Skip to main content

Nanomechanics Experiments: A Microscopic Study of Mechanical Property Scale Dependence and Microstructure of Crustacean Thin Films as Biomimetic Materials

  • Chapter
  • First Online:
Multiscale Characterization of Biological Systems

Abstract

Most recent studies on the natural material include shrimp exoskeleton, crab exoskeletons, lobsters, ganoid scale of an ancient fish, toucan beak, and seashells such as nacre and mollusk. Studies focusing on biomimetic materials include development of biomimetic scaffolds for tissue growth and fabrication of tissues from biocompatible, biodegradable polymers, development of the honeycomb plates with design from beetle forewings to eliminate problems of edge sealing, molding process by thoroughly investigating beetle forewing to be able to mimic its design for better sandwich panel structures, and development of high-performance functional nanocomposites from graphene sheets with enhanced thermal conductivity and mechanical stiffness. In the present chapter, basic design principles of the crustaceans and deformation mechanisms responsible for higher strength, stiffness, and toughness are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Raabe, C. Sachs, P. Romano, The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 53(15), 4281 (2005)

    Article  CAS  Google Scholar 

  2. S. Nikolov, M. Petrov, L. Lymperakis, M. Friák, C. Sachs, H.-O. Fabritius, D. Raabe, J. Neugebauer, Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle. Adv. Mater. 22(4), 519 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. D. Verma, V. Tomar, Structural-nanomechanical property correlation of shallow water shrimp (Pandalus platyceros) exoskeleton at elevated temperature. J. Bionic Eng. 11(3), 360 (2014)

    Article  Google Scholar 

  4. D. Verma, V. Tomar, An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton. Mater. Sci. Eng. C 44, 371 (2014)

    Article  CAS  Google Scholar 

  5. F. Bouville, E. Maire, S. Meille, B. Van de Moortèle, A.J. Stevenson, S. Deville, Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater. 13(5), 508 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. J.-y. Sun, J. Tong, Fracture toughness properties of three different biomaterials measured by nanoindentation. J. Bionic Eng. 4(1), 11 (2007)

    Article  Google Scholar 

  7. S. Bechtle, S.F. Ang, G.A. Schneider, On the mechanical properties of hierarchically structured biological materials. Biomaterials 31(25), 6378 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. G. Mayer, New toughening concepts for ceramic composites from rigid natural materials. J. Mech. Behav. Biomed. Mater. 4(5), 670 (2011)

    Article  PubMed  Google Scholar 

  9. M.S. Wu, Strategies and challenges for the mechanical modeling of biological and bio-inspired materials. Mater. Sci. Eng. C 31(6), 1209 (2011)

    Article  CAS  Google Scholar 

  10. P.-Y. Chen, A.Y.-M. Lin, J. McKittrick, M.A. Meyers, Structure and mechanical properties of crab exoskeletons. Acta Biomater. 4(3), 587 (2008)

    Article  PubMed  Google Scholar 

  11. J. Lian, J. Wang, Microstructure and Mechanical Properties of Dungeness Crab Exoskeletons, in Mechanics of Biological Systems and Materials, ed. by T. Proulx, vol. 2 (Springer, New York, 2011), p. 93

    Google Scholar 

  12. H.R. Hepburn, I. Joffe, N. Green, K.J. Nelson, Mechanical properties of a crab shell. Comp. Biochem. Physiol. A Physiol. 50(3), 551 (1975)

    Article  Google Scholar 

  13. M.M. Giraud-Guille, Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16(1), 75 (1984)

    Article  CAS  PubMed  Google Scholar 

  14. D. Raabe, P. Romano, C. Sachs, H. Fabritius, A. Al-Sawalmih, S.-B. Yi, G. Servos, H. Hartwig, Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater. Sci. Eng. A 421(1), 143 (2006)

    Article  Google Scholar 

  15. F. Boßelmann, P. Romano, H. Fabritius, D. Raabe, M. Epple, The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim. Acta 463(1–2), 65 (2007)

    Article  Google Scholar 

  16. L. Wang, J. Song, C. Ortiz, M.C. Boyce, Anisotropic design of a multilayered biological exoskeleton. J. Mater. Res. 24(12), 3477 (2009)

    Article  CAS  Google Scholar 

  17. Y. Seki, M.S. Schneider, M.A. Meyers, Structure and mechanical behavior of a toucan beak. Acta Mater. 53(20), 5281 (2005)

    Article  CAS  Google Scholar 

  18. Y. Seki, B. Kad, D. Benson, M.A. Meyers, The toucan beak: structure and mechanical response. Mater. Sci. Eng. C 26(8), 1412 (2006)

    Article  CAS  Google Scholar 

  19. G. Mayer, New classes of tough composite materials—lessons from natural rigid biological systems. Mater. Sci. Eng. C 26(8), 1261 (2006)

    Article  CAS  Google Scholar 

  20. X. Li, P. Nardi, Micro/nanomechanical characterization of a natural nanocomposite material—the shell of Pectinidae. Nanotechnology 15(1), 211 (2004)

    Article  Google Scholar 

  21. B. Ji, H. Gao, Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solid 52(9), 1963 (2004)

    Article  Google Scholar 

  22. B. Chen, X. Peng, J.G. Wang, X. Wu, Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite. Ceram. Int. 30(7), 2011 (2004)

    Article  CAS  Google Scholar 

  23. H. Gao, B. Ji, I.L. Jäger, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. 100(10), 5597 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. C.-a. Wang, Y. Huang, Q. Zan, H. Guo, S. Cai, Biomimetic structure design—a possible approach to change the brittleness of ceramics in nature. Mater. Sci. Eng. C 11(1), 9 (2000)

    Article  CAS  Google Scholar 

  25. Q.L. Feng, F.Z. Cui, G. Pu, R.Z. Wang, H.D. Li, Crystal orientation, toughening mechanisms and a mimic of nacre. Mater. Sci. Eng. C 11(1), 19 (2000)

    Article  Google Scholar 

  26. F. Barthelat, J.E. Rim, H.D. Espinosa, in Applied Scanning Probe Methods XIII. A Review on the Structure and Mechanical Properties of Mollusk Shells–Perspectives on Synthetic Biomimetic Materials. (Springer, New York, 2009), p. 17

    Google Scholar 

  27. G.M. Luz, J.F. Mano, Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1893), 1587 (2009)

    Article  CAS  Google Scholar 

  28. S. Raman, R. Kumar, Construction and nanomechanical properties of the exoskeleton of the barnacle, Amphibalanus reticulatus. J. Struct. Biol. 176(3), 360 (2011)

    Article  PubMed  Google Scholar 

  29. Y. Bouligand, Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4(2), 189 (1972)

    Article  CAS  PubMed  Google Scholar 

  30. C.A. Melnick, Z. Chen, J.J. Mecholsky, Hardness and toughness of exoskeleton material in the stone crab, Menippe mercenaria. J. Mater. Res. 11(11), 2903 (1996)

    Article  CAS  Google Scholar 

  31. B.-S. Kim, D.J. Mooney, Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 16(5), 224 (1998)

    Article  CAS  PubMed  Google Scholar 

  32. H. Shin, S. Jo, A.G. Mikos, Biomimetic materials for tissue engineering. Biomaterials 24(24), 4353 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. J. Chen, Q.-Q. Ni, Y. Xu, M. Iwamoto, Lightweight composite structures in the forewings of beetles. Compos. Struct. 79(3), 331 (2007)

    Article  Google Scholar 

  34. J. Chen, C. Gu, S. Guo, C. Wan, X. Wang, J. Xie, X. Hu, Integrated honeycomb technology motivated by the structure of beetle forewings. Mater. Sci. Eng. C 32(7), 1813 (2012)

    Article  CAS  Google Scholar 

  35. J. Chen, J. Xie, H. Zhu, S. Guan, G. Wu, M.N. Noori, S. Guo, Integrated honeycomb structure of a beetle forewing and its imitation. Mater. Sci. Eng. C 32(3), 613 (2012)

    Article  Google Scholar 

  36. J. Chen, G. Wu, Beetle forewings: epitome of the optimal design for lightweight composite materials. Carbohydr. Polym. 91(2), 659 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Prud'Homme, R.K. Aksay, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(6), 327 (2008)

    Article  CAS  PubMed  Google Scholar 

  39. W.C. Oliver, G.M. Pharr, Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992)

    Article  CAS  Google Scholar 

  40. G. Pharr, Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng. A 253(1), 151 (1998)

    Article  Google Scholar 

  41. M. Gan, V. Tomar, Role of length scale and temperature in indentation induced creep behavior of polymer derived Si–C–O ceramics. Mater. Sci. Eng. A 527(29–30), 7615 (2010)

    Article  Google Scholar 

  42. R. Saha, W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50(1), 23 (2002)

    Article  CAS  Google Scholar 

  43. C. Gamonpilas, E.P. Busso, On the effect of substrate properties on the indentation behaviour of coated systems. Mater. Sci. Eng. A 380(1–2), 52 (2004)

    Article  Google Scholar 

  44. D. Kramer, A. Volinsky, N. Moody, W. Gerberich, Substrate effects on indentation plastic zone development in thin soft films. J. Mater. Res. 16(11), 3150 (2001)

    Article  CAS  Google Scholar 

  45. S. Ravichandran, G. Rameshkumar, A.R. Prince, Biochemical composition of shell and flesh of the Indian white shrimp Penaeus indicus (H. milne Edwards 1837). Am.-Euras. J. Sci. Res. 4(3), 191 (2009)

    CAS  Google Scholar 

  46. F. Ehigiator, E. Oterai, Chemical composition and amino acid profile of a Caridean prawn (Macrobrachium vollenhovenii) from Ovia river and tropical periwinkle (Tympanotonus fuscatus) from Benin River, Edo State, Nigeria. Int. J. Res. Rev. Appl. Sci. 11(1), 162–167 (2012)

    CAS  Google Scholar 

  47. I.A. Emmanuel, H.O. Adubiaro, O.J. Awodola, Comparability of chemical composition and functional properties of shell and flesh of Penaeus notabilis. Pak. J. Nutr. 7(6), 741 (2008)

    Article  Google Scholar 

  48. R.H. Rødde, A. Einbu, K.M. Vårum, A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr. Polym. 71(3), 388 (2008)

    Article  Google Scholar 

  49. H.M. Ibrahim, M.F. Salama, H.A. El-Banna, Shrimp’s waste: chemical composition, nutritional value and utilization. Food/Nahrung 43(6), 418 (1999)

    Article  CAS  Google Scholar 

  50. F. Shahidi, J. Synowiecki, Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J. Agric. Food Chem. 39(8), 1527 (1991)

    Article  CAS  Google Scholar 

  51. M. Islam, S. Masum, M. Rahman, M. Moll, A. Shaikh, S. Roy, Preparation of chitosan from shrimp shell and investigation of its properties. Int. J. Basic Appl. Sci. 11(1), 116 (2011)

    Google Scholar 

  52. M. Oyen, Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86(33–35), 5625 (2006)

    Article  CAS  Google Scholar 

  53. M.L. Oyen, R.F. Cook, Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18(01), 139 (2003)

    Article  CAS  Google Scholar 

  54. R.F. Cook, M.L. Oyen, Nanoindentation behavior and mechanical properties measurement of polymeric materials. Int. J. Mater. Res. 98(5), 370 (2007)

    Article  CAS  Google Scholar 

  55. H. Lu, B. Wang, J. Ma, G. Huang, H. Viswanathan, Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7(3–4), 189 (2003)

    Article  Google Scholar 

  56. H. Fricke, O. Giere, K. Stetter, G.A. Alfredsson, J.K. Kristjansson, P. Stoffers, J. Svavarsson, Hydrothermal vent communities at the shallow subpolar Mid-Atlantic ridge. Mar. Biol. 102(3), 425 (1989)

    Article  Google Scholar 

  57. D. Desbruyères, M. Biscoito, J.C. Caprais, A. Colaço, T. Comtet, P. Crassous, Y. Fouquet, A. Khripounoff, N. Le Bris, K. Olu, R. Riso, P.M. Sarradin, M. Segonzac, A. Vangriesheim, Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau. Deep-Sea Res. I Oceanogr. Res. Pap. 48(5), 1325 (2001)

    Article  Google Scholar 

  58. S.T. Ahyong, New species and new records of hydrothermal vent shrimps from New Zealand (Caridea: Alvinocarididae, Hippolytidae). Crustaceana 82(7), 775 (2009)

    Article  Google Scholar 

  59. R.C. Vrijenhoek, Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations. Mol. Ecol. 19(20), 4391 (2010)

    Article  PubMed  Google Scholar 

  60. D.P. Connelly, J.T. Copley, B.J. Murton, K. Stansfield, P.A. Tyler, C.R. German, C.L. Van Dover, D. Amon, M. Furlong, N. Grindlay, N. Hayman, V. Huhnerbach, M. Judge, T. Le Bas, S. McPhail, A. Meier, K.-i. Nakamura, V. Nye, M. Pebody, R.B. Pedersen, S. Plouviez, C. Sands, R.C. Searle, P. Stevenson, S. Taws, S. Wilcox, Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre. Nat. Commun. 3, 620 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to Dr. Juliette Ravaux, Université Pierre et Marie Curie, for providing samples of Rimicaris exoculata. Also, they would like to acknowledge the excellent technical assistance of Dr. Christopher J. Gilpin, Chia-Ping Huang, and Laurie Mueller with scanning electron microscopy and energy-dispersive X-ray at Purdue University. Lastly I would like to thank my colleagues Dr. Devendra Dubey, Dr. Ming Gan, Dr. You Sung Han, and Dr. Hongsuk Lee for helpful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tomar, V., Qu, T., Dubey, D.K., Verma, D., Zhang, Y. (2015). Nanomechanics Experiments: A Microscopic Study of Mechanical Property Scale Dependence and Microstructure of Crustacean Thin Films as Biomimetic Materials. In: Multiscale Characterization of Biological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3453-9_3

Download citation

Publish with us

Policies and ethics