Skip to main content

Irradiation Creep and Growth

  • Chapter
  • First Online:
Fundamentals of Radiation Materials Science
  • 6246 Accesses

Abstract

Creep is the time-dependent deformation of a metal under constant load and at high temperature (T/T m > 0.3). The metal responds by elongating with a strain defined as either the nominal strain, e, calculated from the original length of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frost HJ, Ashby MJ (1982) Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergamon, New York

    Google Scholar 

  2. Olander DR (1976) Fundamental aspects of nuclear reactor fuel elements, TLD-26711-Pl. Technical Information Center, ERDA, Washington Chap. 19

    Google Scholar 

  3. Weertman J (1955) J Appl Phys 26(10):1213

    Article  Google Scholar 

  4. Weertman J (1968) Trans ASM 61:681

    Google Scholar 

  5. Weertman J (1957) J Appl Phys 28(3):362

    Article  Google Scholar 

  6. Cadek J (1988) Creep in metallic materials. Elsevier, New York

    Google Scholar 

  7. Nabarro FRN (1948) Report on Conference on Strength of Solids. Physical Society, London, p 75

    Google Scholar 

  8. Herring C (1950) J Appl Phys 21:437

    Article  Google Scholar 

  9. Coble RL (1963) J Appl Phys 34:1679

    Article  Google Scholar 

  10. Brailsford AD, Bullough R (1973) Phil Mag 27:49

    Article  Google Scholar 

  11. Bullough R (1985) Dislocations and properties of real materials. In: Proceedings of royal society, London, The Institute of Metals, London, p 283

    Google Scholar 

  12. Cheng X, Was GS (2014). J Nucl Mater 454:255–264

    Google Scholar 

  13. Kroupa (1966) In: Gruber B (ed) Theory of crystal defects. Adacemic Press, New York, pp 308–311

    Google Scholar 

  14. Matthews JR, Finnis MW (1988) J Nucl Mater 159:257–285

    Article  Google Scholar 

  15. Mansur LK (1979) Phil Mag A 39(4):497

    Article  Google Scholar 

  16. Wolfer WG, Foster JP, Garner FA (1972) Nucl Technol 16:55

    Google Scholar 

  17. Mansur LK (1992) Mater Sci Forum 97–99:489–498

    Article  Google Scholar 

  18. Grossbeck ML, Mansur LK (1991) JNM 179–181:130–134

    Article  Google Scholar 

  19. Brinkman JA, Wiedersich H (1964) In: Proceedings of the symposium on flow and fracture of metals and alloys in nuclear environment, STP 380. American Society for Testing and Materials, West Conshohocken, p 3

    Google Scholar 

  20. Mansur LK, Coghlan WA, Reiley TC, Wolfer WG (1981) J Nucl Mater 103/104:1257

    Google Scholar 

  21. Lewthwaite GW (1973) Scr Metal 7:75

    Article  Google Scholar 

  22. Garner FA (1994) In: Frost BRT (ed) Materials science and technology, Chap. 6, vol 10A. VCH, New York, p 419

    Google Scholar 

  23. Cheng X, Was GS (2015) J Nucl Mater 459:183

    Article  Google Scholar 

  24. Garner FA, Grossbeck ML (1994) Fusion materials semi-annual progress report DE/ER-0313/16. US DOE, Oak Ridge, TN, Mar 1994

    Google Scholar 

  25. Zinkle S, Lucas GE (2003) Deformation and fracture mechanisms in irradiated FCC and BCC metals, US department of energy, semi-annual report, DOE-ER-0313/34. US DOE, Washington, DC

    Google Scholar 

  26. Klepfer HH (ed) (1962) Proceedings of the USAEC symposium on zirconium alloy development, US Atomic Energy Commission, GEAP4089, vol II, p 13–11

    Google Scholar 

  27. Griffiths M (1988) J Nucl Mater 159:190

    Article  Google Scholar 

  28. Northwood DO (1977) At Energy Rev 15(4):547

    Google Scholar 

  29. Buckley SN (1962) Uranium and graphite. Institute of Metals, London, p 445

    Google Scholar 

  30. Carpenter GJC, Zee RH, Rogerson A (1988) J Nucl Mater 159:86

    Article  Google Scholar 

  31. Fidleris V (1975) At Energy Rev 13:51

    Google Scholar 

  32. Northwood DO, Fidleris V, Gilbert RW, Carpenter GJC (1976) J Nucl Mater 61:123

    Article  Google Scholar 

  33. Griffiths M, Gilbert RW (1987) J Nucl Mater 150:169

    Article  Google Scholar 

  34. Fidleris V (1988) J Nucl Mater 159:22

    Article  Google Scholar 

  35. Adamson RB, Tucker RP, Fidleris V (1982) Zirconium in the nuclear industry the 5th symposium, STP 754. American Society for Testing and Materials, West Conshohocken, p 208

    Google Scholar 

  36. Fidleris V, Tucker RP, Adamson RB (1987) Zirconium in the nuclear industry the 7th symposium, STP 939. American Society for Testing and Materials, West Conshohocken, p 49

    Google Scholar 

  37. Lemaignan C, Motta AT (1994) In: Frost BRT (ed) Materials science and technology, vol 10B. VCH, New York, p 1 Chap. 7

    Google Scholar 

  38. Zu XT, Sun K, Atzmon M, Wang LM, You LP, Wan FR, Busby JT, Was GS, Adamson RB (2005) Phil Mag 85(4–7):649–659

    Article  Google Scholar 

  39. Holt RA (1988) J Nucl Mater 159:310

    Article  Google Scholar 

  40. Nichols FA (1969) J Nucl Mater 20:249

    Article  Google Scholar 

  41. Christodoulou N, Causey AR, Woo CH, Tome CN, Klassen RJ, Holt RA (1993) In: Kumar AS, Gelles DS, Nanstad RK, Little EA (eds) Proceedings of the 16th international symposium on effects of radiation on materials, ASTM STP 1175. American Society for Testing and Materials, West Conshohocken, pp 1111–1128

    Google Scholar 

  42. Woo CH (1984) J Nucl Mater 120:55

    Article  Google Scholar 

  43. Wang H, Hu Z, Lu W, Thouless MD (2013) J Nucl Mater 433:188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Was .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Was, G.S. (2017). Irradiation Creep and Growth. In: Fundamentals of Radiation Materials Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3438-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3438-6_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3436-2

  • Online ISBN: 978-1-4939-3438-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics