Advertisement

Molecular Modeling: A Review of Nanomechanics Based on Molecular Modeling

Chapter
  • 417 Downloads

Abstract

Nature’s design and engineering of biological material systems have always intrigued researchers for their extraordinary properties and structure–property–function relationships. One aspect of biomaterials science and engineering is to understand the underlying mechanisms, design, and fabrication pathways of such biological materials, which will have benefit in multiple disciplines such as prosthetic implants, regenerative medicine, self-healing materials, novel high-strength biomimetic materials, and bioenergy applications. The focus of this review is on the chemo-mechanics of the organic–inorganic interfaces and its correlation with overall mechanical behavior. This understanding is vital for selecting appropriate constituents, their size scales and their relative arrangements, which in turn is governed by the functional requirements of the composite materials.

Keywords

Atomic modeling Nanoscale modeling Effect of interfaces Interface chemistry 

Notes

Acknowledgments

The authors acknowledge the partial support from the National Science Foundation and express sincere gratitude to authors and publishers of the papers whose figures are cited in the manuscript.

References

  1. 1.
    K. Autumn et al., Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    H.J. Gao, X. Wang, H.M. Yao, S. Gorb, E. Arzt, Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 37, 275–285 (2005). doi: 10.1016/j.mechmat.2004.03.008 CrossRefGoogle Scholar
  3. 3.
    J.D. Currey, Mechanical-properties of mother of pearl in tension. Proc. R. Soc. Lond. B Biol. Sci. 196, 443–463 (1977)CrossRefGoogle Scholar
  4. 4.
    J.L. Katz, Hierarchical Modeling of Compact Haversian Bone as a Fiber Reinforced Material, in Advances in Bioengineering, ed. by R.E. Mates, C.R. Smith, vol. 1976 (ASME, New York, NY, 1976), pp. 17–18. Meeting, New York, NY, USA, 5–10 Dec 1976. Vi + 42p. IllusGoogle Scholar
  5. 5.
    J.L. Katz, Anisotropy of Young’s modulus of bone. Nature 283, 106–107 (1980)CrossRefPubMedGoogle Scholar
  6. 6.
    H.J. Gao, B.H. Ji, I.L. Jager, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. U. S. A. 100, 5597–5600 (2003). doi: 10.1073/pnas.0631609100 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    P. Fratzl, R. Weinkamer, Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007)CrossRefGoogle Scholar
  8. 8.
    M.A. Meyers, P.Y. Chen, A.Y.M. Lin, Y. Seki, Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008). doi: 10.1016/j.pmatsci.2007.05.002 CrossRefGoogle Scholar
  9. 9.
    J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)CrossRefPubMedGoogle Scholar
  10. 10.
    M.E. Launey, R.O. Ritchie, On the fracture toughness of advanced materials. Adv. Mater. 21, 2103–2110 (2009). doi: 10.1002/adma.200803322 CrossRefGoogle Scholar
  11. 11.
    M. Sarikaya, C. Tamerler, A.K.Y. Jen, K. Schulten, F. Baneyx, Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2, 577–585 (2003)CrossRefPubMedGoogle Scholar
  12. 12.
    B.D. Ratner, S.J. Bryant, Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41–75 (2004). doi: 10.1146/annurev.bioeng.6.040803.140027 CrossRefPubMedGoogle Scholar
  13. 13.
    C. Sanchez, H. Arribart, M.M.G. Guille, Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4, 277–288 (2005). doi: 10.1038/nmat1339 CrossRefPubMedGoogle Scholar
  14. 14.
    P. Fratzl, Biomimetic materials research: what can we really learn from nature’s structural materials? J. R. Soc. Interface 4, 637–642 (2007). doi: 10.1098/rsif.2007.0218 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    B. Bhushan, Biomimetics: lessons from nature—an overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1445–1486 (2009). doi: 10.1098/rsta.2009.0011 CrossRefGoogle Scholar
  16. 16.
    M.E. Launey et al., Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57, 2919–2932 (2009). doi: 10.1016/j.actamat.2009.03.003 CrossRefGoogle Scholar
  17. 17.
    F. Barthelat, Biomimetics for next generation materials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365, 2907–2919 (2007). doi: 10.1098/rsta.2007.0006 CrossRefGoogle Scholar
  18. 18.
    E. Munch et al., Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008). doi: 10.1126/science.1164865 CrossRefPubMedGoogle Scholar
  19. 19.
    L.C. Palmer, C.J. Newcomb, S.R. Kaltz, E.D. Spoerke, S.I. Stupp, Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 108, 4754–4783 (2008). doi: 10.1021/cr8004422 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    D.K. Dubey, V. Tomar, Role of the nanoscale interfacial arrangement in mechanical strength of tropocollagen-hydroxyapatite based hard biomaterials. Acta Biomater. 5, 2704–2716 (2009). doi: 10.1016/j.actbio.2009.02.035 CrossRefPubMedGoogle Scholar
  21. 21.
    D.K. Dubey, V. Tomar, Understanding the influence of structural hierarchy and its coupling with chemical environment on the strength of idealized tropocollagen–hydroxyapatite biomaterials. J. Mech. Phys. Solid 57, 1702–1717 (2009). doi: 10.1016/j.jmps.2009.07.002 CrossRefGoogle Scholar
  22. 22.
    D.K. Dubey, V. Tomar, The effect of tensile and compressive loading on the hierarchical strength of idealized tropocollagen-hydroxyapatite biomaterials as a function of the chemical environment. J. Phys. Condens. Matter 21, 205103 (2009). doi: 10.1088/0953-8984/21/20/205103 CrossRefPubMedGoogle Scholar
  23. 23.
    T. Leventouri, Synthetic and biological hydroxyapatites: crystal structure questions. Biomaterials 27, 3339–3342 (2006)CrossRefPubMedGoogle Scholar
  24. 24.
    S.C. Cowin, Bone Mechanics Handbook (CRC Press, Boca Raton, FL, 2001)Google Scholar
  25. 25.
    B. Ji, H. Gao, Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solid 52, 1963–2000 (2004)CrossRefGoogle Scholar
  26. 26.
    S. Weiner, H.D. Wagner, The material bone: structure mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998)CrossRefGoogle Scholar
  27. 27.
    P.J. Thurner et al., High-speed photography of the development of microdamage in trabecular bone during compression. J. Mater. Res. 21, 1093–1100 (2006). doi: 10.1557/jmr.2006.0139 CrossRefGoogle Scholar
  28. 28.
    G.E. Fantner et al., Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 612–616 (2005)CrossRefPubMedGoogle Scholar
  29. 29.
    I. Jager, P. Fratzl, Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79, 1737–1746 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    P. Fratzl, H.S. Gupta, E.P. Paschalis, P. Roschger, Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14, 2115–2123 (2004)CrossRefGoogle Scholar
  31. 31.
    H.S. Gupta et al., Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl. Acad. Sci. U. S. A. 103, 17741–17746 (2006). doi: 10.1073/pnas.0604237103 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    H.S. Gupta et al., Nanoscale deformation mechanisms in bone. Nano Lett. 5, 2108–2111 (2005)CrossRefPubMedGoogle Scholar
  33. 33.
    B.H. Ji, A study of the interface strength between protein and mineral in biological materials. J. Biomech. 41, 259–266 (2008)CrossRefPubMedGoogle Scholar
  34. 34.
    P. Fratzl, N. Fratzlzelman, K. Klaushofer, G. Vogl, K. Koller, Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif. Tissue Int. 48, 407–413 (1991)CrossRefPubMedGoogle Scholar
  35. 35.
    W.J. Landis, K.J. Hodgens, J. Arena, M.J. Song, B.F. McEwen, Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc. Res. Tech. 33, 192–202 (1996)CrossRefPubMedGoogle Scholar
  36. 36.
    H.R. Wenk, F. Heidelbach, Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative texture analysis. Bone 24, 361–369 (1999)CrossRefPubMedGoogle Scholar
  37. 37.
    S.J. Eppell, B.N. Smith, H. Kahn, R. Ballarini, Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J. R. Soc. Interface 3, 117–121 (2005)CrossRefPubMedCentralGoogle Scholar
  38. 38.
    H.S. Gupta et al., Fibrillar level fracture in bone beyond the yield point. Int. J. Fract. 139, 425–436 (2006)CrossRefGoogle Scholar
  39. 39.
    N. Sasaki, S. Odajima, Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J. Biomech. 29, 1131–1136 (1996)CrossRefPubMedGoogle Scholar
  40. 40.
    N. Sasaki, S. Odajima, Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. J. Biomech. 29, 655–658 (1996)CrossRefPubMedGoogle Scholar
  41. 41.
    A.J. Hodge, J.A. Petruska, in Aspects of Protein Structure. Proceedings of a Symposium, ed. by G.N. Ramachandran (Academic Press, Inc., London, New York, 1963), pp. 289–300Google Scholar
  42. 42.
    P.J. Thurner et al., High-speed photography of compressed human trabecular bone correlates whitening to microscopic damage. Eng. Fract. Mech. 74, 1928–1941 (2007)CrossRefGoogle Scholar
  43. 43.
    H. Gao, Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138, 101–137 (2006)CrossRefGoogle Scholar
  44. 44.
    A.C. Lorenzo, E.R. Caffarena, Elastic properties, Young’s modulus determination and structural stability of the tropocollagen molecule: a computational study by steered molecular dynamics. J. Biomech. 38, 1527–1533 (2005)CrossRefPubMedGoogle Scholar
  45. 45.
    M. Israelowitz, S.W.H. Rizvi, J. Kramer, H.P. von Rizvi, Computational modeling of type I collagen fibers to determine the extracellular matrix structure of connective tissues. Protein Eng. Des. Sel. 18, 329–335 (2005)CrossRefPubMedGoogle Scholar
  46. 46.
    J.W. Handgraaf, F. Zerbetto, Molecular dynamics study of onset of water gelation around the collagen triple helix. Proteins Struct. Funct. Bioinform. 64, 711–718 (2006)CrossRefGoogle Scholar
  47. 47.
    D. Zhang, U. Chippada, K. Jordan, Effect of the structural water on the mechanical properties of collagen-like microfibrils: a molecular dynamics study. Ann. Biomed. Eng. 35, 1216–1230 (2007)CrossRefPubMedGoogle Scholar
  48. 48.
    R.J. Radmer, T.E. Klein, Triple helical structure and stabilization of collagen-like molecules with 4(R)-hydroxyproline in the Xaa position. Biophys. J. 90, 578–588 (2006)CrossRefPubMedGoogle Scholar
  49. 49.
    T. Hassenkam et al., High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35, 4–10 (2004)CrossRefPubMedGoogle Scholar
  50. 50.
    W.J. Landis et al., Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J. Struct. Biol. 117, 24–35 (1996)CrossRefPubMedGoogle Scholar
  51. 51.
    S. Weiner, Y. Talmon, W. Traub, Electron diffraction of mollusc shell organic matrices and their relationship to the mineral phase. Int. J. Biol. Macromol. 5, 325–328 (1983)CrossRefGoogle Scholar
  52. 52.
    W.J. Landis, M.J. Song, A. Leith, L. McEwen, B.F. McEwen, Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image-reconstruction. J. Struct. Biol. 110, 39–54 (1993)CrossRefPubMedGoogle Scholar
  53. 53.
    D.K. Dubey, V. Tomar, Role of hydroxyapatite crystal shape in nanoscale mechanical behavior of model tropocollagen-hydroxyapatite hard biomaterials. Mater. Sci. Eng. C Mater. Biol. Appl. 29, 2133–2140 (2009). doi: 10.1016/j.msec.2009.04.015 CrossRefGoogle Scholar
  54. 54.
    D.K. Dubey, V. Tomar, Effect of osteogenesis imperfecta mutations in tropocollagen molecule on strength of biomimetic tropocollagen-hydroxyapatite nanocomposites. Appl. Phys. Lett. 96, 023703 (2010)CrossRefGoogle Scholar
  55. 55.
    J.C. Phillips et al., Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    A.S. Posner, R.A. Beebe, The surface chemistry of bone mineral and related calcium phosphates. Semin. Arthritis Rheum. 4, 267–291 (1975)CrossRefPubMedGoogle Scholar
  57. 57.
    A.D. Simone, L. Vitaglaino, R. Berisio, Role of hydration in collagen triple helix stabilization. Biochem. Biophys. Res. Commun. 372, 121–125 (2008)CrossRefPubMedGoogle Scholar
  58. 58.
    R. Bhowmik, K.S. Katti, D.R. Katti, Influence of mineral-polymer interactions on molecular mechanics of polymer in composite bone biomaterials. Mater. Res. Soc. Symp. Proc. 978, 6 (2007)Google Scholar
  59. 59.
    F. Barthelat, H.D. Espinosa, An experimental investigation of deformation and fracture of nacre-mother of pearl. Exp. Mech. 47, 311–324 (2007). doi: 10.1007/s11340-007-9040-1 CrossRefGoogle Scholar
  60. 60.
    P. Ghosh, D.R. Katti, K.S. Katti, Mineral proximity influences mechanical response of proteins in biological mineral-protein hybrid systems. Biomacromolecules 8, 851–856 (2007)CrossRefPubMedGoogle Scholar
  61. 61.
    E. Bonucci, Mechanical Testing of Bone and the Bone–Implant Interface (CRC Press, Boca Raton, FL, 2000)Google Scholar
  62. 62.
    J.D. Currey, Bones: Structure and Mechanics (Princeton University Press, Princeton, 2002)Google Scholar
  63. 63.
    N. Matsushima, M. Akiyama, Y. Terayama, Quantitative-analysis of the orientation of mineral in bone from small-angle X-ray-scattering patterns. Jpn. J. Appl. Phys. 21, 186–189 (1982)CrossRefGoogle Scholar
  64. 64.
    D.K. Dubey, V. Tomar, Effect of changes in tropocollagen residue sequence and hydroxyapatite mineral texture on the strength of ideal nanoscale tropocollagen-hydroxyapatite biomaterials. J. Mater. Sci. Mater. Med. 21, 161–171 (2010)CrossRefPubMedGoogle Scholar
  65. 65.
    A. Gautieri, S. Vesentini, A. Redaelli, M.J. Buehler, Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains. Protein Sci. 18, 161–168 (2009). doi: 10.1002/pro.21 PubMedGoogle Scholar
  66. 66.
    D.L. Bodian, B. Madhan, B. Brodsky, T.E. Klein, Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations. Biochemistry 47, 5424–5432 (2008). doi: 10.1021/bi800026k CrossRefPubMedGoogle Scholar
  67. 67.
    J.D. Currey, J.D. Taylor, The mechanical behaviour of some molluscan hard tissues. J. Zool. 173, 395–406 (1974)CrossRefGoogle Scholar
  68. 68.
    M. Sarikaya, I.A. Aksay, Biomimetic, Design and Processing of Materials Polymers and Complex Materials (American Institute of Physics, Woodbury, NY, 1995)Google Scholar
  69. 69.
    R.Z. Wang, Z. Suo, A.G. Evans, N. Yao, I.A. Aksay, Deformation mechanisms in nacre. J. Mater. Res. 16, 2485–2493 (2001)CrossRefGoogle Scholar
  70. 70.
    R. Menig, M.H. Meyers, M.A. Meyers, K.S. Vecchio, Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater. 48, 2383–2398 (2000)CrossRefGoogle Scholar
  71. 71.
    N. Yao, A. Epstein, A. Akey, Crystal growth via spiral motion in abalone shell nacre. J. Mater. Res. 21, 1939–1946 (2006). doi: 10.1557/jmr.2006.0252 CrossRefGoogle Scholar
  72. 72.
    M. Sarikaya, An introduction to biomimetics—a structural viewpoint. Microsc. Res. Tech. 27, 360–375 (1994)CrossRefPubMedGoogle Scholar
  73. 73.
    T.E. Schaffer et al., Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9, 1731–1740 (1997)CrossRefGoogle Scholar
  74. 74.
    F. Song, X.H. Zhang, Y.L. Bai, Microstructure and characteristics in the organic matrix layers of nacre. J. Mater. Res. 17, 1567–1570 (2002)CrossRefGoogle Scholar
  75. 75.
    F. Song, X.H. Zhang, Y.L. Bai, Microstructure in a biointerface. J. Mater. Sci. Lett. 21, 639–641 (2002)CrossRefGoogle Scholar
  76. 76.
    X.D. Li, W.C. Chang, Y.J. Chao, R.Z. Wang, M. Chang, Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett. 4, 613–617 (2004). doi: 10.1021/nl049962k CrossRefGoogle Scholar
  77. 77.
    M. Rousseau et al., Multiscale structure of sheet nacre. Biomaterials 26, 6254–6262 (2005). doi: 10.1016/j.biomaterials.2005.03.028 CrossRefPubMedGoogle Scholar
  78. 78.
    A.P. Jackson, J.F.V. Vincent, R.M. Turner, The mechanical design of nacre. Proc. R. Soc. Lond. B Biol. Sci. 234, 415–440 (1988)CrossRefGoogle Scholar
  79. 79.
    B.L. Smith et al., Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999)CrossRefGoogle Scholar
  80. 80.
    T. Sumitomo, H. Kakisawa, Y. Owaki, Y. Kagawa, In situ transmission electron microscopy observation of reversible deformation in nacre organic matrix. J. Mater. Res. 23, 1466–1471 (2008). doi: 10.1557/jmr.2008.0184 CrossRefGoogle Scholar
  81. 81.
    F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li, H.D. Espinosa, On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solid 55, 306–337 (2007). doi: 10.1016/j.jmps.2006.07.007 CrossRefGoogle Scholar
  82. 82.
    F. Barthelat, C.M. Li, C. Comi, H.D. Espinosa, Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21, 1977–1986 (2006). doi: 10.1557/jmr.2006.0239 CrossRefGoogle Scholar
  83. 83.
    B.J.F. Bruet et al., Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20, 2400–2419 (2005). doi: 10.1557/jmr.2005.0273 CrossRefGoogle Scholar
  84. 84.
    J.B. Thompson et al., Bone indentation recovery time correlates with bond reforming time. Nature 414, 773–776 (2001)CrossRefPubMedGoogle Scholar
  85. 85.
    K.S. Katti, D.R. Katti, S.M. Pradhan, A. Bhosle, Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20, 1097–1100 (2005). doi: 10.1557/jmr.2005.0171 CrossRefGoogle Scholar
  86. 86.
    K.S. Katti, D.R. Katti, Why is nacre so tough and strong? Mater. Sci. Eng. C Biomim. Supramol. Syst. 26, 1317–1324 (2006). doi: 10.1016/j.msec.2005.08.013 CrossRefGoogle Scholar
  87. 87.
    Z.Y. Tang, N.A. Kotov, S. Magonov, B. Ozturk, Nanostructured artificial nacre. Nat. Mater. 2, 413–418 (2003). doi: 10.1038/nmat906 CrossRefPubMedGoogle Scholar
  88. 88.
    P. Podsiadlo et al., Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmuir 21, 11915–11921 (2005). doi: 10.1021/la051284+ CrossRefPubMedGoogle Scholar
  89. 89.
    H.M. Chan, Layered ceramics: processing and mechanical behavior. Annu. Rev. Mater. Sci. 27, 249–282 (1997)CrossRefGoogle Scholar
  90. 90.
    S.R. White et al., Autonomic healing of polymer composites. Nature 409, 794–797 (2001)CrossRefPubMedGoogle Scholar
  91. 91.
    J. Benesch, J. Mano, R. Reis, Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering. Tissue Eng. Part B Rev. 14, 433–445 (2008)CrossRefPubMedGoogle Scholar
  92. 92.
    D. Verma, K. Katti, D. Katti, Nature of water in nacre: a 2D Fourier transform infrared spectroscopic study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 67, 784–788 (2007)CrossRefPubMedGoogle Scholar
  93. 93.
    B.A. Wustman, J.C. Weaver, D.E. Morse, J.S. Evans, Structure–function studies of the Lustrin a polyelectrolyte domains, RKSY and D4. Connect. Tissue Res. 44(Suppl. 1), 10–15 (2003)CrossRefPubMedGoogle Scholar
  94. 94.
    G.M. Luz, J.F. Mano, Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philos. Trans. R. Soc. A 28(367), 1587–1605 (2009)CrossRefGoogle Scholar
  95. 95.
    D.R. Katti, P. Ghosh, S. Schmidt, K.S. Katti, Mechanical properties of the sodium montmorillonite interlayer intercalated with amino acids. Biomacromolecules 6, 3267–3282 (2005)CrossRefGoogle Scholar
  96. 96.
    X. Li, Z.-H. Xu, R. Wang, In situ observation of nanograin rotation and deformation in nacre. Nano Lett. 6, 2301–2304 (2006)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations