Skip to main content

Mammalian Circadian Clocks and Metabolism: Navigating Nutritional Challenges in a Rhythmic World

  • Chapter
  • First Online:
Circadian Clocks: Role in Health and Disease

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

The mammalian circadian clock is vital for generating and coordinating metabolic rhythms. Patterns in feeding behavior present organisms with an influx of nutrients at particular times of day which must be either used or stored. The circadian system helps guide a proper metabolic response to the cellular energy demands by regulating transcriptional and enzymatic activities. Coordination of clocks with metabolic processes is a complex interplay in which both molecular clock machinery and cellular metabolites can influence one another. Genetic disruptions of the circadian system and nutritional perturbations such as restricted feeding or high-fat diet (HFD) consumption have revealed the importance of molecular and metabolic rhythmicity to the health of an organism. In this review, we focus on the responses of the peripheral clocks in mammals to nutritional challenges such as diet and food restriction. Understanding this relationship will help guide the treatment of conditions such as obesity and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M, Kraut-Cohen J et al (2014) Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 19:319–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Akashi M, Takumi T (2005) The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol 12:441–448

    Article  CAS  PubMed  Google Scholar 

  • Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F et al (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943–953

    Article  CAS  PubMed  Google Scholar 

  • Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI et al (2010) Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3:525–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30:525–536

    Article  CAS  PubMed  Google Scholar 

  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM et al (2000a) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347

    Article  CAS  PubMed  Google Scholar 

  • Balsalobre A, Marcacci L, Schibler U (2000b) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 10:1291–1294

    Article  CAS  PubMed  Google Scholar 

  • Canaple L, Rambaud J, Dkhissi-Benyahya O, Rayet B, Tan NS, Michalik L et al (2006) Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 20:1715–1727

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Magliano DJ, Zimmet PZ (2012) The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 8:228–236

    Article  CAS  Google Scholar 

  • Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT et al (2012) Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature 485:123–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cotter DG, Schugar RC, Crawford PA (2013) Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 304:H1060–H1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Douris N, Kojima S, Pan X, Lerch-Gaggl AF, Duong SQ, Hussain MM et al (2011) Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes. Curr Biol 21:1347–1355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci USA 109:5541–5546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eckel-Mahan KL, Patel VR, de Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S et al (2013) Reprogramming of the circadian clock by nutritional challenge. Cell 155:1464–1478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361

    Article  CAS  PubMed  Google Scholar 

  • Gachon F, Olela FF, Schaad O, Descombes P, Schibler U (2006) The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 4:25–36

    Article  CAS  PubMed  Google Scholar 

  • Garbarino-Pico E, Niu S, Rollag MD, Strayer CA, Besharse JC, Green CB (2007) Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli. RNA 13:745–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Green CB, Douris N, Kojima S, Strayer CA, Fogerty J, Lourim D et al (2007) Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc Natl Acad Sci USA 104:9888–9893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J, Amin RH et al (2010) PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab 12:509–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guillaumond F, Dardente H, Giguere V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20:391–403

    Article  CAS  PubMed  Google Scholar 

  • Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S et al (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:848–860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoogerwerf WA, Hellmich HL, Cornelissen G, Halberg F, Shahinian VB, Bostwick J et al (2007) Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133:1250–1260

    Article  CAS  PubMed  Google Scholar 

  • Kaasik K, Kivimae S, Allen JJ, Chalkley RJ, Huang Y, Baer K et al (2013) Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 17:291–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kasukawa T, Sugimoto M, Hida A, Minami Y, Mori M, Honma S et al (2012) Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci USA 109:15036–15041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawai M, Green CB, Lecka-Czernik B, Douris N, Gilbert MR, Kojima S et al (2010) A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-gamma nuclear translocation. Proc Natl Acad Sci USA 107:10508–10513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(Spec No 2):R271–R277

    Article  CAS  PubMed  Google Scholar 

  • Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y et al (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:414–421

    Article  CAS  PubMed  Google Scholar 

  • Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK et al (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349–354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kojima S, Shingle DL, Green CB (2011) Post-transcriptional control of circadian rhythms. J Cell Sci 124:311–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kojima S, Sher-Chen EL, Green CB (2012) Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev 26:2724–2736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5:e34

    Article  PubMed Central  PubMed  Google Scholar 

  • Lamia KA, Storch KF, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 105:15172–15177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF et al (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW et al (2011) Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480:552–556

    PubMed Central  CAS  PubMed  Google Scholar 

  • Le Martelot G, Canella D, Symul L, Migliavacca E, Gilardi F, Liechti R et al (2012) Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 10:e1001442

    Article  PubMed Central  PubMed  Google Scholar 

  • Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20:7128–7136

    Article  PubMed Central  PubMed  Google Scholar 

  • Li MD, Ruan HB, Hughes ME, Lee JS, Singh JP, Jones SP et al (2013) O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17:303–310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481

    Article  CAS  PubMed  Google Scholar 

  • Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marcheva B, Ramsey KM, Peek CB, Affinati A, Maury E, Bass J (2013) Circadian clocks and metabolism. Handb Exp Pharmacol 217:127–155

    Article  CAS  PubMed  Google Scholar 

  • McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, FitzGerald GA (2001) Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105:877–889

    Article  CAS  PubMed  Google Scholar 

  • Menet JS, Rodriguez J, Abruzzi KC, Rosbash M (2012) Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. Elife 1:e00011

    Article  PubMed Central  PubMed  Google Scholar 

  • Minami Y, Kasukawa T, Kakazu Y, Iigo M, Sugimoto M, Ikeda S et al (2009) Measurement of internal body time by blood metabolomics. Proc Natl Acad Sci USA 106:9890–9895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34:349–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moore RY (2013) The suprachiasmatic nucleus and the circadian timing system. Prog Mol Biol Transl Sci 119:1–28

    Article  PubMed  Google Scholar 

  • Nakahata Y, Akashi M, Trcka D, Yasuda A, Takumi T (2006) The in vitro real-time oscillation monitoring system identifies potential entrainment factors for circadian clocks. BMC Mol Biol 7:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D et al (2008) The NAD+−dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  CAS  PubMed  Google Scholar 

  • Oishi K, Miyazaki K, Kadota K, Kikuno R, Nagase T, Atsumi G et al (2003) Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 278:41519–41527

    Article  CAS  PubMed  Google Scholar 

  • Oishi K, Shirai H, Ishida N (2005) CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem J 386:575–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oishi K, Atsumi G, Sugiyama S, Kodomari I, Kasamatsu M, Machida K et al (2006) Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice. FEBS Lett 580:127–130

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Hussain MM (2007) Diurnal regulation of microsomal triglyceride transfer protein and plasma lipid levels. J Biol Chem 282:24707–24719

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Hussain MM (2009) Clock is important for food and circadian regulation of macronutrient absorption in mice. J Lipid Res 50:1800–1813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pan X, Terada T, Irie M, Saito H, Inui K (2002) Diurnal rhythm of H+−peptide cotransporter in rat small intestine. Am J Physiol Gastrointest Liver Physiol 283:G57–G64

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Terada T, Okuda M, Inui K (2004) The diurnal rhythm of the intestinal transporters SGLT1 and PEPT1 is regulated by the feeding conditions in rats. J Nutr 134:2211–2215

    CAS  PubMed  Google Scholar 

  • Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  CAS  PubMed  Google Scholar 

  • Peek CB, Affinati AH, Ramsey KM, Kuo HY, Yu W, Sena LA et al (2013) Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342(6158):1243417

    Article  PubMed Central  PubMed  Google Scholar 

  • Pendergast JS, Branecky KL, Yang W, Ellacott KL, Niswender KD, Yamazaki S (2013) High-fat diet acutely affects circadian organisation and eating behavior. Eur J Neurosci 37:1350–1356

    Article  PubMed Central  PubMed  Google Scholar 

  • Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C et al (1988) Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med 318:1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Prasai MJ, Mughal RS, Wheatcroft SB, Kearney MT, Grant PJ, Scott EM (2013) Diurnal variation in vascular and metabolic function in diet-induced obesity: divergence of insulin resistance and loss of clock rhythm. Diabetes 62:1981–1989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U et al (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  PubMed  Google Scholar 

  • Previs SF, Brunengraber DZ, Brunengraber H (2009) Is there glucose production outside of the liver and kidney? Annu Rev Nutr 29:43–57

    Article  PubMed  Google Scholar 

  • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O’Neill JS et al (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16:1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  • Robles MS, Cox J, Mann M (2014) In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet 10:e1004047

    Article  PubMed Central  PubMed  Google Scholar 

  • Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB et al (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377

    Article  PubMed Central  PubMed  Google Scholar 

  • Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514

    Article  CAS  PubMed  Google Scholar 

  • Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P et al (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537

    Article  CAS  PubMed  Google Scholar 

  • Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 106:4453–4458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  CAS  PubMed  Google Scholar 

  • Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH et al (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83

    Article  CAS  PubMed  Google Scholar 

  • Stubblefield JJ, Terrien J, Green CB (2012) Nocturnin: at the crossroads of clocks and metabolism. Trends Endocrinol Metab 23:326–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM et al (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    Article  CAS  PubMed  Google Scholar 

  • Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312

    Article  CAS  PubMed  Google Scholar 

  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Um JH, Pendergast JS, Springer DA, Foretz M, Viollet B, Brown A et al (2011) AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLoS One 6:e18450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci USA 106:21453–21458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vollmers C, Schmitz RJ, Nathanson J, Yeo G, Ecker JR, Panda S (2012) Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab 16:833–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Osterbur DL, Megaw PL, Tosini G, Fukuhara C, Green CB et al (2001) Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse. BMC Dev Biol 1:9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M et al (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED et al (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101:5339–5346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T et al (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla B. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Stubblefield, J.J., Green, C.B. (2016). Mammalian Circadian Clocks and Metabolism: Navigating Nutritional Challenges in a Rhythmic World. In: Gumz, M. (eds) Circadian Clocks: Role in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3450-8_5

Download citation

Publish with us

Policies and ethics