Skip to main content

Where: Human Attention Networks and Their Dysfunctions After Brain Damage

  • Chapter
  • First Online:
From Human Attention to Computational Attention

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 10))

Abstract

Attention is conceived as a heterogeneous set of processes, which allow us to select and act on external or internal sources of information and produce coherent behavior, taking into account both our goals and the occurrence of unexpected events. This set of processes enables us, among else, to sustain attention in time, on a specific location or a specific feature, to reorient it toward alerting or interesting events, and to monitor our performance. The different attentional processes rely on various brain structures, forming intricate and dynamic neural networks. In particular, the integrated functioning of frontoparietal networks, with specific interhemispheric differences often favoring the right hemisphere, is crucial for attention processes. Their impairment as a result of brain damage can hamper the conscious perception of objects in space and is a source of significant disability for patients. Our knowledge of these systems is still too limited to enable us to offer specific interventions for the whole range of attentional impairments, but it is expanding at fast pace, raising hopes for the development of effective strategies to improve the functioning of the attentional networks in brain-damaged patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62(1), 73–101.

    Article  PubMed  Google Scholar 

  3. Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78(5), 391.

    Article  Google Scholar 

  4. Parasuraman, R. (1998). The attentive brain: Issues and prospects. In R. Parasuraman (Ed.), The attentive brain (pp. 3–15). Cambridge, MA: The MIT Press.

    Google Scholar 

  5. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.

    Article  CAS  PubMed  Google Scholar 

  6. Bartolomeo, P. (2014). Attention disorders after right brain damage: Living in halved worlds. London: Springer.

    Google Scholar 

  7. Mackworth, N. H. (1956). Vigilance. Nature, 178(4547), 1375–1377.

    Article  Google Scholar 

  8. Leclercq, M. (2002). Theoretical aspects of the main components and functions of attention. In M. Leclercq & P. Zimmermann (Eds.), Applied neuropsychology of attention: Theory, diagnosis and rehabilitation (pp. 3–55). New York: Psychology Press.

    Google Scholar 

  9. Singh-Curry, V., & Husain, M. (2009). The functional role of the inferior parietal lobe in the dorsal and ventral stream dichotomy. Neuropsychologia, 47(6), 1434–1448.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Allport, D. A. (1989). Visual attention. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 631–687). Cambridge, MA: MIT Press.

    Google Scholar 

  11. Chica, A. B., Bartolomeo, P., & Lupiáñez, J. (2013). Two cognitive and neural systems for endogenous and exogenous spatial attention. Behavioural Brain Research, 237, 107–123.

    Article  PubMed  Google Scholar 

  12. James, W. (1890). The principles of psychology (Vol. 1). New York: Henry Holt.

    Book  Google Scholar 

  13. Yantis, S. (1995). Attentional capture in vision. In A. F. Kramer, G. H. Coles, & G. D. Logan (Eds.), Converging operations in the study of visual selective attention (pp. 45–76). Washington, DC: American Psychological Association.

    Google Scholar 

  14. LaBerge, D., Auclair, L., & Siéroff, E. (2000). Preparatory attention: Experiment and theory. Consciousness and Cognition, 9, 396–434.

    Article  CAS  PubMed  Google Scholar 

  15. Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32, 3–25.

    Article  CAS  PubMed  Google Scholar 

  16. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review in Neurosciences, 18, 193–222.

    Article  CAS  Google Scholar 

  17. Sokolov, E. N. (1963). Higher nervous functions: The orienting reflex. Annual Review in Physiology, 25, 545–580.

    Article  CAS  Google Scholar 

  18. Di Ferdinando, A., Parisi, D., & Bartolomeo, P. (2007). Modeling orienting behavior and its disorders with “ecological” neural networks. Journal of Cognitive Neuroscience, 19(6), 1033–1049.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bartolomeo, P., Thiebaut de Schotten, M., & Chica, A. B. (2012). Brain networks of visuospatial attention and their disruption in visual neglect. Frontiers in Human Neuroscience, 6, 110.

    PubMed  PubMed Central  Google Scholar 

  20. Maylor, E. A., & Hockey, R. (1985). Inhibitory component of externally controlled covert orienting in visual space. Journal of Experimental Psychology. Human Perception and Performance, 11, 777–787.

    Article  CAS  PubMed  Google Scholar 

  21. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. Bouwhuis (Eds.), Attention and performance X (pp. 531–556). London: Lawrence Erlbaum.

    Google Scholar 

  22. Rafal, R. D., & Henik, A. (1994). The neurology of inhibition: Integrating controlled and automatic processes. In D. Dagenbach & T. H. Carr (Eds.), Inhibitory processes in attention, memory and language (pp. 1–51). San Diego: Academic Press.

    Google Scholar 

  23. Bartolomeo, P., & Lupiáñez, J. (Eds.). (2006). Inhibitory after-effects in spatial processing: Experimental and theoretical issues on Inhibition of Return. Hove: Psychology Press.

    Google Scholar 

  24. Posner, M. I., Rafal, R. D., Choate, L. S., & Vaughan, J. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2, 211–228.

    Article  Google Scholar 

  25. Berlucchi, G. (2006). Inhibition of return: A phenomenon in search of a mechanism and a better name. Cognitive Neuropsychology, 23(7), 1065–1074.

    Article  PubMed  Google Scholar 

  26. Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147.

    Article  PubMed  Google Scholar 

  27. Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion patients. Journal of Experimental Psychology: General, 123(2), 161–177.

    Article  CAS  Google Scholar 

  28. Macquistan, A. D. (1997). Object-based allocation of visual attention in response to exogenous, but not endogenous, spatial precues. Psychonomic Bulletin and Review, 4(4), 512–515.

    Article  Google Scholar 

  29. Robertson, I. H., & Garavan, H. (2004). Vigilant attention. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed., pp. 563–578). Cambridge, MA: MIT Press.

    Google Scholar 

  30. Coull, J. T., Buchel, C., Friston, K. J., & Frith, C. D. (1999). Noradrenergically mediated plasticity in a human attentional neuronal networks. NeuroImage, 10(6), 705–715.

    Article  CAS  PubMed  Google Scholar 

  31. Fernandez-Duque, D., & Posner, M. I. (1997). Relating the mechanisms of orienting and alerting. Neuropsychologia, 35(4), 477–486.

    Article  CAS  PubMed  Google Scholar 

  32. Wilkins, A. J., Shallice, T., & McCarthy, R. (1987). Frontal lesions and sustained attention. Neuropsychologia, 25(2), 359–365.

    Article  CAS  PubMed  Google Scholar 

  33. Sturm, W., & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. NeuroImage, 14(1 Pt 2), S76–84.

    Article  CAS  PubMed  Google Scholar 

  34. Pardo, J. V., Fox, P. T., & Raichle, M. E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349, 61–64.

    Article  CAS  PubMed  Google Scholar 

  35. Sturm, W., de Simone, A., Krause, B. J., Specht, K., Hesselmann, V., Radermacher, I., et al. (1999). Functional anatomy of intrinsic alertness: Evidence for a fronto-parietal-thalamic-brainstem networks in the right hemisphere. Neuropsychologia, 37(7), 797–805.

    Article  CAS  PubMed  Google Scholar 

  36. Sadaghiani, S., Scheeringa, R., Lehongre, K., Morillon, B., Giraud, A. L., & Kleinschmidt, A. (2010). Intrinsic connectivity networks, alpha oscillations, and tonic alertness: A simultaneous electroencephalography/functional magnetic resonance imaging study. Journal of Neuroscience, 30(30), 10243–10250.

    Article  CAS  PubMed  Google Scholar 

  37. Bartolomeo, P., Zieren, N., Vohn, R., Dubois, B., & Sturm, W. (2008). Neural correlates of primary and reflective consciousness of spatial orienting. Neuropsychologia, 46(1), 348–361.

    Article  PubMed  Google Scholar 

  38. Mottaghy, F. M., Willmes, K., Horwitz, B., Muller, H. W., Krause, B. J., & Sturm, W. (2006). Systems level modeling of a neuronal networks subserving intrinsic alertness. NeuroImage, 29(1), 225–233.

    Article  PubMed  Google Scholar 

  39. Sturm, W., Longoni, F., Fimm, B., Dietrich, T., Weis, S., Kemna, S., et al. (2004). networks for auditory intrinsic alertness: A PET study. Neuropsychologia, 42(5), 563–538.

    Article  PubMed  Google Scholar 

  40. Paus, T., Koski, L., Caramanos, Z., & Westbury, C. (1998). Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: A review of 107 PET activation studies. NeuroReport, 9(9), R37–R47.

    Article  CAS  PubMed  Google Scholar 

  41. Gaspar, P., Berger, B., Febvret, A., Vigny, A., & Henry, J. P. (1989). Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. Journal of Comparative Neurology, 279(2), 249–271.

    Article  CAS  PubMed  Google Scholar 

  42. Mesulam, M. M., Hersh, L. B., Mash, D. C., & Geula, C. (1992). Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: A choline acetyltransferase study. Journal of Comparative Neurology, 318(3), 316–328.

    Article  CAS  PubMed  Google Scholar 

  43. Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Behavioral Brain Research, 35(2), 146–160.

    CAS  Google Scholar 

  44. Moruzzi, G., & Magoun, H. W. (1949). Brainstem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1, 455–473.

    Article  CAS  PubMed  Google Scholar 

  45. Aston-Jones, G., & Cohen, J. D. (2005). An Integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28(1), 403–450.

    Article  CAS  PubMed  Google Scholar 

  46. Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–1862.

    Article  CAS  PubMed  Google Scholar 

  47. Asplund, C. L., Todd, J. J., Snyder, A. P., & Marois, R. (2010). A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nature Neuroscience, 13(4), 507–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Indovina, I., & Macaluso, E. (2007). Dissociation of stimulus relevance and saliency factors during shifts of visuospatial attention. Cerebral Cortex, 17(7), 1701–1711.

    Article  PubMed  Google Scholar 

  49. Patel, G. H., Yang, D., Jamerson, E. C., Snyder, L. H., Corbetta, M., & Ferrera, V. P. (2015). Functional evolution of new and expanded attention networks in humans. Proceedings of the National Academy of Sciences of the United States of America, 112(30), 9454–9459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chica, A. B., Bartolomeo, P., & Valero-Cabre, A. (2011). Dorsal and ventral parietal contributions to spatial orienting in the human brain. Journal of Neuroscience, 31(22), 8143–8149.

    Article  CAS  PubMed  Google Scholar 

  51. Bourgeois, A., Chica, A. B., Valero-Cabre, A., & Bartolomeo, P. (2013). Cortical control of Inhibition of Return: Exploring the causal contributions of the left parietal cortex. Cortex, 49(10), 2927–2934.

    Article  PubMed  Google Scholar 

  52. Bourgeois, A., Chica, A. B., Migliaccio, R., Thiebaut de Schotten, M., & Bartolomeo, P. (2012). Cortical control of inhibition of return: Evidence from patients with inferior parietal damage and visual neglect. Neuropsychologia, 50(5), 800–809.

    Article  PubMed  Google Scholar 

  53. Bourgeois, A., Chica, A. B., Valero-Cabré, A., & Bartolomeo, P. (2013). Cortical control of inhibition of return: Causal evidence for task-dependent modulations by dorsal and ventral parietal regions. Cortex, 49(8), 2229–2238.

    Article  PubMed  Google Scholar 

  54. Petrides, M., & Pandya, D. N. (1984). Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. Journal of Comparative Neurology, 228(1), 105–116.

    Article  CAS  PubMed  Google Scholar 

  55. Schmahmann, J. D., & Pandya, D. N. (2006). Fiber pathways of the brain. New York: Oxford University Press.

    Book  Google Scholar 

  56. Thiebaut de Schotten, M., Dell’Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., Murphy, D. G. M., et al. (2011). A lateralized brain networks for visuospatial attention. Nature Neuroscience, 14(10), 1245–1246.

    Article  CAS  PubMed  Google Scholar 

  57. Bowers, D., & Heilman, K. M. (1980). Pseudoneglect: Effects of hemispace on a tactile line bisection task. Neuropsychologia, 18, 491–498.

    Article  CAS  PubMed  Google Scholar 

  58. Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38(1), 93–110.

    Article  CAS  PubMed  Google Scholar 

  59. Toba, M. N., Cavanagh, P., & Bartolomeo, P. (2011). Attention biases the perceived midpoint of horizontal lines. Neuropsychologia, 49(2), 238–246.

    Article  PubMed  Google Scholar 

  60. Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414–417.

    Article  Google Scholar 

  61. Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual pathway: An expanded neural framework for the processing of object quality. Trends in Cognitive Sciences, 17(1), 26–49.

    Article  PubMed  Google Scholar 

  62. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.

    Article  CAS  PubMed  Google Scholar 

  63. Rizzolatti, G., & Matelli, M. (2003). Two different streams form the dorsal visual system: Anatomy and functions. Experimental Brain Research, 153(2), 146–157.

    Article  PubMed  Google Scholar 

  64. Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Catani, M., Jones, D. K., Donato, R., & Ffytche, D. H. (2003). Occipito-temporal connections in the human brain. Brain, 126(Pt 9), 2093–2107.

    Article  PubMed  Google Scholar 

  66. Chica, A. B., & Bartolomeo, P. (2012). Attentional routes to conscious perception. Frontiers in Psychology, 3(1), 1–12.

    PubMed  PubMed Central  Google Scholar 

  67. Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7(3), 308–313.

    Article  CAS  PubMed  Google Scholar 

  68. Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782–784.

    Article  CAS  PubMed  Google Scholar 

  69. Sundberg, K. A., Mitchell, J. F., Gawne, T. J., & Reynolds, J. H. (2012). Attention influences single unit and local field potential response latencies in visual cortical area v4. Journal of Neuroscience, 32(45), 16040–16050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Anton-Erxleben, K., & Carrasco, M. (2013). Attentional enhancement of spatial resolution: Linking behavioural and neurophysiological evidence. Nature Reviews Neuroscience, 14(3), 188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Treue, S. (2003). Visual attention: The where, what, how and why of saliency. Current Opinion in Neurobiology, 13(4), 428–432.

    Article  CAS  PubMed  Google Scholar 

  72. O’Connor, D. H., Fukui, M. M., Pinsk, M. A., & Kastner, S. (2002). Attention modulates responses in the human lateral geniculate nucleus. Nature Neuroscience, 5(11), 1203–1209.

    Article  PubMed  CAS  Google Scholar 

  73. Puckett, A. M., & DeYoe, E. A. (2015). The attentional field revealed by single-voxel modeling of fMRI time courses. The Journal of Neuroscience, 35(12), 5030–5042.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4), 219–227.

    CAS  PubMed  Google Scholar 

  75. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.

    Article  CAS  PubMed  Google Scholar 

  76. Bisley, J. W., & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience, 33, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Knight, R. T., Scabini, D., Woods, D. L., & Clayworth, C. C. (1989). Contributions of temporal-parietal junction to the human auditory P3. Brain Research, 502(1), 109–116.

    Article  CAS  PubMed  Google Scholar 

  78. Barcelo, F., Suwazono, S., & Knight, R. T. (2000). Prefrontal modulation of visual processing in humans. Nature Neuroscience, 3(4), 399–403.

    Article  CAS  PubMed  Google Scholar 

  79. Lhermitte, F., Turell, E., LeBrigand, D., & Chain, F. (1985). Unilateral visual neglect and wave P 300: A study of nine cases with unilateral lesions of the parietal lobes. Archives of Neurology, 42(6), 567–573.

    Article  CAS  PubMed  Google Scholar 

  80. Vallar, G. (1993). The anatomical basis of spatial hemineglect in humans. In J. Marshall & I. Robertson (Eds.), Unilateral neglect: Clinical and experimental studies (pp. 27–59). Hove: Psychology Press.

    Google Scholar 

  81. Karnath, H.-O., Ferber, S., & Himmelbach, M. (2001). Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature, 411(6840), 950–963.

    Article  CAS  PubMed  Google Scholar 

  82. Gainotti, G., D'Erme, P., & Bartolomeo, P. (1991). Early orientation of attention toward the half space ipsilateral to the lesion in patients with unilateral brain damage. Journal of Neurology, Neurosurgery, and Psychiatry, 54, 1082–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Denes, G., Semenza, C., Stoppa, E., & Lis, A. (1982). Unilateral spatial neglect and recovery from hemiplegia: A follow-up study. Brain, 105(3), 543–552.

    Article  PubMed  Google Scholar 

  84. Bartolomeo, P., & Chokron, S. (2002). Orienting of attention in left unilateral neglect. Neuroscience and Biobehavioral Reviews, 26(2), 217–234.

    Article  PubMed  Google Scholar 

  85. Bartolomeo, P., Chokron, S., & Gainotti, G. (2001). Laterally directed arm movements and right unilateral neglect after left hemisphere damage. Neuropsychologia, 39(10), 1013–1021.

    Google Scholar 

  86. Beis, J. M., Keller, C., Morin, N., Bartolomeo, P., Bernati, T., Chokron, S., et al. (2004). Right spatial neglect after left hemisphere stroke: Qualitative and quantitative study. Neurology, 63(9), 1600–1605.

    Article  PubMed  Google Scholar 

  87. Bartolomeo, P., D’Erme, P., & Gainotti, G. (1994). The relationship between visuospatial and representational neglect. Neurology, 44, 1710–1714.

    Article  CAS  PubMed  Google Scholar 

  88. Weintraub, S., Daffner, K. R., Ahern, G. L., Price, B. H., & Mesulam, M. M. (1996). Right sided hemispatial neglect and bilateral cerebral lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 60(3), 342–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Andrade, K., Samri, D., Sarazin, M., Cruz De Souza, L., Cohen, L., Thiebaut de Schotten, M., et al. (2010). Visual neglect in posterior cortical atrophy. BMC Neurology, 10, 68.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bartolomeo, P., Dalla Barba, G., Boissé, M. T., Bachoud-Lévi, A. C., Degos, J. D., & Boller, F. (1998). Right-side neglect in Alzheimer’s disease. Neurology, 51(4), 1207–1209.

    Article  CAS  PubMed  Google Scholar 

  91. Silveri, M. C., Ciccarelli, N., & Cappa, A. (2011). Unilateral spatial neglect in degenerative brain pathology. Neuropsychology, 25(5), 554–566.

    Article  PubMed  Google Scholar 

  92. Losier, B. J., & Klein, R. M. (2001). A review of the evidence for a disengage deficit following parietal lobe damage. Neuroscience and Biobehavioral Reviews, 25(1), 1–13.

    Article  CAS  PubMed  Google Scholar 

  93. Posner, M. I., Walker, J. A., Friedrich, F. J., & Rafal, R. D. (1984). Effects of parietal injury on covert orienting of attention. Journal of Neuroscience, 4, 1863–1874.

    CAS  PubMed  Google Scholar 

  94. Bartolomeo, P., Chokron, S., & Siéroff, E. (1999). Facilitation instead of inhibition for repeated right-sided events in left neglect. NeuroReport, 10(16), 3353–3357.

    Article  CAS  PubMed  Google Scholar 

  95. Robertson, I. H. (1993). The relationship between lateralised and non-lateralised attentional deficits in unilateral neglect. In I. H. Robertson & J. C. Marshall (Eds.), Unilateral neglect: Clinical and experimental studies (pp. 257–278). Hove: Lawrence Erlbaum Assoc.

    Google Scholar 

  96. Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology. Human Perception and Performance, 18(3), 849.

    Article  CAS  PubMed  Google Scholar 

  97. Howes, D., & Boller, F. (1975). Simple reaction time: Evidence for focal impairment from lesions of the right hemisphere. Brain: A Journal of Neurology, 98(2), 317–332.

    Article  CAS  Google Scholar 

  98. Posner, M. I., Inhoff, A. W., Friedrich, F. J., & Cohen, A. (1987). Isolating attentional systems: A cognitive-anatomical analysis. Psychobiology, 15(2), 107–121.

    Google Scholar 

  99. Heilman, K. M., Watson, R. T., & Valenstein, E. (1993). Neglect and related disorders. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (3rd ed., pp. 279–336). New York: Oxford University Press.

    Google Scholar 

  100. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.

    Article  CAS  PubMed  Google Scholar 

  101. Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bartolomeo, P., Thiebaut de Schotten, M., & Doricchi, F. (2007). Left unilateral neglect as a disconnection syndrome. Cerebral Cortex, 17(11), 2479–2490.

    Article  PubMed  Google Scholar 

  103. Thiebaut de Schotten, M., Urbanski, M., Duffau, H., Volle, E., Levy, R., Dubois, B., et al. (2005). Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science, 309(5744), 2226–2228.

    Article  CAS  PubMed  Google Scholar 

  104. Watson, R. T., Andriola, M., & Heilman, K. M. (1977). The electroencephalogram in neglect. Journal of the Neurological Sciences, 34(3), 343–348.

    Article  CAS  PubMed  Google Scholar 

  105. Watson, R. T., Miller, B. D., & Heilman, K. M. (1977). Evoked potential in neglect. Archives of Neurology, 34(4), 224–227.

    Article  CAS  PubMed  Google Scholar 

  106. Di Russo, F., Aprile, T., Spitoni, G., & Spinelli, D. (2008). Impaired visual processing of contralesional stimuli in neglect patients: A visual-evoked potential study. Brain, 131(Pt 3), 842–854.

    Article  PubMed  Google Scholar 

  107. Mort, D. J., Malhotra, P., Mannan, S. K., Rorden, C., Pambakian, A., Kennard, C., et al. (2003). The anatomy of visual neglect. Brain, 126(Pt 9), 1986–1997.

    Article  PubMed  Google Scholar 

  108. Doricchi, F., & Tomaiuolo, F. (2003). The anatomy of neglect without hemianopia: A key role for parietal-frontal disconnection? NeuroReport, 14(17), 2239–2243.

    Article  PubMed  Google Scholar 

  109. Verdon, V., Schwartz, S., Lovblad, K. O., Hauert, C. A., & Vuilleumier, P. (2010). Neuroanatomy of hemispatial neglect and its functional components: A study using voxel-based lesion-symptom mapping. Brain, 133(Pt 3), 880–894.

    Article  PubMed  Google Scholar 

  110. Corbetta, M., Kincade, M. J., Lewis, C., Snyder, A. Z., & Sapir, A. (2005). Neural basis and recovery of spatial attention deficits in spatial neglect. Nature Neuroscience, 8(11), 1603–1610.

    Article  CAS  PubMed  Google Scholar 

  111. Lunven, M., Thiebaut de Schotten, M., Bourlon, C., Duret, C., Migliaccio, R., Rode, G., et al. (2015). White matter lesional predictors of chronic visual neglect: a longitudinal study. Brain, 138, 746–760.

    Google Scholar 

  112. He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53(6), 905–918.

    Article  CAS  PubMed  Google Scholar 

  113. Koch, G., Oliveri, M., Cheeran, B., Ruge, D., Lo Gerfo, E., Salerno, S., et al. (2008). Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain, 131(Pt 12), 3147–3155.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pantano, P., Di Piero, V., Fieschi, C., Judica, A., Guariglia, C., & Pizzamiglio, L. (1992). Pattern of CBF in the rehabilitation of visual spatial neglect. International Journal of Neurosciences, 66, 153–161.

    CAS  Google Scholar 

  115. Kinsbourne, M. (1977). Hemi-neglect and hemisphere rivalry. In E. A. Weinstein & R. P. Friedland (Eds.), Hemi-inattention and hemisphere specialization (Vol. 18, pp. 41–49). New York: Raven Press.

    Google Scholar 

  116. Chica, A. B., Bourgeois, A., & Bartolomeo, P. (2014). On the role of the ventral attention system in spatial orienting. Frontiers in Human Neuroscience, 8, 235.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Husain, M., & Nachev, P. (2007). Space and the parietal cortex. Trends in Cognitive Sciences, 11(1), 30–66.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tal Seidel Malkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seidel Malkinson, T., Bartolomeo, P. (2016). Where: Human Attention Networks and Their Dysfunctions After Brain Damage. In: Mancas, M., Ferrera, V., Riche, N., Taylor, J. (eds) From Human Attention to Computational Attention. Springer Series in Cognitive and Neural Systems, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3435-5_4

Download citation

Publish with us

Policies and ethics