Skip to main content

Databases for Saliency Model Evaluation

  • Chapter
  • First Online:
From Human Attention to Computational Attention

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 10))

  • 1743 Accesses

Abstract

The comparison between saliency algorithms needs two prerequisites: a dataset of stimuli with a ground truth on which the algorithms can be compared and a metric which measures in an objective way how close an algorithm and the ground truth are. This chapter focuses on the stimuli datasets and the ground truths. In computer vision, the databases for the modeling of visual attention contain two kinds of ground truth: eye movement recording and salient region labeling. The stimuli are still images or videos. A review of the main databases is achieved and more details are given for the most used among them. Stimuli differences are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ye, B., Sugano, Y., & Sato, Y. (2014). Influence of stimulus and viewing task types on a learning-based visual saliency model. In ETRA, Safety Harbor (pp. 271–274).

    Google Scholar 

  2. Smith, T. J., & Mital, P. K. (2013). Attentional synchrony and the influence of viewing task on gaze behavior in static and dynamic scenes. Journal of Vision, 13(8), 16.

    Article  PubMed  Google Scholar 

  3. Winkler, S., & Ramanathan, S. (2013). Overview of eye tracking datasets. In QoMEX, Klagenfurt am Wörthersee (pp. 212–217).

    Google Scholar 

  4. Bruce, N., & Tsotsos, J. (2006). Saliency based on information maximization. In Advances in Neural Information Processing Systems (Vol. 18, pp. 155–162). Vancouver, Canada.

    Google Scholar 

  5. Le Meur, O., Le Callet, P., Barba, D., & Thoreau, D. (2006). A coherent computational approach to model bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(5), 802–817.

    Article  PubMed  Google Scholar 

  6. Cerf, M., Harel, J., Einhäuser, W., & Koch, C. (2008). Predicting human gaze using low-level saliency combined with face detection. In Advances in Neural Information Processing Systems (pp. 241–248). Vancouver, Canada.

    Google Scholar 

  7. Engelke, U., Maeder, A., & Zepernick, H. (2009). Visual attention modelling for subjective image quality databases. In IEEE International Workshop on Multimedia Signal Processing (MMSP’09), Rio de Janeiro (pp. 1–6). IEEE.

    Google Scholar 

  8. Judd, T., Ehinger, K., Durand, F., & Torralba, A. (2009). Learning to predict where humans look. In IEEE 12th International Conference on Computer Vision 2009, Kyoto (pp. 2106–2113). IEEE.

    Google Scholar 

  9. Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008). Labelme: A database and web-based tool for image annotation. International Journal of Computer Vision, 77(1–3), 157–173.

    Article  Google Scholar 

  10. Ramanathan, S., Katti, H., Sebe, N., Kankanhalli, M., & Chua, T.-S. (2010). An eye fixation database for saliency detection in images. In Computer Vision–ECCV 2010, Heraklion (pp. 30–43). Springer.

    Google Scholar 

  11. Judd, T., Durand, F., & Torralba, A. (2011). Fixations on low-resolution images. Journal of Vision, 11(4), 14.

    Article  PubMed  Google Scholar 

  12. Li, J., Levine, M., An, X., & He, H. (2011). Saliency detection based on frequency and spatial domain analyses. In Proceedings of the British Machine Vision Conference (pp. 86.1–86.11). BMVA Press. http://dx.doi.org/10.5244/C.25.86.

  13. Kootstra, G., & Schomaker, L. R. (2009). Prediction of human eye fixations using symmetry. In The 31st Annual Conference of the Cognitive Science Society (CogSci09), Amsterdam (pp. 56–61). Cognitive Science Society.

    Google Scholar 

  14. Olmos, A., & Kingdom, F. A. A. (2004). McGill calibrated colour image database (pp. 05–08). http://tabby.vision.mcgill.ca. Last accessed 2011.

  15. Borji, A. (2015). What is a salient object? A dataset and a baseline model for salient object detection. IEEE Transactions on Image Processing, 24(2), 742–756.

    Article  PubMed  Google Scholar 

  16. Borji, A., Cheng, M.-M., Jiang, H., & Li, J. (2014). Salient object detection: A survey. arXiv preprint arXiv:1411.5878.

    Google Scholar 

  17. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., & Shum, H.-Y. (2011). Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2), 353–367.

    Article  PubMed  Google Scholar 

  18. Achanta, R., Hemami, S., Estrada, F., & Susstrunk, S. (2009). Frequency-tuned salient region detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami (pp. 1597–1604). IEEE.

    Google Scholar 

  19. Borji, A., Sihite, D. N., & Itti, L. (2013). What stands out in a scene? A study of human explicit saliency judgment. Vision Research, 91, 62–77.

    Article  PubMed  Google Scholar 

  20. Yan, Q., Xu, L., Shi, J., & Jia, J. (2013). Hierarchical saliency detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013), Portland (pp. 1155–1162). IEEE.

    Google Scholar 

  21. Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth IEEE International Conference on Computer Vision (ICCV 2001), Vancouver (Vol. 2, pp. 416–423). IEEE.

    Google Scholar 

  22. Everingham, M., Van Gool, L., Williams, C., Winn, J., & Zisserman, A. (2012). The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision, 111(1), 98–136.

    Article  Google Scholar 

  23. Yang, C., Zhang, L., Lu, H., Ruan, X., & Yang, M.-H. (2013). Saliency detection via graph-based manifold ranking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013), Portland (pp. 3166–3173). IEEE.

    Google Scholar 

  24. Li, Y., Hou, X., Koch, C., Rehg, J. M., & Yuille, A. L. (2014). The secrets of salient object segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), Columbus (pp. 280–287). IEEE.

    Google Scholar 

  25. Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2), 303–338.

    Article  Google Scholar 

  26. Xu, J., Jiang, M., Wang, S., Kankanhalli, M. S., & Zhao, Q. (2014). Predicting human gaze beyond pixels. Journal of Vision, 14(1), 28.

    Article  CAS  PubMed  Google Scholar 

  27. Hou, X., & Zhang, L. (2007). Saliency detection: A spectral residual approach. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis.

    Google Scholar 

  28. Itti, L. (2004). Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transactions on Image Processing, 13(10), 1304–1318.

    Article  PubMed  Google Scholar 

  29. Itti, L. (2006). Quantitative modelling of perceptual salience at human eye position. Visual Cognition, 14(4–8), 959–984.

    Article  Google Scholar 

  30. Carmi, R., & Itti, L. (2006). Visual causes versus correlates of attentional selection in dynamic scenes. Vision Research, 46(26), 4333–4345.

    Article  PubMed  Google Scholar 

  31. Carmi, R., & Itti, L. (2006). The role of memory in guiding attention during natural vision. Journal of Vision, 6(9), 4.

    Article  Google Scholar 

  32. Li, J., Tian, Y., Huang, T., & Gao, W. (2009). A dataset and evaluation methodology for visual saliency in video. In IEEE International Conference on Multimedia and Expo (ICME 2009), New York (pp. 442–445). IEEE.

    Google Scholar 

  33. Dorr, M., Martinetz, T., Gegenfurtner, K. R., & Barth, E. (2010). Variability of eye movements when viewing dynamic natural scenes. Journal of Vision, 10(10), 28.

    Article  PubMed  Google Scholar 

  34. Wu, Y., Zheng, N., Yuan, Z., Jiang, H., & Liu, T. (2011). Detection of salient objects with focused attention based on spatial and temporal coherence. Chinese Science Bulletin, 56(10), 1055–1062.

    Article  Google Scholar 

  35. Mital, P. K., Smith, T. J., Hill, R. L., & Henderson, J. M. (2011). Clustering of gaze during dynamic scene viewing is predicted by motion. Cognitive Computation, 3(1), 5–24.

    Article  Google Scholar 

  36. Marszalek, M., Laptev, I., & Schmid, C. (2009). Actions in context. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami (pp. 2929–2936). IEEE.

    Google Scholar 

  37. Rodriguez, M. D., Ahmed, J., & Shah, M. (2008). Action mach: A spatio-temporal maximum average correlation height filter for action recognition. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Anchorage.

    Google Scholar 

  38. Mathe, S., & Sminchisescu, C. (2012). Dynamic eye movement datasets and learnt saliency models for visual action recognition. In Computer Vision–ECCV 2012, Florence (pp. 842–856). Springer.

    Google Scholar 

  39. Hadizadeh, H., Enriquez, M. J., & Bajic, I. V. (2012). Eye-tracking database for a set of standard video sequences. IEEE Transactions on Image Processing, 21(2), 898–903.

    Article  PubMed  Google Scholar 

  40. Mahadevan, V., & Vasconcelos, N. (2010). Spatiotemporal saliency in dynamic scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), 171–177.

    Article  PubMed  Google Scholar 

  41. Li, L., Huang, W., Gu, I.-H., & Tian, Q. (2004). Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing, 13(11), 1459–1472.

    Article  PubMed  Google Scholar 

  42. Machines, S. (2015). Facelab commercial eye tracking system. http://www.seeingmachines.com/. Accessed 04 May 2015 (online).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Riche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Riche, N. (2016). Databases for Saliency Model Evaluation. In: Mancas, M., Ferrera, V., Riche, N., Taylor, J. (eds) From Human Attention to Computational Attention. Springer Series in Cognitive and Neural Systems, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3435-5_11

Download citation

Publish with us

Policies and ethics