Advertisement

Multiscaling for Molecular Models: Investigating Interface Thermomechanics

Chapter
  • 386 Downloads

Abstract

One of the most important aspects of understanding the influence of interfaces on natural material properties is the knowledge of how stress transfer occurs across the organic–inorganic interfaces. The multicomponent hierarchical structure of biomaterials results in organic–inorganic interfaces appearing at different length scales, i.e., between the basic components at the nanoscale, between the mineralized fibrils at the microscale, and between the layers of the multilayered structures at micro- or macroscale. For a given peak tensile strength of a given material, which position of total strength is attributed to interface strength? What is the contribution of interface sliding in time-dependent deformation observed in a simple tension test of a given material sample? This chapter focuses on addressing such questions using molecular simulations.

Keywords

Interface effect Effect of interface deformation Interface properties Interface creep Mechanics of interface deformation 

References

  1. 1.
    W.J. Landis et al., Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J. Struct. Biol. 117, 24–35 (1996)CrossRefPubMedGoogle Scholar
  2. 2.
    W.J. Landis, K.J. Hodgens, J. Arena, M.J. Song, B.F. McEwen, Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc. Res. Tech. 33, 192–202 (1996)CrossRefPubMedGoogle Scholar
  3. 3.
    P. Fratzl, N. Fratzlzelman, K. Klaushofer, G. Vogl, K. Koller, Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif. Tissue Int. 48, 407–413 (1991)CrossRefPubMedGoogle Scholar
  4. 4.
    S. Weiner, Y. Talmon, W. Traub, Electron diffraction of mollusc shell organic matrices and their relationship to the mineral phase. Int. J. Biol. Macromol. 5, 325–328 (1983)CrossRefGoogle Scholar
  5. 5.
    A. Al‐Sawalmih et al., Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American lobster. Adv. Funct. Mater. 18, 3307–3314 (2008)CrossRefGoogle Scholar
  6. 6.
    T. Qu, V. Tomar, in Proceedings of the Society of Engineering Science 51st Annual Technical Meeting, October 1–3, 2014. ed. by A. Bajaj, P. Zavattieri, M. Koslowski, T. Siegmund (Purdue University Libraries Scholarly Publishing Services, West Lafayette, 2014)Google Scholar
  7. 7.
    T. Qu, V. Tomar, Influence of interfacial interactions on deformation mechanism and interface viscosity in chitin-calcite interfaces. Acta Biomater. 25, 325–338 (2015). doi: 10.1016/j.actbio.2015.06.034 CrossRefPubMedGoogle Scholar
  8. 8.
    J.C. Phillips et al., Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    S. Frankland, V. Harik, Analysis of carbon nanotube pull-out from a polymer matrix. Surf. Sci. 525, L103–L108 (2003)CrossRefGoogle Scholar
  10. 10.
    F. Lelievre, D. Bernache-Assollant, T. Chartier, Influence of powder characteristics on the rheological behaviour of hydroxyapatite slurries. J. Mater. Sci. Mater. Med. 7, 489–494 (1996)CrossRefGoogle Scholar
  11. 11.
    Y. Ichikawa, K. Kawamura, N. Fujii, T. Nattavut, Molecular dynamics and multiscale homogenization analysis of seepage/diffusion problem in bentonite clay. Int. J. Numer. Methods Eng. 54, 1717–1749 (2002)CrossRefGoogle Scholar
  12. 12.
    D.M. Knapp et al., Rheology of reconstituted type I collagen gel in confined compression. J. Rheol. 41, 971–993 (1997)CrossRefGoogle Scholar
  13. 13.
    V.H. Barocas, A.G. Moon, R.T. Tranquillo, The fibroblast-populated collagen microsphere assay of cell traction force—Part 2: Measurement of the cell traction parameter. J. Biomech. Eng. 117, 161–170 (1995)CrossRefPubMedGoogle Scholar
  14. 14.
    J.M. Dealy, J. Wang, Melt rheology and Its Applications in the Plastics Industry (Springer, Netherlands, 2013)CrossRefGoogle Scholar
  15. 15.
    G. Bylund, T. Pak, Dairy Processing Handbook (Tetra Pak Processing Systems AB, Lund, 2003)Google Scholar
  16. 16.
    A. Franck, Understanding Rheology of Thermoplastic Polymers (TA Instruments, New Castle, DE, 2004)Google Scholar
  17. 17.
    S. Newman, M. Cloitre, C. Allain, G. Forgacs, D. Beysens, Viscosity and elasticity during collagen assembly in vitro: relevance to matrix‐driven translocation. Biopolymers 41, 337–347 (1997)CrossRefPubMedGoogle Scholar
  18. 18.
    A. Gautieri, S. Vesentini, A. Redaelli, R. Ballarini, Modeling and measuring visco-elastic properties: from collagen molecules to collagen fibrils. Int. J. Nonlinear Mech. 56, 25–33 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Gautieri, S. Vesentini, A. Redaelli, M.J. Buehler, Viscoelastic properties of model segments of collagen molecules. Matrix Biol. 31, 141–149 (2012). doi: 10.1016/j.matbio.2011.11.005 CrossRefPubMedGoogle Scholar
  20. 20.
    P.K. Hansma et al., Sacrificial bonds in the interfibrillar matrix of bone. J. Musculoskelet. Nueronal Interact. 5, 313 (2005)Google Scholar
  21. 21.
    E. Thormann et al., Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths. Nanoscale 4, 3910–3916 (2012)CrossRefPubMedGoogle Scholar
  22. 22.
    L. Eberhardsteiner, C. Hellmich, S. Scheiner, Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach. Comput. Methods Biomech. Biomed. Eng. 17, 48–63 (2014)CrossRefGoogle Scholar
  23. 23.
    M. Shahidi, B. Pichler, C. Hellmich, Viscous interfaces as source for material creep: a continuum micromechanics approach. Eur. J. Mech. A Solid 45, 41–58 (2014)CrossRefGoogle Scholar
  24. 24.
    M.A. Meyers, J. McKittrick, P.-Y. Chen, Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013)CrossRefPubMedGoogle Scholar
  25. 25.
    B. An, X. Zhao, D. Zhang, On the mechanical behavior of bio-inspired materials with non-self-similar hierarchy. J. Mech. Behav. Biomed. Mater. 34, 8–17 (2014). doi: 10.1016/j.jmbbm.2013.12.028 CrossRefPubMedGoogle Scholar
  26. 26.
    Z. Zhang, Y.-W. Zhang, H. Gao, On optimal hierarchy of load-bearing biological materials. Proc. R. Soc. B Biol. Sci. (2010). doi: 10.1098/rspb.2010.1093
  27. 27.
    Z. Shuchun, W. Yueguang, Effective elastic modulus of bone-like hierarchical materials. Acta Mech. Solida Sin. 20, 198–205 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations