Skip to main content

The Damage Cascade

  • Chapter
  • First Online:
Book cover Fundamentals of Radiation Materials Science

Abstract

In our discussion of cascade development, no consideration was given to the spatial arrangement of displaced atoms. We assumed that every Frenkel pair created was preserved and that no annihilation occurred. However, the spatial arrangement of these Frenkel pairs is crucial in determining the number that survive annihilation or immobilization by clustering. In order to understand what the damaged region looks like, we need to know whether the displacements are concentrated or distributed. A helpful tool in this regard is the mean free path for displacement collisions, i.e., collisions in which the energy transferred is greater than E d. This will tell us how far apart the displacements occur and hence the separation distance between Frenkel pairs.

Additional material to this chapter can be downloaded from http://rmsbook2ed.engin.umich.edu/movies/

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olander DR (1976) Fundamental aspects of nuclear reactor fuel elements, TID-26711-P1. Technical Information Service, Springfield

    Google Scholar 

  2. Averback RS (1994) J Nucl Mater 216:49

    Article  Google Scholar 

  3. Brinkman JA (1956) Amer J Phys 24:251

    Article  Google Scholar 

  4. Seeger A (1958) On the theory of radiation damage and radiation hardening. In: Proceedings of the Second United Nations international conference on the peaceful uses of atomic energy, Geneva, vol. 6. United Nations, New York, p 250

    Google Scholar 

  5. Nastasi M, Mayer JW, Hirvonen JK (1996) Ion-solid interactions: fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Was GS, Allen TR (1994) Mater Charact 32:239

    Article  Google Scholar 

  7. Sigmund P (1981) Sputtering by ion bombardment: theoretical concepts. In: Behrisch R (ed) Sputtering by particle bombardment, Springer, Berlin, p 9

    Google Scholar 

  8. Heinisch HL (1996) J Metals, Dec:38

    Google Scholar 

  9. Robinson MT (1994) J Nucl Mater 216:1

    Article  Google Scholar 

  10. Robinson MT, Torrens IM (1974) Phys Rev B 9:5008

    Article  Google Scholar 

  11. Beeler JR (1966) Phys Rev 150:470

    Article  Google Scholar 

  12. Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM—The Stopping Range of Ions in Matter, Ion Implantation Press (http://www.srim.org)

  13. Cai W, Li J, Yip S (2012) Molecular Dynamics in Konings RJM (ed.) Comprehensive nuclear materials, 1.09:249. Elsevier, Amsterdam

    Google Scholar 

  14. Finnis MW, Sinclair JE (1984) Phil Mag A50:45–55; (1986) Erratum Phil Mag A53:161

    Google Scholar 

  15. Calder AF, Bacon DJ (1993) J Nucl Mater 207:25–45

    Article  Google Scholar 

  16. Stoller RE (2012) Primary radiation damage formation. In: Konings RJM (ed) Comprehensive nuclear materials, 1.11:293. Elsevier, Amsterdam

    Google Scholar 

  17. Becquart CS, Wirth BD (2012) Molecular dynamics. in Konings RJM (ed) Comprehensive nuclear materials, 1.14:393. Elsevier, Amsterdam

    Google Scholar 

  18. Dalla Torre, J, Bocquet, J-L, Doan NV, Adam E, Barbu A (2005) Phil Mag 85:549

    Google Scholar 

  19. Lanore JM (1974) Rad Eff 22:153

    Article  Google Scholar 

  20. Caturla MJ, Soneda N, Alonso E, Wirth BD, Diaz de la Rubia T, Perlado JM (2000) J Nucl Mater 276:13

    Google Scholar 

  21. Domain C, Becquart CS, Malerba L (2004) J Nucl Mater 335:121

    Article  Google Scholar 

  22. Heinisch HL, Singh BN, Golubov SI (2000) J Nucl Mater 276:59

    Google Scholar 

  23. Souidi A, Becquart CS, Domain C et al (2006) J Nucl Mater 355:89

    Article  Google Scholar 

  24. Arevalo C, Caturla MJ, Perlado JM (2007) J Nucl Mater 362:293

    Article  Google Scholar 

  25. Heinisch HL, Trinkaus H, Singh BN (2007) J Nucl Mater 367–370:332

    Article  Google Scholar 

  26. Malerba L, Becquart CS, Domain C (2007) J Nucl Mater 360:159

    Article  Google Scholar 

  27. Diaz de la Rubia T, Averback RS, Benedek R, King WE (1987) Phys Rev Lett 59(19):1930

    Google Scholar 

  28. Zinkle SJ, Singh BN (1993) J Nucl Mater 199:173

    Article  Google Scholar 

  29. Naundorf V (1991) J Nucl Mater 182:254

    Article  Google Scholar 

  30. Was GS, Allen TR (2007) Radiation effects in solids. In: Sickafus KE, Kotomin EA, Uberoage BP (eds) NATO science series, vol 235. Springer, Berlin, pp 65–98

    Google Scholar 

  31. Rehn LE, Okamoto PR, Averback RS (1984) Phys Rev B 30(6):3073

    Article  Google Scholar 

  32. Iwase A, Rehn LE, Baldo PM, Funk L (1996) J Nucl Mater 238:224–236

    Article  Google Scholar 

  33. Bacon DJ, Gao F, Osetsky YN (2000) J Nucl Mater 276:1–12

    Article  Google Scholar 

  34. Deng HF, Bacon DJ (1996) Phys Rev B 54:11376

    Article  Google Scholar 

  35. Calder AF, Bacon DJ (1997) In: Proceedings of symposium on microstructure evolution during irradiation, vol 439. Materials Research Society, Pittsburgh, PA, p 521

    Google Scholar 

  36. Stoller RE, Guiriec SC (2004) J Nucl Mater 329–333:1228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Was .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Was, G.S. (2017). The Damage Cascade. In: Fundamentals of Radiation Materials Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3438-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3438-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3436-2

  • Online ISBN: 978-1-4939-3438-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics