Skip to main content

Effects of Irradiation on Corrosion and Environmentally Assisted Cracking

  • Chapter
  • First Online:

Abstract

A growing concern for electric power utilities worldwide has been the degradation of core components in nuclear power reactors, which provide approximately 17 % of the world’s electric power needs. Service failures have occurred in boiling water reactor (BWR) core components and, to a somewhat lesser extent, in pressurized water reactor (PWR) core components consisting of iron- and nickel-base stainless alloys that have achieved a significant neutron fluence in environments that span oxygenated to hydrogenated water at 270–340 °C. Because cracking susceptibility depends on many factors, such as alloy composition and microstructure, stress, radiation, and the environment, the failure mechanism has been termed irradiation-assisted stress corrosion cracking (IASCC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andresen PL, Ford FP, Murphy SM, Perks JM (1990) In: Proceedings of the 4th international symposium on environmental degradation of materials in nuclear power systems: water reactors. NACE International, Houston, pp 1–83 to 1–121

    Google Scholar 

  2. Scott P (1994) A review of irradiation assisted stress corrosion cracking. J Nucl Mater 211:101–122

    Article  Google Scholar 

  3. Andresen PL, Was GS (2012) Irradiation assisted stress corrosion cracking. In: Konings RJM, (ed) Comprehensive nuclear materials, vol 5. Elsevier, Amsterdam, pp 177–205

    Google Scholar 

  4. Was GS (2004) In: Proceedings of the 11th international conference on environmental degradation of materials in nuclear power systems: water reactors. American Nuclear Society, La Grange Park, pp 965–985

    Google Scholar 

  5. Was GS, Busby JT, Andresen PL (2006) Effect of irradiation on stress corrosion cracking and corrosion in light water reactors: corrosion in the nuclear industry. Corrosion: environments and industries, ASM handbook, vol 13c. ASM International, Metals Park, pp 386–414

    Google Scholar 

  6. Bruemmer SM, Simonen EP, Scott PM, Andresen PL, Was GS, Nelson JL (1999) J Nucl Mater 274:299–314

    Article  Google Scholar 

  7. Ford FP, Andresen PL (1994) Corrosion in nuclear systems: environmentally assisted cracking in light water reactors. In: Marcus P, Oudar J (eds) Corrosion mechanisms. Dekker, New York, pp 501–546

    Google Scholar 

  8. Ford FP, Andresen PL (1988) In: Theus GJ, Weeks JR (eds) Proceedings of the 3rd international symposium on environmental degradation of materials in nuclear power systems: water reactors. The Metallurgical Society of AIME, Warrendale, p 789

    Google Scholar 

  9. Andresen PL, Ford FP (1988) Mat Sci Eng vol A 1103:167

    Article  Google Scholar 

  10. Andresen PL (1992) In: Jones RH (ed) Stress corrosion cracking: materials performance and evaluation, ASM, Materials Park, pp 181–210

    Google Scholar 

  11. Andresen PL, Young LM (1995) In: Proceedings of the 7th international symposium on environmental degradation of materials in nuclear power systems: water reactors. NACE International, TX, pp 579–596

    Google Scholar 

  12. Lin CC (1986) Proceedings of the 2nd international symposium on environmental degradation of materials in nuclear power systems: water reactors. American Nuclear Society, La Grange Park, pp 160–172

    Google Scholar 

  13. Burns WG, Moore PB (1976) Rad Eff 30:233

    Article  Google Scholar 

  14. Cohen P (1969) Water coolant technology of power reactors. Gordon and Breach Science, New York

    Google Scholar 

  15. British Nuclear Energy Society (1989) Proceedings of the conference on water chemistry of nuclear reactor systems 5, Bournemouth, UK, 23–27 October 1989, British Nuclear Energy Society, London

    Google Scholar 

  16. Taylor DF (1990) Paper 90501, Corrosion/90, Las Vegas. NACE, Houston, TX

    Google Scholar 

  17. Head RA, Indig ME, Andresen PL (1989) Measurement of in-core and recirculation system responses to hydrogen water chemistry at nine mile point unit 1 BWR, EPRI contract RP2680-5, final report. EPRI, Palo Alto, CA

    Google Scholar 

  18. Gordon BM (1985) Hydrogen water chemistry for BWR, task 27, Materials and environmental monitoring with in the Duane Arnold BWR, contract RP1930-1, project manager, JL Nelson. EPRI, Palo Alto, CA

    Google Scholar 

  19. Andresen PL, Ford FP (1995) In: Proceedings of the 7th international symposium on environmental degradation of materials in nuclear power systems: water reactors. NACE, TX, pp 893–908

    Google Scholar 

  20. Daub K, Zhang Z (2011) Corr Sci 53:11

    Article  Google Scholar 

  21. Knapp QW, Wren JC (2012) Electrochim Acta 80:90

    Article  Google Scholar 

  22. Alrehaily LM, Joseph JM, Musa AY, Guzonas DA, Wren JC (2012) Phys Chem Chem Phys 15:98

    Article  Google Scholar 

  23. Daub K, Zhang (2010) Electrochim Acta 55:2767

    Google Scholar 

  24. Cook WG, Olive RP (2010) Corr Sci 55:326

    Article  Google Scholar 

  25. Jacobs AJ, Hale DA, Siegler M (1986) Unpublished data. GE Nuclear Energy, San Jose

    Google Scholar 

  26. Ljungberg LG (1991) Communication. ABB Atom, Sweden

    Google Scholar 

  27. Ford FP, Taylor DF, Andresen DL, Ballinger RG (1987) Environmentally controlled cracking of stainless and low alloy steels in LWR environments, NP-5064M (RP2006-6). EPRI, Palo Alto

    Google Scholar 

  28. Angeliu TM, Andresen PL, Sutliff JA, Horn RM (1999) In: Proceedings of the 9th international symposium on environmental degradation of materials in nuclear power systems. The Minerals, Metals and Materials Society, PA, p 311

    Google Scholar 

  29. Lapuerta S, Moncoffre B, Millard-Pinard N, Jaffrezic H, Bererd N, Crusset D (2006) J Nucl Mater 352:174

    Article  Google Scholar 

  30. Lewis MB, Hunn JD (1999) J Nucl Mater 265:423

    Article  Google Scholar 

  31. Raiman SS, Wang P, Was GS (2014) In: Proceedings of Fontevraud 8, Societe Francaise d’Energie Nucleare, Paris, FR, paper 51_T02_WAS_FP

    Google Scholar 

  32. Asher RC, Davies D, Kirstein TBA (1973–74) J Nucl Mater 49:189

    Google Scholar 

  33. Bradhurst DH, Shirvington PJ, Heuer PM (1973) J Nucl Mater 46:53

    Article  Google Scholar 

  34. Wang P, Was GS (2015) J Mater Res No. 9 30:1335

    Article  Google Scholar 

  35. Allison CM, Berna GA, Chambers R, Coryell EW, Davis KL, Hagrman DL, Hagrman DT, Hampton NL, Hohorst JK, Mason RE, McComas ML, McNeil KA, Miller RL, Olsen CS, Reymann GA, Siefken LJ (1993) SCDAP/RELAP5/MOD3.1 code manual volume IV: MATPRO—a library of materials properties for light-water-reactor accident analysis. NUREG/CR-6150, EGG-2720, vol IV, p 4–234

    Google Scholar 

  36. Scott PM (1994) J Nucl Mater 211:101

    Article  Google Scholar 

  37. Scott PM, Meunier M-C, Deydier D, Silvestre S, Trenty A (2000) In: Kane RD (ed) ASTMSTP 1401, environmentally assisted cracking: predictive methods for risk assessment and evaluation of materials, equipment and structures. American Society for Testing and Materials, West Conshohocken, PA, pp 210–223

    Chapter  Google Scholar 

  38. Chopra OK, Rao AS (2011) J Nucl Mater 409:235

    Article  Google Scholar 

  39. Identifying mechanisms and mitigation strategies for irradiation assisted stress corrosion cracking of austenitic steels in LWR core components, EPRI Report 3002003105, EPRI, Palo Alto CA, 2014

    Google Scholar 

  40. Chopra OK, Gruber EE, Shack WJ (2003) Fracture toughness and crack growth rates of irradiated austenitic steels. US Nuclear Regulatory Commission, NUREG/CR-6826, 2003, p 37

    Google Scholar 

  41. Chopra OK, Rao AS (2011) J Nucl Mater 412:195

    Article  Google Scholar 

  42. Bulloch JH (1989) Res Mech 26:95–172

    Google Scholar 

  43. Cullen WH, Watson HE, Taylor RE, Loss FJ (1981) J Nucl Mater 96:261–268

    Article  Google Scholar 

  44. Bruemmer SM, Was GS (1994) J Nucl Mater 216:348–363

    Article  Google Scholar 

  45. Jiao Z, Was GS (2011) J Nucl Mater 408:246

    Article  Google Scholar 

  46. Hash MC, Wang LM, Busby JT, Was GS (2004) In: Grossbeck ML, Allen TR, Lott RG, Kumar AS (eds) Effects of radiation on materials the 21st international symposium, ASTM STP. American Society for Testing and Materials, West Conshohocken, pp 92–104

    Chapter  Google Scholar 

  47. McMurtrey MD, Cui B, Robertson IM, Farkas D, Was GS Curr Op Sol Stat Mater Sci (in press)

    Google Scholar 

  48. Cui B, McMurtrey MD, Was GS, Robertson IM (2014) Phil Mag 94(36):4197

    Google Scholar 

  49. Fukuya K, Fujii K, Nishioka H, Tokakura K, Nakata K (2010) Nucl Eng Des 420:473

    Article  Google Scholar 

  50. Scott PM (2002) In: Ford FP, Bruemmer SM, Was GS (eds) Proceedings of the 9th international conference on environmental degradation of materials in nuclear power systems: water reactors. The Minerals, Metals and Materials Society, Warrendale, pp 3–14

    Google Scholar 

  51. Bricknell RH, Woodford DA (1982) Acta Metal 30:257–264

    Article  Google Scholar 

  52. Iacocca RG, Woodford DA (1988) Metal Trans A 19A:2305–2313

    Article  Google Scholar 

  53. Woodford DA, Bricknell RH (1983) Treatise on materials science and technology, vol 25. Academic, New York

    Google Scholar 

  54. Thomas LE, Gertsman VY, Bruemmer SM (2002) In: Nelson L, Was GS, King P (eds) Proceedings of the 10th international conference on environmental degradation of materials in nuclear systems: water reactors. NACE International, Houston, p 117

    Google Scholar 

  55. Massoud JP, Dubuisson P, Scott P, Ligneau N, Lemaire E (2002) Proc Fontevraud 5(62):417

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Was .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Was, G.S. (2017). Effects of Irradiation on Corrosion and Environmentally Assisted Cracking. In: Fundamentals of Radiation Materials Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3438-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3438-6_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3436-2

  • Online ISBN: 978-1-4939-3438-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics