Skip to main content

Radiation-Induced Segregation

  • Chapter
  • First Online:
Fundamentals of Radiation Materials Science
  • 6353 Accesses

Abstract

A profound consequence of irradiation at elevated temperature is the spatial redistribution of solute and impurity elements in the metal. This phenomenon leads to the enrichment or depletion of alloying elements in regions near surfaces, dislocations, voids, grain boundaries, and phase boundaries. Figure 6.1 shows a plot of solute element profiles across a grain boundary in stainless steel irradiated in a reactor to a dose of several dpa at about 300 °C. There is significant depletion of chromium, molybdenum, and iron and enrichment of nickel and silicon. Such drastic changes at the grain boundary will cause changes in the local properties of the solid and may induce susceptibility to a host of processes that can degrade the integrity of the component. For this reason, understanding radiation-induced segregation (RIS) is of great importance for reactor performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruemmer SM, Simonen EP, Scott PM, Andresen PL, Was GS, Nelson LJ (1999) J Nucl Mater 274:299–314

    Article  Google Scholar 

  2. Anthony TR (1972) In: Corbett JW, Ianniello LC (eds) Radiation-induced voids in metals and alloys, AEC symposium series, Conf-701601, p 630

    Google Scholar 

  3. Okamoto PR, Harkness SD, Laidler JJ (1973) ANS Trans 16:70

    Google Scholar 

  4. Wiedersich H, Okamoto PR, Lam NQ (1979) J Nucl Mater 83:98–108

    Article  Google Scholar 

  5. Choudhury YS, Barnard L, Tucker JD, Allen TR, Wirth BD, Asta M, Morgan D (2011) J Nucl Mater 411:1

    Article  Google Scholar 

  6. Serruys ZY, Brebec G (1982) Phil Mag A46:661

    Article  Google Scholar 

  7. Perks JM, Marwick AD, English CA (1986) AERE R 12121 (June)

    Google Scholar 

  8. Rehn LE, Okamoto PR, Potter DI, Wiedersich H (1978) J Nucl Mater 74:242–251

    Article  Google Scholar 

  9. Rehn LE (1982) In: Picraux ST, Choyke WJ (eds) Metastable materials formation by ion implantation. Elsevier Science, New York, p 17

    Google Scholar 

  10. Okamoto PR, Wiedersich H (1974) J Nucl Mater 53:336–345

    Article  Google Scholar 

  11. Kornblit L, Ignatiev A (1984) J Nucl Mater 126:77–78

    Article  Google Scholar 

  12. Was GS, Allen TR, Busby IT, Gan I, Damcott D, Carter D, Atzmor M, Konik EA (1999) J Nucl Mater 270:96–114

    Article  Google Scholar 

  13. Was GS, Allen TR (1993) J Nucl Mater 205:332–338

    Article  Google Scholar 

  14. Allen TR, Was GS (1998) Acta Mater 46:3679

    Article  Google Scholar 

  15. Lam NQ, Kumar A, Wiedersich H (1982) In: Brager HR, Perrin JS (eds) Effects of radiation on materials, 11th Conference, ASTM STP 782, American Society for Testing and Materials, pp 985–1007

    Google Scholar 

  16. Watanabe S, Takahashi H (1994) J Nucl Mater 208:191

    Article  Google Scholar 

  17. Grandjean Y, Bellon P, Martin G (1994) Phys Rev B 50:4228

    Article  Google Scholar 

  18. Nastar M, Martin G (1999) Mater Sci Forum 294–296:83

    Article  Google Scholar 

  19. Mansur LK, Yoo MH (1978) J Nucl Mater 74:228–241

    Article  Google Scholar 

  20. Hackett MJ, Was GS, Simonen EP (2005) J ASTM Int 2(7)

    Google Scholar 

  21. Fournier L, Sencer BH, Wang Y, Was GS, Gan J, Bruemmer SM, Simonen EP, Allen TR, Cole JI (2002) In: Proceedings of the 10th International conference on environmental degradation of materials in nuclear power systems: Water Reactors. NACE International, Houston

    Google Scholar 

  22. Was GS (2004) Recent developments in understanding irradiation assisted stress corrosion cracking. In: Proceedings of the 11th International conference on environmental degradation of materials in nuclear power systems: water reactors, American Nuclear Society, La Grange Park, IL, pp 965–985

    Google Scholar 

  23. Jiao Z, Was GS (2011) Acta Mater 59:1120

    Google Scholar 

  24. Faulkner RG, Jones RB, Lu Z, Flewitt PEJ (2005) Phil Mag 85(19):2065–2099

    Article  Google Scholar 

  25. Wharry JP, Was GS (2014) Acta Mater 65:42

    Article  Google Scholar 

  26. Wharry JP, Jiao Z, Was GS (2012) J Nucl Mater 425:117

    Article  Google Scholar 

  27. Little E (2006) Mater Sci Technol 22:491

    Article  Google Scholar 

  28. Field KG, Barnard LM, Parish CM, Busby JT, Morgan D, Allen TR (2013) J Nucl Mater 435:172–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Was .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Was, G.S. (2017). Radiation-Induced Segregation. In: Fundamentals of Radiation Materials Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3438-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3438-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3436-2

  • Online ISBN: 978-1-4939-3438-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics