Skip to main content

Multiscaling for Molecular Models: Investigating Interface Thermomechanics

  • Chapter
  • First Online:
Multiscale Characterization of Biological Systems

Abstract

One of the most important aspects of understanding the influence of interfaces on natural material properties is the knowledge of how stress transfer occurs across the organic–inorganic interfaces. The multicomponent hierarchical structure of biomaterials results in organic–inorganic interfaces appearing at different length scales, i.e., between the basic components at the nanoscale, between the mineralized fibrils at the microscale, and between the layers of the multilayered structures at micro- or macroscale. For a given peak tensile strength of a given material, which position of total strength is attributed to interface strength? What is the contribution of interface sliding in time-dependent deformation observed in a simple tension test of a given material sample? This chapter focuses on addressing such questions using molecular simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.J. Landis et al., Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J. Struct. Biol. 117, 24–35 (1996)

    Article  CAS  PubMed  Google Scholar 

  2. W.J. Landis, K.J. Hodgens, J. Arena, M.J. Song, B.F. McEwen, Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc. Res. Tech. 33, 192–202 (1996)

    Article  CAS  PubMed  Google Scholar 

  3. P. Fratzl, N. Fratzlzelman, K. Klaushofer, G. Vogl, K. Koller, Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif. Tissue Int. 48, 407–413 (1991)

    Article  CAS  PubMed  Google Scholar 

  4. S. Weiner, Y. Talmon, W. Traub, Electron diffraction of mollusc shell organic matrices and their relationship to the mineral phase. Int. J. Biol. Macromol. 5, 325–328 (1983)

    Article  CAS  Google Scholar 

  5. A. Al‐Sawalmih et al., Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American lobster. Adv. Funct. Mater. 18, 3307–3314 (2008)

    Article  Google Scholar 

  6. T. Qu, V. Tomar, in Proceedings of the Society of Engineering Science 51st Annual Technical Meeting, October 1–3, 2014. ed. by A. Bajaj, P. Zavattieri, M. Koslowski, T. Siegmund (Purdue University Libraries Scholarly Publishing Services, West Lafayette, 2014)

    Google Scholar 

  7. T. Qu, V. Tomar, Influence of interfacial interactions on deformation mechanism and interface viscosity in chitin-calcite interfaces. Acta Biomater. 25, 325–338 (2015). doi:10.1016/j.actbio.2015.06.034

    Article  CAS  PubMed  Google Scholar 

  8. J.C. Phillips et al., Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Frankland, V. Harik, Analysis of carbon nanotube pull-out from a polymer matrix. Surf. Sci. 525, L103–L108 (2003)

    Article  CAS  Google Scholar 

  10. F. Lelievre, D. Bernache-Assollant, T. Chartier, Influence of powder characteristics on the rheological behaviour of hydroxyapatite slurries. J. Mater. Sci. Mater. Med. 7, 489–494 (1996)

    Article  CAS  Google Scholar 

  11. Y. Ichikawa, K. Kawamura, N. Fujii, T. Nattavut, Molecular dynamics and multiscale homogenization analysis of seepage/diffusion problem in bentonite clay. Int. J. Numer. Methods Eng. 54, 1717–1749 (2002)

    Article  Google Scholar 

  12. D.M. Knapp et al., Rheology of reconstituted type I collagen gel in confined compression. J. Rheol. 41, 971–993 (1997)

    Article  CAS  Google Scholar 

  13. V.H. Barocas, A.G. Moon, R.T. Tranquillo, The fibroblast-populated collagen microsphere assay of cell traction force—Part 2: Measurement of the cell traction parameter. J. Biomech. Eng. 117, 161–170 (1995)

    Article  CAS  PubMed  Google Scholar 

  14. J.M. Dealy, J. Wang, Melt rheology and Its Applications in the Plastics Industry (Springer, Netherlands, 2013)

    Book  Google Scholar 

  15. G. Bylund, T. Pak, Dairy Processing Handbook (Tetra Pak Processing Systems AB, Lund, 2003)

    Google Scholar 

  16. A. Franck, Understanding Rheology of Thermoplastic Polymers (TA Instruments, New Castle, DE, 2004)

    Google Scholar 

  17. S. Newman, M. Cloitre, C. Allain, G. Forgacs, D. Beysens, Viscosity and elasticity during collagen assembly in vitro: relevance to matrix‐driven translocation. Biopolymers 41, 337–347 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. A. Gautieri, S. Vesentini, A. Redaelli, R. Ballarini, Modeling and measuring visco-elastic properties: from collagen molecules to collagen fibrils. Int. J. Nonlinear Mech. 56, 25–33 (2013)

    Article  Google Scholar 

  19. A. Gautieri, S. Vesentini, A. Redaelli, M.J. Buehler, Viscoelastic properties of model segments of collagen molecules. Matrix Biol. 31, 141–149 (2012). doi:10.1016/j.matbio.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  20. P.K. Hansma et al., Sacrificial bonds in the interfibrillar matrix of bone. J. Musculoskelet. Nueronal Interact. 5, 313 (2005)

    CAS  Google Scholar 

  21. E. Thormann et al., Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths. Nanoscale 4, 3910–3916 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. L. Eberhardsteiner, C. Hellmich, S. Scheiner, Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach. Comput. Methods Biomech. Biomed. Eng. 17, 48–63 (2014)

    Article  Google Scholar 

  23. M. Shahidi, B. Pichler, C. Hellmich, Viscous interfaces as source for material creep: a continuum micromechanics approach. Eur. J. Mech. A Solid 45, 41–58 (2014)

    Article  Google Scholar 

  24. M.A. Meyers, J. McKittrick, P.-Y. Chen, Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013)

    Article  CAS  PubMed  Google Scholar 

  25. B. An, X. Zhao, D. Zhang, On the mechanical behavior of bio-inspired materials with non-self-similar hierarchy. J. Mech. Behav. Biomed. Mater. 34, 8–17 (2014). doi:10.1016/j.jmbbm.2013.12.028

    Article  CAS  PubMed  Google Scholar 

  26. Z. Zhang, Y.-W. Zhang, H. Gao, On optimal hierarchy of load-bearing biological materials. Proc. R. Soc. B Biol. Sci. (2010). doi:10.1098/rspb.2010.1093

  27. Z. Shuchun, W. Yueguang, Effective elastic modulus of bone-like hierarchical materials. Acta Mech. Solida Sin. 20, 198–205 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tomar, V., Qu, T., Dubey, D.K., Verma, D., Zhang, Y. (2015). Multiscaling for Molecular Models: Investigating Interface Thermomechanics. In: Multiscale Characterization of Biological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3453-9_6

Download citation

Publish with us

Policies and ethics