinical trials of alkali therapy, with an emphasis towards practical aspects relevant to everyday clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welbourne T, Weber M, Bank N. The effect of glutamine administration on urinary ammonium excretion in normal subjects and patients with renal disease. J Clin Invest. 1972;51(7):1852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Seldin DW, Coleman AJ, Carter NW, Rector Jr FC. The effect of Na2SO4 on urinary acidification in chronic renal disease. J Lab Clin Med. 1967;69(6):893–903.

    CAS  PubMed  Google Scholar 

  3. Wong NL, Quamme GA, Dirks JH. Tubular handling of bicarbonate in dogs with experimental renal failure. Kidney Int. 1984;25(6):912–8.

    Article  CAS  PubMed  Google Scholar 

  4. Lemann Jr J, Litzow JR, Lennon EJ. The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest. 1966;45(10):1608–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Green J, Kleeman CR. Role of bone in regulation of systemic acid–base balance. Kidney Int. 1991;39(1):9–26.

    Article  CAS  PubMed  Google Scholar 

  6. Widmer B, Gerhardt RE, Harrington JT, Cohen JJ. Serum electrolyte and acid base composition. The influence of graded degrees of chronic renal failure. Arch Intern Med. 1979;139(10):1099–102.

    Article  CAS  PubMed  Google Scholar 

  7. Hakim RM, Lazarus JM. Biochemical parameters in chronic renal failure. Am J Kidney Dis. 1988;11(3):238–47.

    Article  CAS  PubMed  Google Scholar 

  8. Eustace JA, Astor B, Muntner PM, Ikizler TA, Coresh J. Prevalence of acidosis and inflammation and their association with low serum albumin in chronic kidney disease. Kidney Int. 2004;65(3):1031–40.

    Article  CAS  PubMed  Google Scholar 

  9. Kovesdy CP. Metabolic acidosis and kidney disease: does bicarbonate therapy slow the progression of CKD? Nephrol Dial Transplant. 2012;27(8):3056–62.

    Article  CAS  PubMed  Google Scholar 

  10. Greenberg AJ, McNamara H, McCrory WW. Metabolic balance studies in primary renal tubular acidosis: effects of acidosis on external calcium and phosphorus balances. J Pediatr. 1966;69(4):610–8.

    Article  CAS  PubMed  Google Scholar 

  11. Tuso PJ, Nissenson AR, Danovitch GM. Electrolyte disorders in chronic renal failure. In: Narins RG, editor. Maxwell & Kleeman’s clinical disorders of fluid and electrolyte metabolism. 5th ed. New York: McGraw-Hill, Inc.; 1994. p. 1195–211.

    Google Scholar 

  12. Levin ML, Rector Jr FC, Seldin DW. The effects of chronic hypokalaemia, hyponatraemia, and acid–base alterations on erythrocyte sodium transport. Clin Sci. 1972;43(2):251–63.

    Article  CAS  PubMed  Google Scholar 

  13. Brown Jr RH, Cohen I, Noble D. The interactions of protons, calcium and potassium ions on cardiac Purkinje fibres. J Physiol. 1978;282:345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mitchell JH, Wildenthal K, Johnson Jr RL. The effects of acid–base disturbances on cardiovascular and pulmonary function. Kidney Int. 1972;1(5):375–89.

    Article  CAS  PubMed  Google Scholar 

  15. Kopple JD, Kalantar-Zadeh K, Mehrotra R. Risks of chronic metabolic acidosis in patients with chronic kidney disease. Kidney Int Suppl. 2005;95:S21–7.

    Article  PubMed  Google Scholar 

  16. Kraut JA, Kurtz I. Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment. Am J Kidney Dis. 2005;45(6):978–93.

    Article  CAS  PubMed  Google Scholar 

  17. Franch HA, Mitch WE. Catabolism in uremia: the impact of metabolic acidosis. J Am Soc Nephrol. 1998;9(12 Suppl):S78–81.

    CAS  PubMed  Google Scholar 

  18. Mitch WE. Influence of metabolic acidosis on nutrition. Am J Kidney Dis. 1997;29(5):xlvi–xlviii.

    Google Scholar 

  19. Mitch WE, Du J, Bailey JL, Price SR. Mechanisms causing muscle proteolysis in uremia: the influence of insulin and cytokines. Miner Electrolyte Metab. 1999;25(4–6):216–9.

    Article  CAS  PubMed  Google Scholar 

  20. Ballmer PE, McNurlan MA, Hulter HN, Anderson SE, Garlick PJ, Krapf R. Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest. 1995;95(1):39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Franch HA, Raissi S, Wang X, Zheng B, Bailey JL, Price SR. Acidosis impairs insulin receptor substrate-1-associated phosphoinositide 3-kinase signaling in muscle cells: consequences on proteolysis. Am J Physiol Renal Physiol. 2004;287(4):F700–6.

    Article  CAS  PubMed  Google Scholar 

  22. Uribarri J, Levin NW, Delmez J, Depner TA, Ornt D, Owen W, et al. Association of acidosis and nutritional parameters in hemodialysis patients. Am J Kidney Dis. 1999;34(3):493–9.

    Article  CAS  PubMed  Google Scholar 

  23. Dobre M, Yang W, Chen J, Drawz P, Hamm LL, Horwitz E, et al. Association of serum bicarbonate with risk of renal and cardiovascular outcomes in CKD: a report from the Chronic Renal Insufficiency Cohort (CRIC) study. Am J Kidney Dis. 2013.

    Google Scholar 

  24. Kovesdy CP, Anderson JE, Kalantar-Zadeh K. Association of serum bicarbonate levels with mortality in patients with non-dialysis-dependent CKD. Nephrol Dial Transplant. 2009;24(4):1232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bommer J, Locatelli F, Satayathum S, Keen ML, Goodkin DA, Saito A, et al. Association of predialysis serum bicarbonate levels with risk of mortality and hospitalization in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2004;44(4):661–71.

    Article  PubMed  Google Scholar 

  26. Lowrie EG, Lew NL. Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis. 1990;15(5):458–82.

    Article  CAS  PubMed  Google Scholar 

  27. Raphael KL, Wei G, Baird BC, Greene T, Beddhu S. Higher serum bicarbonate levels within the normal range are associated with better survival and renal outcomes in African Americans. Kidney Int. 2011;79(3):356–62.

    Article  CAS  PubMed  Google Scholar 

  28. Wu DY, McAllister CJ, Kilpatrick RD, Dadres S, Shinaberger CS, Kopple JD, et al. Association between serum bicarbonate and death in hemodialysis patients: is it better to be acidotic or alkalotic? Clin J Am Soc Nephrol. 2006;1:70–8.

    Article  CAS  PubMed  Google Scholar 

  29. Abramowitz MK, Melamed ML, Bauer C, Raff AC, Hostetter TH. Effects of oral sodium bicarbonate in patients with CKD. Clin J Am Soc Nephrol. 2013;8(5):714–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanda E, Ai M, Yoshida M, Kuriyama R, Shiigai T. High serum bicarbonate level within the normal range prevents the progression of chronic kidney disease in elderly chronic kidney disease patients. BMC Nephrol. 2013;14:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scialla JJ, Appel LJ, Astor BC, Miller III ER, Beddhu S, Woodward M, et al. Net endogenous acid production is associated with a faster decline in GFR in African Americans. Kidney Int. 2012;82(1):106–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shah SN, Abramowitz M, Hostetter TH, Melamed ML. Serum bicarbonate levels and the progression of kidney disease: a cohort study. Am J Kidney Dis. 2009;54(2):270–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Halperin ML, Ethier JH, Kamel KS. Ammonium excretion in chronic metabolic acidosis: benefits and risks. Am J Kidney Dis. 1989;14(4):267–71.

    Article  CAS  PubMed  Google Scholar 

  34. Nath KA, Hostetter MK, Hostetter TH. Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J Clin Invest. 1985;76(2):667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morita Y, Nomura A, Yuzawa Y, Nishikawa K, Hotta N, Shimizu F, et al. The role of complement in the pathogenesis of tubulointerstitial lesions in rat mesangial proliferative glomerulonephritis. J Am Soc Nephrol. 1997;8(9):1363–72.

    CAS  PubMed  Google Scholar 

  36. Morita Y, Ikeguchi H, Nakamura J, Hotta N, Yuzawa Y, Matsuo S. Complement activation products in the urine from proteinuric patients. J Am Soc Nephrol. 2000;11(4):700–7.

    CAS  PubMed  Google Scholar 

  37. Peake PW, Pussell BA, Mackinnon B, Charlesworth JA. The effect of pH and nucleophiles on complement activation by human proximal tubular epithelial cells. Nephrol Dial Transplant. 2002;17(5):745–52.

    Article  CAS  PubMed  Google Scholar 

  38. Wesson DE. Endogenous endothelins mediate increased distal tubule acidification induced by dietary acid in rats. J Clin Invest. 1997;99(9):2203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Phisitkul S, Hacker C, Simoni J, Tran RM, Wesson DE. Dietary protein causes a decline in the glomerular filtration rate of the remnant kidney mediated by metabolic acidosis and endothelin receptors. Kidney Int. 2008;73(2):192–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wesson DE, Nathan T, Rose T, Simoni J, Tran RM. Dietary protein induces endothelin-mediated kidney injury through enhanced intrinsic acid production. Kidney Int. 2007;71(3):210–7.

    Article  CAS  PubMed  Google Scholar 

  41. Wesson DE, Simoni J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int. 2010;78(11):1128–35.

    Article  CAS  PubMed  Google Scholar 

  42. Wesson DE, Simoni J, Broglio K, Sheather S. Acid retention accompanies reduced GFR in humans and increases plasma levels of endothelin and aldosterone. Am J Physiol Renal Physiol. 2011;300(4):F830–7.

    Article  CAS  PubMed  Google Scholar 

  43. Khanna A, Simoni J, Hacker C, Duran MJ, Wesson DE. Increased endothelin activity mediates augmented distal nephron acidification induced by dietary protein. J Am Soc Nephrol. 2004;15(9):2266–75.

    Article  CAS  PubMed  Google Scholar 

  44. Wesson DE, Simoni J, Green DF. Reduced extracellular pH increases endothelin-1 secretion by human renal microvascular endothelial cells. J Clin Invest. 1998;101(3):578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wesson DE. Endogenous endothelins mediate increased acidification in remnant kidneys. J Am Soc Nephrol. 2001;12(9):1826–35.

    CAS  PubMed  Google Scholar 

  46. Wesson DE. Regulation of kidney acid excretion by endothelins. Kidney Int. 2006;70(12):2066–73.

    Article  CAS  PubMed  Google Scholar 

  47. Khanna A, Simoni J, Wesson DE. Endothelin-induced increased aldosterone activity mediates augmented distal nephron acidification as a result of dietary protein. J Am Soc Nephrol. 2005;16(7):1929–35.

    Article  CAS  PubMed  Google Scholar 

  48. Ng HY, Chen HC, Tsai YC, Yang YK, Lee CT. Activation of intrarenal renin-angiotensin system during metabolic acidosis. Am J Nephrol. 2011;34(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  49. Wesson DE, Jo CH, Simoni J. Angiotensin II receptors mediate increased distal nephron acidification caused by acid retention. Kidney Int. 2012;82(11):1184–94.

    Article  CAS  PubMed  Google Scholar 

  50. Goraya N, Simoni J, Jo CH, Wesson DE. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014;86:1031–8.

    Article  CAS  PubMed  Google Scholar 

  51. Wesson DE, Jo CH, Simoni J. Angiotensin II-mediated GFR decline in subtotal nephrectomy is due to acid retention associated with reduced GFR. Nephrol Dial Transplant. 2014.

    Google Scholar 

  52. Gadola L, Noboa O, Marquez MN, Rodriguez MJ, Nin N, Boggia J, et al. Calcium citrate ameliorates the progression of chronic renal injury. Kidney Int. 2004;65(4):1224–30.

    Article  CAS  PubMed  Google Scholar 

  53. Torres VE, Mujwid DK, Wilson DM, Holley KH. Renal cystic disease and ammoniagenesis in Han: SPRD rats. J Am Soc Nephrol. 1994;5(5):1193–200.

    CAS  PubMed  Google Scholar 

  54. Torres VE, Cowley Jr BD, Branden MG, Yoshida I, Gattone VH. Long-term ammonium chloride or sodium bicarbonate treatment in two models of polycystic kidney disease. Exp Nephrol. 2001;9(3):171–80.

    Article  CAS  PubMed  Google Scholar 

  55. Phisitkul S, Khanna A, Simoni J, Broglio K, Sheather S, Rajab MH, et al. Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int. 2010;77(7):617–23.

    Article  CAS  PubMed  Google Scholar 

  56. Rustom R, Grime JS, Costigan M, Maltby P, Hughes A, Taylor W, et al. Oral sodium bicarbonate reduces proximal renal tubular peptide catabolism, ammoniogenesis, and tubular damage in renal patients. Ren Fail. 1998;20(2):371–82.

    Article  CAS  PubMed  Google Scholar 

  57. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20(9):2075–84.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mahajan A, Simoni J, Sheather SJ, Broglio KR, Rajab MH, Wesson DE. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int. 2010;78(3):303–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kovesdy CP, Kalantar-Zadeh K. Oral bicarbonate: renoprotective in CKD? Nat Rev Nephrol. 2010;6(1):15–7.

    Article  CAS  PubMed  Google Scholar 

  60. Moe OW, Rector FC, Alpern RJ. Renal regulation of acid–base metabolism. In: Narins RG, editor. Maxwell and Kleeman’s clinical disorders of fluid and electrolyte metabolism. 5th ed. New York: McGraw-Hill, Inc.; 1994. p. 203–42.

    Google Scholar 

  61. Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc. 1995;95(7):791–7.

    Article  CAS  PubMed  Google Scholar 

  62. Goraya N, Simoni J, Jo C, Wesson DE. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012;81(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  63. Goraya N, Simoni J, Jo CH, Wesson DE. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol. 2013;8(3):371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kovesdy CP, Kopple JD, Kalantar-Zadeh K. Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: reconciling low protein intake with nutritional therapy. Am J Clin Nutr. 2013;97(6):1163–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. National Kidney Foundation. K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis. 2000;35(6 Suppl 1):s1–140.

    Google Scholar 

  66. Kovesdy CP, Regidor DL, Mehrotra R, Jing J, McAllister CJ, Greenland S, et al. Serum and dialysate potassium concentrations and survival in hemodialysis patients. Clin J Am Soc Nephrol. 2007;2(5):999–1007.

    Article  CAS  PubMed  Google Scholar 

  67. Felsenfeld AJ, Levine BS. Milk alkali syndrome and the dynamics of calcium homeostasis. Clin J Am Soc Nephrol. 2006;1(4):641–54.

    Article  CAS  PubMed  Google Scholar 

  68. Jara A, Felsenfeld AJ, Bover J, Kleeman CR. Chronic metabolic acidosis in azotemic rats on a high-phosphate diet halts the progression of renal disease. Kidney Int. 2000;58(3):1023–32.

    Article  CAS  PubMed  Google Scholar 

  69. Jara A, Chacon C, Ibaceta M, Valdivieso A, Felsenfeld AJ. Effect of ammonium chloride and dietary phosphorus in the azotaemic rat. I. Renal function and biochemical changes. Nephrol Dial Transplant. 2004;19(8):1986–92.

    Article  CAS  PubMed  Google Scholar 

  70. Jara A, Chacon C, Ibaceta M, Valdivieso A, Felsenfeld AJ. Effect of ammonium chloride and dietary phosphorus in the azotaemic rat. Part II—Kidney hypertrophy and calcium deposition. Nephrol Dial Transplant. 2004;19(8):1993–8.

    Article  CAS  PubMed  Google Scholar 

  71. Husted FC, Nolph KD, Maher JF. NaHCO3 and NaCl tolerance in chronic renal failure. J Clin Invest. 1975;56(2):414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Husted FC, Nolph KD. NaHCO3 and NaCl tolerance in chronic renal failure II. Clin Nephrol. 1977;7(1):21–5.

    CAS  PubMed  Google Scholar 

  73. Luft FC, Zemel MB, Sowers JA, Fineberg NS, Weinberger MH. Sodium bicarbonate and sodium chloride: effects on blood pressure and electrolyte homeostasis in normal and hypertensive man. J Hypertens. 1990;8(7):663–70.

    Article  CAS  PubMed  Google Scholar 

  74. Wesson DE. Glomerular filtration effects of acute volume expansion: importance of chloride. Kidney Int. 1987;32(2):238–45.

    Article  CAS  PubMed  Google Scholar 

  75. Kovesdy CP, Lott EH, Lu JL, Malakauskas SM, Ma JZ, Molnar MZ, et al. Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease with and without congestive heart failure. Circulation. 2012;125(5):677–84.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba P. Kovesdy M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kovesdy, C.P. (2016). Metabolic Acidosis and Progression of Chronic Kidney Disease. In: E. Wesson, D. (eds) Metabolic Acidosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3463-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3463-8_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3461-4

  • Online ISBN: 978-1-4939-3463-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics