Spectroscopic Experiments: A Review of Raman Spectroscopy of Biological Systems



Raman spectroscopy is fast emerging as an important characterization tool for biological systems. Raman spectroscopy has proven to be a powerful and versatile characterization tool used for determining chemical composition of material systems such as nanoscale semiconductor devices or biological systems. One major advantage of Raman spectroscopy in the case of biological molecules is that water gives very weak, uncomplicated Raman signal. Biological systems are essentially wet systems; hence, Raman spectrum of a biological system can be easily obtained by filtering the water’s Raman signal. Another advantage of Raman spectroscopy in the case of biological molecules is the ability of Raman spectroscopy to analyze in vivo samples. This aspect gives this technique an edge over other methods such as infrared (IR) spectroscopy which requires elaborate signal preparation for excitation and complex instrumentation for signal processing after the excitation. This chapter focuses on presenting information on advancements made regarding the Raman spectroscopy of algae.


Raman Biology Algae Material chemistry 


  1. 1.
    C.V. Raman, K.S. Krishnan, A new type of secondary radiation. Nature 121, 501–502 (1928)CrossRefGoogle Scholar
  2. 2.
    S. Frank, E.R. Parker, Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry (Springer, New York, 1983)Google Scholar
  3. 3.
    P. Heraud, B.R. Wood, J. Beardall, D. McNaughton, New Approaches in Biomedical Spectroscopy (American Chemical Society, Washington, DC, 2007)Google Scholar
  4. 4.
    D. Pappas, B.W. Smith, J.D. Winefordner, Raman spectroscopy in bioanalysis. Talanta 51, 131–144 (2000)CrossRefPubMedGoogle Scholar
  5. 5.
    K.H.M. Cardozo et al., Metabolites from algae with economical impact. Comp. Biochem. Physiol. C 146, 60–78 (2007)CrossRefGoogle Scholar
  6. 6.
    B. Podola, E.C.M. Nowack, M. Melkonian, The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosens. Bioelectron. 19, 1253–1260 (2004)CrossRefPubMedGoogle Scholar
  7. 7.
    P. Mayer, R. Cuhel, N. Nyholm, A simple in vitro fluorescence method for biomass measurements in algal growth inhibition tests. Water Res. 31, 2525–2531 (1997)CrossRefGoogle Scholar
  8. 8.
    R.G. Smith, N. D'Souza, S. Nicklin, A review of biosensors and biologically-inspired systems for explosives detection. Analyst 133, 571–584 (2008)CrossRefPubMedGoogle Scholar
  9. 9.
    M. Campas, R. Carpentier, R. Rouillon, Plant tissue—and photosynthesis—based biosensors. Biotechnol. Adv. 26, 370–378 (2008)CrossRefPubMedGoogle Scholar
  10. 10.
    C. Durrieu, C. Tran-Minh, Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol. Environ. Saf. 51, 206–209 (2002)CrossRefPubMedGoogle Scholar
  11. 11.
    M. Naessens, J.C. Leclerc, C. Tran-Minh, Fiber optic biosensor using chlorella vulgaris for determination of toxic compounds. Ecotoxicol. Environ. Saf. 46, 181–185 (2000)CrossRefPubMedGoogle Scholar
  12. 12.
    D. Franse, A. Muller, D. Beckmann, Detection of environmental pollutants using optical biosensor with immobilized algae cells. Sensors Actuators B 51, 256–260 (1998)CrossRefGoogle Scholar
  13. 13.
    A. Scardino et al., Delayed luminescence of microalgae as an indicator of metal toxicity. J. Phys. D. Appl. Phys. 41(155507), 155501–155508 (2008)Google Scholar
  14. 14.
    Y. Tanaka et al., Biological cells on microchips: new technologies and applications. Biosens. Bioelectron. 23, 449–458 (2007)CrossRefPubMedGoogle Scholar
  15. 15.
    L. Campanella, F. Cubadda, M.P. Sammartino, A. Saoncella, An algal biosensor for the monitoring of water toxicity in estuarine environments. Water Res. 35, 69–76 (2000)CrossRefGoogle Scholar
  16. 16.
    Y.Y. Huang, C.M. Beal, W.W. Cai, R.S. Ruoff, E.M. Terentjev, Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol. Bioeng. 105, 889–898 (2010)PubMedGoogle Scholar
  17. 17.
    H. Wu et al., In-vivo lipidomics using single-cell Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 108, 3809–3814 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    B. Alberts et al., Essential Cell Biology (Garland Publishing Inc., New York, 1998)Google Scholar
  19. 19.
    S.K. Brahma, P.E. Hargraves, W.F. Howard, W.H. Nelson, A resonance Raman method for the rapid detection and identification of algae in water. Appl. Spectrosc. 37, 55–58 (1983)CrossRefGoogle Scholar
  20. 20.
    L. Pereira, A. Sousa, H. Coelho, A.M. Amado, P.J.A. Ribeiro-Claro, Use of FTIR, FT-Raman and C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol. Eng. 20, 223–228 (2003)CrossRefPubMedGoogle Scholar
  21. 21.
    S. Ramya, R.P. George, R.V. Subba Rao, R.K. Dayal, Detection of algae and bacterial biofilms formed on titanium surfaces using micro-Raman analysis. Appl. Surf. Sci. 256, 5108–5105 (2010)CrossRefGoogle Scholar
  22. 22.
    Q. Wu et al., Differentiation of algae clones on the basis of resonance Raman spectra excited by visible light. Anal. Chem. 70, 1782–1787 (1998)CrossRefPubMedGoogle Scholar
  23. 23.
    J.R. Baena, B. Lendl, Raman spectroscopy in chemical bioanalysis. Curr. Opin. Chem. Biol. 8, 534–539 (2004)CrossRefPubMedGoogle Scholar
  24. 24.
    H. Fabian, P. Abzenbacher, New developments in Raman spectroscopy of biological systems. Vib. Spectrosc. 4, 125–148 (1993)CrossRefGoogle Scholar
  25. 25.
    I. De Wolf, Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11, 139–154 (1996)CrossRefGoogle Scholar
  26. 26.
    D.P. Strommen, K. Nakamoto, Resonance Raman spectroscopy. J. Chem. Educ. 54, 474–478 (1977)CrossRefGoogle Scholar
  27. 27.
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 14(R), 597–624 (2002)CrossRefGoogle Scholar
  28. 28.
    B. Pettinger, in Topics in Applied Physics: Surface-Enhanced Raman Scattering-Physics and Applications, ed. by C. Ascheron, vol. 103 (Springer, New York, 2006), pp. 217–240CrossRefGoogle Scholar
  29. 29.
    W.M. Tolles, J.W. Nibler, J.R. McDonald, A.B. Harvey, A review of the theory and application of Coherent Anti-Stokes Raman Spectroscopy (CARS). Appl. Spectrosc. 31, 253–271 (1977)CrossRefGoogle Scholar
  30. 30.
    E.B. Hanlon et al., Prospects for in vivo Raman spectroscopy. Phys. Med. Biol. 45, R1–R59 (2000)CrossRefPubMedGoogle Scholar
  31. 31.
    D. Haaland, M. & Thomas, E. V. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 60, 1193–1202 (1988)CrossRefGoogle Scholar
  32. 32.
    S. Wold, K. Esbensen, P. Geladi, Principal component analysis. Chemom. Intell. Lab. Syst. 2, 37–52 (1987)CrossRefGoogle Scholar
  33. 33.
    B.R. Wood et al., A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells. Anal. Chem. 77, 4955–4961 (2005)CrossRefPubMedGoogle Scholar
  34. 34.
    M. Lutz, Antenna chlorophyll in photosynthetic membranes: a study by resonance Raman spectroscopy. Biochim. Biophys. Acta 460, 408–430 (1977)CrossRefPubMedGoogle Scholar
  35. 35.
    M. Lutz, Resonance Raman spectra of chlorophyll in solution. J. Raman Spectrosc. 2, 497–516 (1974)CrossRefGoogle Scholar
  36. 36.
    W.D. Wagner, W. Waidelich, Selective observation of chlorophyll c in whole cells of diatoms by resonant Raman spectroscopy. Appl. Spectrosc. 40, 191–196 (1986)CrossRefGoogle Scholar
  37. 37.
    M. Chen, H. Zeng, A.W.D. Larkum, Z.-L. Cai, Raman properties of chlorophyll d, the major pigment of Acaryochloris marina: studies using both Raman spectroscopy and density functional theory. Spectochim. Acta A 60, 527–534 (2004)CrossRefGoogle Scholar
  38. 38.
    T. Egawa, S.-R. Yeh, Structural and functional properties of hemoglobins from unicellular organisms as revealed by resonance Raman spectroscopy. J. Inorg. Biochem. 99, 72–96 (2005)CrossRefPubMedGoogle Scholar
  39. 39.
    P.D. Vasko, J. Blackwell, J.L. Koenig, Infrared and Raman spectroscopy of carbohydrates. Part I: Identification of O-H and C-H related vibrational modes for D-glucose, maltose, cellobiose and dextran by deuterium-substituted methods. Carbohydr. Res. 19, 297–310 (1971)CrossRefGoogle Scholar
  40. 40.
    P.D. Vasko, J. Blackwell, J.L. Koenig, Infrared and Raman spectroscopy of carbohydrates. Part II: Normal coordinate analysis of α-D-glucose. Carbohydr. Res. 23, 407–416 (1972)CrossRefGoogle Scholar
  41. 41.
    J.J. Cael, J.L. Koenig, J. Blackwell, Infrared and Raman spectroscopy of carbohydrates. Part III: Raman spectra of the polymorphic forms of amylose. Carbohydr. Res. 29, 123–134 (1973)CrossRefPubMedGoogle Scholar
  42. 42.
    J.J. Cael, J.L. Koenig, J. Blackwell, Infrared and Raman spectroscopy of carbohydrates. Part IV: Normal coordinate analysis of V-Amylose. Biopolymers 14, 1885–1903 (1975)CrossRefGoogle Scholar
  43. 43.
    J.J. Cael, K.H. Gardner, J.L. Koenig, J. Blackwell, Infrared and Raman spectroscopy of carbohydrates. Paper V: Normal coordinate analysis of cellulose I. J. Chem. Phys. 62, 1145–1153 (1975)CrossRefGoogle Scholar
  44. 44.
    L. Yang, L.-M. Zhang, Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr. Polym. 76, 349–361 (2009)CrossRefGoogle Scholar
  45. 45.
    R.H. Atalla, J.M. Hackney, in Material Research Society Symposium (Materials Research Society, Pittsburgh, 1992)Google Scholar
  46. 46.
    T. Schmid, A. Messmer, B.-S. Yeo, W. Zhang, R. Zenobi, Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates. Anal. Bioanal. Chem. 391, 1907–1916 (2008)CrossRefPubMedGoogle Scholar
  47. 47.
    P.D.A. Pudney, T.M. Hancewicz, D.G. Cunnigham, M.C. Brown, Quantifying the microstructure of soft solid materials by confocal Raman spectroscopy. Vib. Spectrosc. 34, 123–135 (2004)CrossRefGoogle Scholar
  48. 48.
    T. Malfait, H. Van Dael, F. Van Cauwelaert, Molecular structure of carrageenans and kappa oligomers: a Raman spectroscopic study. Int. J. Biol. Macromol. 11, 259–264 (1989)CrossRefPubMedGoogle Scholar
  49. 49.
    S. Yu et al., Physico-chemical characterization of floridean starch of red algae. Starch 54, 66–74 (2002)CrossRefGoogle Scholar
  50. 50.
    A. Enejder, C. Brackmann, F. Svedberg, Coherent Anti-Stokes Raman scattering microscopy of cellular lipid storage. IEEE J. Sel. Top. Quantum Electron. 16, 506–515 (2010)CrossRefGoogle Scholar
  51. 51.
    B. Robert, in The Photochemistry of Carotenoids, ed. by H.A. Frank, A.J. Young, G. Britton, R.J. Cogdell (Kluwer Academic Publishers, Dordrecht, 1999), pp. 189–201. Chapter 10Google Scholar
  52. 52.
    Y. Kubo, T. Ikeda, S.-Y. Yang, M. Tsuboi, Orientation of carotenoid molecules in the eyespot of alga: in situ polarized resonance Raman spectroscopy. Appl. Spectrosc. 54, 1114–1119 (2000)CrossRefGoogle Scholar
  53. 53.
    P. Groner, in Handbook of Vibrational Spectroscopy (Wiley and Sons, Chichester, UK, 2006)Google Scholar
  54. 54.
    J. De Gelder, K. De Gussem, P. Vandenabeele, L. Moens, Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38, 1133–1147 (2007)CrossRefGoogle Scholar
  55. 55.
    A.S. Mostaert et al., Characterisation of amyloid nanostructures in the natural adhesive of unicellular subaerial algae. J. Adhes. 85, 465–483 (2009)CrossRefGoogle Scholar
  56. 56.
    O. Samek et al., Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors 10, 8635–8651 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    C. Largeau, E. Casadevall, C. Berkaloff, P. Dhamelincourt, Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19, 1043–1051 (1980)CrossRefGoogle Scholar
  58. 58.
    M. Wagner, Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectroscopy imaging. Annu. Rev. Microbiol. 63, 411–432 (2009)CrossRefPubMedGoogle Scholar
  59. 59.
    J.C. Merlin, Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl. Chem. 57, 785–792 (1985)CrossRefGoogle Scholar
  60. 60.
    C.P. Marshall et al., Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. Astrobiology 7, 631–643 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations