Skip to main content

Irradiation-Induced Voids and Bubbles

  • Chapter
  • First Online:
Fundamentals of Radiation Materials Science

Abstract

The formation and growth of voids and bubbles is of intense interest for material performance in radiation environments at elevated temperature. The first observation of voids in irradiated metals was published by Cauthorne and Fulton in 1967 (Cauthorne and Fulton, in Nature 216:575, 1967). Voids can have a profound influence on material properties because solids undergo volumetric swelling when voids form and grow. It has been suggested that the US breeder reactor program experienced a setback of nearly a decade by this surprising observation, as scientists scrambled to understand this phenomenon and the consequences to reactor internals . Since that time, a great deal of effort has been expended toward understanding their formation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cauthorne C, Fulton E (1967) Nature 216:575

    Article  Google Scholar 

  2. Jenkins ML, Kirk MA (2001) Characterization of radiation damage by transmission electron microscopy. Institute of Physics Publishing, Philadelphia

    Book  Google Scholar 

  3. Adda U (1972) In: Corbett JW, Ianiello LC (eds) Proceedings of radiation-induced voids in metals, CONF-710601, USAEC Technical Information Center, Oak Ridge, TN, 1972, p 31

    Google Scholar 

  4. Olander DR (1976) Fundamental aspects of nuclear reactor fuel elements, TID-26711-P1. Technical Information Center, USERDA, Washington, DC

    Google Scholar 

  5. Mansur LK (1994) J Nucl Mater 216:97–123

    Article  Google Scholar 

  6. Russell KC (1971) Acta Met 19:753

    Article  Google Scholar 

  7. Powell RW, Russell KC (1972) Rad Eff 12:127

    Article  Google Scholar 

  8. Katz JL, Wiedersich H (1972) In: Corbett JW, Ianiello LC (eds) Proceedings of radiation-induced voids in metals, CONF-710601, USAEC Technical Information Center, Oak Ridge, TN, 1972, p 825

    Google Scholar 

  9. Russell KC (1979) Acta Met 26:1615

    Article  Google Scholar 

  10. Packan NH, Farrell K, Stregler JO (1978) J Nucl Mater 78:143

    Article  Google Scholar 

  11. Wiedersich H, Katy JL (1979) Adv Colloid Interface Sci 10:33

    Article  Google Scholar 

  12. Russell KC (1972) Acta Met 20:899

    Article  Google Scholar 

  13. Katz JL, Wiedersich H (1973) J Nucl Mater 46:41

    Article  Google Scholar 

  14. Semenov AA, Woo CH (2002) Phys Rev B 66:024118

    Article  Google Scholar 

  15. Brailsford AD, Bullough R (1972) J Nucl Mater 44:121–135

    Article  Google Scholar 

  16. Mansur LK (1978) Nucl Technol 40:5–34

    Article  Google Scholar 

  17. Brimhall JL, Kissinger HE, Kulcinski GL (1972) In: Corbett JW, Ianiello LC (eds) Proceedings of radiation-induced voids in metals, CONF-710601, USAEC Technical Information Center, Oak Ridge, TN, 1972, p 338

    Google Scholar 

  18. Garner FA, Porollo SI, Vorobjev AN, Konobeev YuV, Dvoriashin AM (1999) In: Ford FP, Bruemmer SM, Was GS (eds) Proceedings of the 9th international symposium on environmental degradation of materials in nuclear power systems: water reactors, the minerals, metals and materials society, Warrendale, PA, p 1051

    Google Scholar 

  19. Garner FA (1984) Irradiation performance of cladding and structural steels in liquid metal reactors, chap 6. In: Frost BRT (ed) Materials science and technology, vol 10A, nuclear materials, part I. VCH, New York

    Google Scholar 

  20. Krasnoselov VA, Prokhorov VI, Koleskikov AN, Ostrovskii ZA (1983) Atomnaya Energiya 54(2):111–114

    Google Scholar 

  21. Garner FA, Bates JF, Mitchell MA (1992) J Nucl Mater 189:201–209

    Article  Google Scholar 

  22. Brager HR, Garner FA (1979) Effects of radiation on structural materials the 9th international symposium, STP 683. America Society for Testing and Materials, Philadelphia, PA, 1979, pp 207–232

    Google Scholar 

  23. Dupouy JM, Lehmann J, Boutard JL (1978) In: Proceedings of the conference on reactor materials science, vol. 5, Alushta, USSR. Moscow, USSR Government, pp 280–296

    Google Scholar 

  24. Busboom HJ, McClelland GC, Bell WL, Appleby WK (1975) Swelling of types 304 and 316 stainless steel irradiated to 8 × 1022 n/cm2, general electric company report GEAP-14062. General Electric Co., Sunnyvale

    Google Scholar 

  25. Seran LJ, Dupouy JM (1982) In: Effects of radiation on materials the 11th international symposium, STP 782. American Society for Testing and Materials, Philadelphia, PA, 1982, pp 5–16

    Google Scholar 

  26. Seran LJ, Dupouy JM (1983) In: Proceedings of the conference on dimensional stability and mechanical behavior of irradiated metals and alloys, vol 1, Brighton. British Nuclear Energy Society, London, 1983, pp 22–28

    Google Scholar 

  27. Mansur LK (1993) J Nucl Mater 206:306–323

    Article  Google Scholar 

  28. Mansur LK (1978) J Nucl Mater 78:156–160

    Article  Google Scholar 

  29. Mansur LK (1978) Nucl Technol 40:5–34

    Article  Google Scholar 

  30. Woo CH, Singh BN (1990) Phys Stat Sol (b) 159:609

    Article  Google Scholar 

  31. Golubov SI, Barashev AV, Stoller RE (2012) In: Konings RJM (ed) Comprehensive Nuclear Materials, 1.13. Elsevier, Amsterdam

    Google Scholar 

  32. Singh BN, Foreman AJE (1992) Philos Mag A 1992(66):975

    Article  Google Scholar 

  33. Abromeit C (1994) J Nucl Mater 216:78–96

    Article  Google Scholar 

  34. Singh BN, Eldrup M, Horsewell A, Earhart P, Dworschak F (2000) Philos Mag 80:2629

    Article  Google Scholar 

  35. Brailsford AD, Bullough R (1973) J Nucl Mater 48:87

    Article  Google Scholar 

  36. Brailsford AD, Bullough R (1972) British Rep AERE-TB-542

    Google Scholar 

  37. Dubuisson P, Maillard A, Delalande C, Gilbon D, Seran JL (1992) Effects of Radiation on materials the 15th international symposium, STP 1125. American Society for Testing and Materials, Philadelphia, PA, 1992, pp 995–1014

    Google Scholar 

  38. Brager HR, Garner FA, Guthrie GL (1977) J Nucl Mater 66:301–321

    Article  Google Scholar 

  39. Wolfer WG, Foster JP, Garner FA (1972) Nucl Technol 16:55

    Google Scholar 

  40. Brailsford AD (1975) J Nucl Mater 56:7

    Article  Google Scholar 

  41. Wolfer WG, Mansur LK (1980) J Nucl Mater 91:265

    Article  Google Scholar 

  42. Allen TR, Cole JI, Gan J, Was GS, Dropek R, Kenik EA (2005) J Nucl Mater 341:90–100

    Article  Google Scholar 

  43. Ghoniem NM, Walgraef DJ, Zinkle S (2002) Comput Aided Mater Des 8:1–38

    Article  Google Scholar 

  44. Jager W, Trinkaus H (1993) J Nucl Mater 205:394–410

    Article  Google Scholar 

  45. Woo CH, Frank W (1985) J Nucl Mater 137:7

    Article  Google Scholar 

  46. Garner FA (1984) J Nucl Mater 122–123:459–471

    Article  Google Scholar 

  47. Mansur LK, Yoo MH (1978) J Nucl Mater 74:228–241

    Article  Google Scholar 

  48. Garner FA, Kumar AS (1987) Radiation-Induced Changes in Microstructure the 13th International Symposium, STP 955 (Part 1). American Society for Testing and Materials, Philadelphia, PA, 1987, pp 289–314

    Google Scholar 

  49. Garner FA, Brager HR (1985) J Nucl Mater 133–134:511–514

    Article  Google Scholar 

  50. Gan J, Simonen EP, Bruemmer SM, Fournier L, Sencer BH, Was GS (2004) J Nucl Mater 325:94–106

    Article  Google Scholar 

  51. Brailsford AD, Mansur LK (1981) J Nucl Mater 103–104:1403–1408

    Article  Google Scholar 

  52. Shiakh MA (1992) J Nucl Mater 187:303–306

    Article  Google Scholar 

  53. Sekio Y, Yamashita S, Sakaguchi N, Takahashi H (2014) J Nucl Mater 458:355–360

    Article  Google Scholar 

  54. Singh BN, Zinkle SJ (1994) J Nucl Mater 217:161–171

    Article  Google Scholar 

  55. Garner FA, Sekimura N, Grossbeck ML, Ermi AM, Newkirk JW, Watanabe H, Kiritani M (1993) J Nucl Mater 205:206–218

    Article  Google Scholar 

  56. Mansur LK, Coghlan WA (1983) J Nucl Mater 119:1–25

    Article  Google Scholar 

  57. Stoller RE, Odette GR (1985) J Nucl Mater 131:118–125

    Article  Google Scholar 

  58. Evans JH (1978) J Nucl Mater 76–77:228–234

    Article  Google Scholar 

  59. Trinkaus H (1983) Rad Eff 78:189–211

    Article  Google Scholar 

  60. Johnson PB, Mazey DJ, Evans JH (1983) Rad Eff 78:147–156

    Article  Google Scholar 

  61. Garner FA (2012) Radiation damage in austenitic steels. In: Konings RJM (ed) Comprehensive Nuclear Materials, 4.02:33. Elsevier, Amsterdam

    Google Scholar 

  62. Garner FA, Griffiths M, Greenwood LR, Gilbert ER (2010) In: Proceedings of the 14th international conference on environmental degradation of materials in nuclear power systems—water reactors. American Nuclear Society, 1344–1354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Was .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Was, G.S. (2017). Irradiation-Induced Voids and Bubbles. In: Fundamentals of Radiation Materials Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3438-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3438-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3436-2

  • Online ISBN: 978-1-4939-3438-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics