Skip to main content

Effects of Attention in Visual Cortex: Linking Single Neuron Physiology to Visual Detection and Discrimination

  • Chapter
  • First Online:
From Human Attention to Computational Attention

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 10))

  • 1762 Accesses

Abstract

The biological basis of human attention has been greatly advanced through the use of monkeys as a model organism. The visual system of macaque monkeys is highly similar to that of humans. Monkeys can be trained to attend to visual stimuli while holding their eyes still. This makes them ideal subjects for studying neurophysiological correlates of attention. Over the past few decades, such studies have revealed the computational mechanisms through which attention modulates visual responses. At the level of individual cortical neurons, attention can act to increase the gain and reduce the variability of responses to attended visual stimuli. These results set the stage for the development of a biologically plausible standard model of sensory attention. By applying the principles of signal detection theory, this model can link physiological effects of attention to psychophysical performance. The general approach of attempting to explain behavior based on neuronal activity can be used to refine and elaborate the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited and Further Reading

  1. DeAngelis, G. C., Cumming, B. G., & Newsome, W. T. (1998). Cortical area MT and the perception of stereoscopic depth. Nature, 394(6694), 677–680.

    Article  CAS  PubMed  Google Scholar 

  2. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.

    Google Scholar 

  3. Van Essen, D. C., Lewis, J. W., Drury, H. A., Hadjikhani, N., Tootell, R. B., Bakircioglu, M., et al. (2001). Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Research, 41(10–11), 1359–1378.

    Article  PubMed  Google Scholar 

  4. Fano, U. (1947). Ionization yield of radiations. II. The fluctuations of the number of ions. Physical Review, 72(1), 26.

    Article  CAS  Google Scholar 

  5. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge: MIT Press.

    Google Scholar 

  6. Bair, W., & Koch, C. (1996). Temporal precision of spike trains in extrastriate cortex of the behaving monkey. Neural Computation, 8(6), 1185–1202.

    Article  CAS  PubMed  Google Scholar 

  7. Huang, X., & Lisberger, S. G. (2013). Circuit mechanism revealed by spike-timing correlations in macaque area MT. Journal of Neurophysiology, 109(3), 851–866.

    Article  PubMed  Google Scholar 

  8. Maimon, G., & Assad, J. A. (2009). Beyond poisson: Increased spike-time regularity across primate parietal cortex. Neuron, 62(3), 426–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Osborne, L. C., Bialek, W., & Lisberger, S. G. (2004). Time course of information about motion direction in visual area MT of macaque monkeys. The Journal of Neuroscience, 24(13), 3210–3222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferrera, V. P. (2015). Smooth pursuit preparation modulates neuronal responses in visual areas MT and MST. Journal of Neurophysiology, 114(1), 638–649.

    Google Scholar 

  11. Mitchell, J. F., Sundberg, K. A., & Reynolds, J. H. (2007). Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron, 55(1), 131–141.

    Google Scholar 

  12. McAdams, C. J., & Maunsell, J. H. R. (1999). Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron, 23(4), 765–773.

    Article  CAS  PubMed  Google Scholar 

  13. Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention increases sensitivity of V4 neurons. Neuron, 26, 703–714.

    Article  CAS  PubMed  Google Scholar 

  14. Williford, T., & Maunsell, J. H. (2006). Effects of spatial attention on contrast response functions in macaque area V4. Journal of Neurophysiology, 96(1), 40–54.

    Article  PubMed  Google Scholar 

  15. Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782–784.

    Article  CAS  PubMed  Google Scholar 

  16. Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal of Neuroscience, 19(5), 1736–1753.

    CAS  PubMed  Google Scholar 

  17. Roberts, M., Delicato, L. S., Herrero, J., Gieselmann, M. A., & Thiele, A. (2007). Attention alters spatial integration in macaque V1 in an eccentricity-dependent manner. Nature Neuroscience, 10(11), 1483–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Womelsdorf, T., Anton-Erxleben, K., & Treue, S. (2008). Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation. Journal of Neuroscience, 28(36), 8934–8944.

    Article  CAS  PubMed  Google Scholar 

  19. McAdams, C. J., & Maunsell, J. H. R. (1999). Effects of attention on orientation-tuning functions of single neurons in Macaque cortical area V4. Journal of Neuroscience, 19(1), 431–441.

    CAS  PubMed  Google Scholar 

  20. Zenger, B., Braun, J., & Koch, C. (2000). Attentional effects on contrast detection in the presence of surround masks. Vision Research, 40, 3717–3724.

    Google Scholar 

  21. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42.

    Google Scholar 

  22. Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado, G. S., Newsome, W. T., Clark, A. M., Hosseini, P., Scott, B. B., Bradley, D. C., Smith, M. A., Kohn, A., Movshon, J. A., Armstrong, K. M., Moore, T., Chang, S. W., Snyder, L. H., Lisberger, S. G., Priebe, N. J., Finn, I. M., Ferster, D., Ryu, S. I., Santhanam, G., Sahani, M., Shenoy, K. V. (2010). Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378.

    Google Scholar 

  23. Connor, C. E., Preddie, D. C., Gallant, J. L., & Van Essen, D. C. (1997). Spatial attention effects in macaque area V4. Journal of Neuroscience, 17(9), 3201–3214.

    CAS  PubMed  Google Scholar 

  24. Boudreau, C. E., Williford, T. H., & Maunsell, J. H. (2006). Effects of task difficulty and target likelihood in area V4 of macaque monkeys. Journal of Neurophysiology, 96(5), 2377–2387.

    Article  PubMed  Google Scholar 

  25. Moore, T., & Chang, M. H. (2009). Presaccadic discrimination of receptive field stimuli by area V4 neurons. Vision Research, 49(10), 1227–1232.

    Article  PubMed  Google Scholar 

  26. Cook, E. P., & Maunsell, J. H. R. (2002). Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of Macaque Monkey. Journal of Neuroscience, 22(5), 1994–2004.

    CAS  PubMed  Google Scholar 

  27. Bushnell, C., Goldberg, M. E., & Robinson, D. L. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology, 46, 755–772.

    Google Scholar 

  28. Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7, 308–313.

    Google Scholar 

  29. Connor, C. E., Gallant, J. L., Preddie, D. C., & Van Essen, D. C. (1996). Responses in area V4 depend on the spatial relationship between stimulus and attention. Journal of Neurophysiology, 75, 1306–1309.

    Google Scholar 

  30. Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate cortex. Philosophical Transactions of the Royal Society of London, Series B, 353, 1245–1255.

    Google Scholar 

  31. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Google Scholar 

  32. Fries, P., Reynolds, J. H., Rorle, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective attention. Science, 291, 1560–1563.

    Google Scholar 

  33. Martinez-Trujillo, J. C., & Treue, S. (2002). Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron, 35, 365–370.

    Google Scholar 

  34. Martinez-Trujillo, J. C., & Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14, 744–751.

    Google Scholar 

  35. McAdams, C. J., & Maunsell, J. H. R. (2000). Attention to both space and feature modulates neuronal responses in macaque area V4. Journal of Neurophysiology, 83, 1751–1755.

    Google Scholar 

  36. Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70(3), 909–919.

    Google Scholar 

  37. Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. Journal of Neuroscience, 14(4), 2178–2189.

    Google Scholar 

  38. Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27, 611–647.

    Google Scholar 

  39. Roelfsema, P. R., Lamme, V. A. F., & Spekreijse, H. (1998). Object-based attention in the primary visual cortex of the macaque monkey. Nature, 395, 376–381.

    Google Scholar 

  40. Seidemann, E., & Newsome, W. T. (1999). Effect of spatial attention on the responses of area MT. Journal of Neurophysiology, 81, 1783–1794.

    Google Scholar 

  41. Skottun, B. C., De Valois, R. L., Grosof, D. H., Movshon, J. A., Albrecht, D. G., & Bonds, A. B. (1991). Classifying simple and complex cells on the basis of response modulation. Vision Research, 31(7–8), 1079–1086.

    Google Scholar 

  42. Spitzer, H., Desimone, R., & Moran, J. (1988). Increased attention enhances both behavioral and neuronal performance. Science, 240(4850), 338–340.

    Google Scholar 

  43. Treue, S., & Maunsell, J. H. R. (1996). Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382(6591), 539–541.

    Google Scholar 

  44. Treue, S., & Martinez Trujillo, J. C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399(6736), 575–579.

    Google Scholar 

  45. Treue, S., & Martinez Trujillo, J. C. (1999). Reshaping neuronal representations of visual scenes through attention. Current Psychology of Cognition, 18(5–6), 951–972.

    Google Scholar 

  46. Treue, S., & Maunsell, J. H. R. (1999). Effects of attention on the processing of motion in macaque visual cortical areas MT and MST. Journal of Neuroscience, 19(17), 7603–7616.

    Google Scholar 

  47. Treue, S. (2001). Neural correlates of attention in primate visual cortex. TINS, 24(5), 295–300.

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant MH059244. Dr. Gaurav Patel assisted with the preparation of Fig. 6.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent P. Ferrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ferrera, V.P. (2016). Effects of Attention in Visual Cortex: Linking Single Neuron Physiology to Visual Detection and Discrimination. In: Mancas, M., Ferrera, V., Riche, N., Taylor, J. (eds) From Human Attention to Computational Attention. Springer Series in Cognitive and Neural Systems, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3435-5_6

Download citation

Publish with us

Policies and ethics