Skip to main content

Nutritional Deficiencies and Impairment of Fertility in Athletes

  • Chapter
  • First Online:
Exercise and Human Reproduction

Abstract

Optimal nutrition has been widely demonstrated to be a key determinant in an athlete’s peak performance. Quantitatively sufficient intake of energy and nutrients that meet the individual’s needs will not only improve athletic performance but also modulate the way in which the human body and its metabolic functions adapt to the stress of exercise. Meanwhile, fertility is a state of complex intercommunication and balance between different neural and endocrine tissues, which is continuously modulated by changes in the environmental, metabolic, and psychological contexts of individuals. So, can an athlete’s fertility be negatively influenced by an overall energy crisis? Could low energy intake or increased exercise-dependent energy expenditure be related to aberrations in fertility, or are they both? And finally, what are the most recent evidences to link a specific nutritional deficiency, such as low intake of antioxidants, with worsening reproductive capacity in physically active subjects? This chapter will attempt to answer these questions by describing various situations in which diet–exercise interactions are capable of triggering infertility. The possible mechanisms involved in the neuroendocrine disruption related to low energy availability will also be analyzed. In addition, we will examine the relationship between dietary antioxidant nutrients, oxidative stress occurrence, and fertility disturbances in athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FFQ:

Food frequency questionnaire

FSH:

Follicle-stimulating hormone

GnRH:

Gonadotropin-releasing hormone

HPG:

Hypothalamic–pituitary–gonadal

LEA:

Low energy availability

LH:

Luteinizing hormone

NPY:

Neuropeptide Y

KISS:

Kisspeptin

RAA:

Reduced antioxidant availability

ROS:

Reactive oxygen species

References

  1. Wade GN, Schneider JE. Metabolic fuels and reproduction in female mammals. Neurosci Biobehav Rev. 1992;16(2):235–72.

    Article  CAS  PubMed  Google Scholar 

  2. Evans JJ, Anderson GM. Balancing ovulation and anovulation: integration of the reproductive and energy balance axes by neuropeptides. Hum Reprod Update. 2012;18:313–32.

    Article  CAS  PubMed  Google Scholar 

  3. Bliss SP, Navratil AM, Xie J, Roberson MS. GnRH signaling, the gonadotrope and endocrine control of fertility. Front Neuroendocrinol. 2010;31(3):322–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wade GN, Jones JE. Neuroendocrinology of nutritional infertility. Am J Physiol Regul Integr Comp Physiol. 2004;287(6):R1277–96.

    Article  CAS  PubMed  Google Scholar 

  5. Beitins IZ, McArthur JW, Turnbull BA, Skrinar GS, Bullen BA. Exercise induces two types of human luteal dysfunction: confirmation by urinary free progesterone. J Clin Endocrinol Metab. 1991;72(6):1350–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bronson FH, Manning JM. The energetic regulation of ovulation: a realistic role for body fat. Biol Reprod. 1991;44(6):945–50.

    Article  CAS  PubMed  Google Scholar 

  7. Budak E, Fernández Sánchez M, Bellver J, Cerveró A, Simón C, Pellicer A. Interactions of the hormones leptin, ghrelin, adiponectin, resistin, and PYY3-36 with the reproductive system. Fertil Steril. 2006;85(6):1563–81.

    Article  CAS  PubMed  Google Scholar 

  8. Fernandez-Fernandez R, Martini AC, Navarro VM, Castellano JM, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M. Novel signals for the integration of energy balance and reproduction. Mol Cell Endocrinol. 2006;25;254–255:127–32.

    Article  Google Scholar 

  9. Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet. 2005;366(9479):74–85

    Article  CAS  PubMed  Google Scholar 

  10. Hausman GJ, Barb CR, Lents CA. Leptin and reproductive function. Biochimie. 2012;94(10):2075–81.

    Article  CAS  PubMed  Google Scholar 

  11. Gamba M, Pralong FP. Control of GnRH neuronal activity by metabolic factors: the role of leptin and insulin. Mol Cell Endocrinol. 2006;254–255:133–9.

    Article  PubMed  Google Scholar 

  12. Fei H, Okano HJ, Li C, Lee GH, Zhao C, Darnell R, Friedman JM. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci USA. 1997;94(13):7001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zamorano PL, Mahesh VB, De Sevilla LM, Chorich LP, Bhat GK, Brann DW. Expression and localization of the leptin receptor in endocrine and neuroendocrine tissues of the rat. Neuroendocrinology. 1997;65(3):223–8.

    Article  CAS  PubMed  Google Scholar 

  14. Jin L, Burguera BG, Couce ME, Scheithauer BW, Lamsan J, Eberhardt NL, Kulig E, Lloyd RV. Leptin and leptin receptor expression in normal and neoplastic human pituitary: evidence of a regulatory role for leptin on pituitary cell proliferation. J Clin Endocrinol Metab. 1999;84(8):2903–11.

    CAS  PubMed  Google Scholar 

  15. Czaja K, Łakomy M, Sienkiewicz W, Kaleczyc J, Pidsudko Z, Barb CR, Rampacek GB, Kraeling RR. Distribution of neurons containing leptin receptors in the hypothalamus of the pig. Biochem Biophys Res Commun. 2002;298(3):333–7.

    Article  CAS  PubMed  Google Scholar 

  16. Quennell JH, Mulligan AC, Tups A, Liu X, Phipps SJ, Kemp CJ, Herbison AE, Grattan DR, Anderson GM. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology. 2009;150(6):2805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pérez-Pérez A, Sánchez-Jiménez F, Maymó J, Dueñas JL, Varone C, Sánchez-Margalet V. Role of leptin in female reproduction. Clin Chem Lab Med. 2014. doi:10.1515/cclm-2014-0387.

    Google Scholar 

  18. Pralong FP. Insulin and NPY pathways and the control of GnRH function and puberty onset. Mol Cell Endocrinol. 2010;324(1–2):82–6.

    Article  CAS  PubMed  Google Scholar 

  19. Roa J. Role of GnRH neurons and their neuronal afferents as key integrators between food intake regulatory signals and the control of reproduction. Int J Endocrinol. 2013;2013:518046.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Orio F, Muscogiuri G, Ascione A, Marciano F, Volpe A, Sala G L, Savastano S, Colao A, Palomba S. Effects of physical exercise on the female reproductive system. Minerva Endocrinol. 2013;38(3):305–19.

    CAS  PubMed  Google Scholar 

  21. Hilton LK, Loucks AB. Low energy availability, not exercise stress, suppresses the diurnal rhythm of leptin in healthy young women. Am J Physiol Endocrinol Metab. 2000;278(1):E43–9.

    CAS  PubMed  Google Scholar 

  22. Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol. 1998;84(1):37–46.

    CAS  PubMed  Google Scholar 

  23. Williams NI, Helmreich DL, Parfitt DB, Caston-Balderrama A, Cameron JL. Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. J Clin Endocrinol Metab. 2001;86(11):5184–93.

    Article  CAS  PubMed  Google Scholar 

  24. Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311.

    Article  CAS  PubMed  Google Scholar 

  25. Williams NI, Reed JL, Leidy HJ, Legro RS, De Souza MJ. Estrogen and progesterone exposure is reduced in response to energy deficiency in women aged 25–40 years. Hum Reprod. 2010;25(9):2328–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Williams NI, Young JC, McArthur JW, Bullen B, Skrinar GS, Turnbull B. Strenuous exercise with caloric restriction: effect on luteinizing hormone secretion. Med Sci Sports Exerc. 1995;27(10):1390–8.

    Article  CAS  PubMed  Google Scholar 

  27. De Souza MJ, West SL, Jamal SA, Hawker GA, Gundberg CM, Williams NI. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone. 2008;43:140–8.

    Article  PubMed  Google Scholar 

  28. Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006;18(3):325–32.

    Article  PubMed  Google Scholar 

  29. Saalu LC. The incriminating role of reactive oxygen species in idiopathic male infertility: an evidence based evaluation. Pak J Biol Sci. 2010;13(9):413–22.

    Article  CAS  PubMed  Google Scholar 

  30. Benedetti S, Tagliamonte MC, Catalani S, Primiterra M, Canestrari F, De Stefani S, Palini S, Bulletti C. Differences in blood and semen oxidative status in fertile and infertile men, and their relationship with sperm quality. Reprod Biomed Online. 2012;25(3):300–6.

    Article  CAS  PubMed  Google Scholar 

  31. Hosseinzadeh Colagar A, Karimi F, Jorsaraei SG. Correlation of sperm parameters with semen lipid peroxidation and total antioxidants levels in astheno- and oligoasheno- teratospermic men. Iran Red Crescent Med J. 2013;15(9):780–5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Al-Gubory KH, Garrel C, Faure P, Sugino N. Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reprod Biomed Online. 2012;25(6):551–60.

    Article  CAS  PubMed  Google Scholar 

  33. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Türk G, Ceribasi S, Sönmez M, Ciftçi M, Yüce A, Güvenç M, Ozer Kaya S, Cay M, Aksakal M. Ameliorating effect of pomegranate juice consumption on carbon tetrachloride-induced sperm damages, lipid peroxidation, and testicular apoptosis. Toxicol Ind Health. doi: 10.1177/0748233713499600. Accessed 30 Sept 2013.

    Google Scholar 

  35. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):1143–211.

    PubMed  PubMed Central  Google Scholar 

  36. Huang CJ, Webb HE, Zourdos MC, Acevedo EO. Cardiovascular reactivity, stress, and physical activity. Front Physiol. 2013;4:314.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Willett WC, Stampfer MJ. Current evidence on healthy eating. Annu Rev Public Health. 2013;34:77–95.

    Article  PubMed  Google Scholar 

  38. Ruder EH, Hartman TJ, Reindollar RH, Goldman MB. Female dietary antioxidant intake and time to pregnancy among couples treated for unexplained infertility. Fertil Steril. 2014;101(3):759–66.

    Article  CAS  PubMed  Google Scholar 

  39. Mínguez-Alarcón L, Mendiola J, López-Espín JJ, Sarabia-Cos L, Vivero-Salmerón G, Vioque J, Navarrete-Muñoz EM, Torres-Cantero AM. Dietary intake of antioxidant nutrients is associated with semen quality in young university students. Hum Reprod. 2012;27(9):2807–14.

    Article  PubMed  Google Scholar 

  40. Mendiola J, Torres-Cantero AM, Vioque J, Moreno-Grau JM, Ten J, Roca M, Moreno-Grau S, Bernabeu R. A low intake of antioxidant nutrients is associated with poor semen quality in patients attending fertility clinics. Fertil Steril. 2010;93(4):1128–33.

    Article  CAS  PubMed  Google Scholar 

  41. Eskenazi B, Kidd SA, Marks AR, Sloter E, Block G, Wyrobek AJ. Antioxidant intake is associated with semen quality in healthy men. Hum Reprod. 2005;20(4):1006–12.

    Article  CAS  PubMed  Google Scholar 

  42. Nadjarzadeh A, Mehrsai A, Mostafavi E, Gohari MR, Shidfar F. The association between dietary antioxidant intake and semen quality in infertile men. Med J Islam Repub Iran. 2013;27(4):204–9.

    PubMed  PubMed Central  Google Scholar 

  43. Schmid TE, Eskenazi B, Marchetti F, Young S, Weldon RH, Baumgartner A, Anderson D, Wyrobek AJ. Micronutrients intake is associated with improved sperm DNA quality in older men. Fertil Steril. 2012;98(5):1130–7.e1.

    Google Scholar 

  44. Young SS, Eskenazi B, Marchetti FM, Block G, Wyrobek AJ. The association of folate, zinc and antioxidant intake with sperm aneuploidy in healthy non-smoking men. Hum Reprod. 2008;23(5):1014–22.

    Article  CAS  PubMed  Google Scholar 

  45. Silver EW, Eskenazi B, Evenson DP, Block G, Young S, Wyrobek AJ. Effect of antioxidant intake on sperm chromatin stability in healthy nonsmoking men. J Androl. 2005;26(4):550–6.

    Article  CAS  PubMed  Google Scholar 

  46. Willett W. Dietary diaries versus food frequency questionnaires-a case of undigestible data. Commentary. Int J Epidemiol. 2001;30(2):317–9.

    Article  CAS  PubMed  Google Scholar 

  47. Kipnis V, Subar AF, Midthune D, Freedman LS, Ballard-Barbash R, Troiano RP, Bingham S, Schoeller DA, Schatzkin A, Carroll RJ. Structure of dietary measurement error: results of the OPEN biomarker study. Am J Epidemiol. 2003;158(1):14–21.

    Article  PubMed  Google Scholar 

  48. LS1 F, Schatzkin A, Midthune D, Kipnis V. Dealing with dietary measurement error in nutritional cohort studies. J Natl Cancer Inst. 2011;103(14):1086–92.

    Google Scholar 

  49. Kipnis V, Midthune D, Freedman L, Bingham S, Day NE, Riboli E, Ferrari P, Carroll RJ. Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr. 2002;5(6 A):915–23.

    Article  PubMed  Google Scholar 

  50. Kaaks RJ. Biochemical markers as additional measurements in studies of the accuracy of dietary questionnaire measurements: conceptual issues. Am J Clin Nutr. 1997;65(4 Suppl):1232S–9S.

    Google Scholar 

  51. Braakhuis AJ, Hopkins WG, Lowe TE. Effect of dietary antioxidants, training, and performance correlates on antioxidant status in competitive rowers. Int J Sports Physiol Perform. 2013;8(5):565–72.

    PubMed  Google Scholar 

  52. Cetin I, Berti C, Calabrese S. Role of micronutrients in the periconceptional period. Hum Reprod Update. 2010;16(1):80–95.

    Article  CAS  PubMed  Google Scholar 

  53. American Dietetic Association; Dietitians of Canada; American College of Sports Medicine, Rodriguez NR, Di Marco NM, Langley S. American college of sports medicine position stand. nutrition and athletic performance. Med Sci Sports Exerc. 2009;41(3):709–31.

    Article  PubMed  Google Scholar 

  54. Slattery KM, Coutts AJ, Wallace LK. Nutritional practices of elite swimmers during an intensified training camp: with particular reference to antioxidants. J Sports Med Phys Fitness. 2012;52(5):501–5.

    CAS  PubMed  Google Scholar 

  55. Packer L, Cadenas E. Lipoic acid: energy metabolism and redox regulation of transcription and cell signaling. J Clin Biochem Nutr. 2011;48(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  56. Burke LM, Slater G, Broad EM, Haukka J, Modulon S, Hopkins WG. Eating patterns and meal frequency of elite Australian athletes. Int J Sport Nutr Exerc Metab. 2003;13(4):521–38.

    PubMed  Google Scholar 

  57. Johnstone AM, Lobley GE, Horgan GW, Bremner DM, Fyfe CL, Morrice PC, Duthie GG. Effects of a high-protein, low-carbohydrate v. high-protein, moderate-carbohydrate weight-loss diet on antioxidant status, endothelial markers and plasma indices of the cardiometabolic profile. Br J Nutr. 2011;106(2):282–91.

    Article  CAS  PubMed  Google Scholar 

  58. Gaskins AJ, Colaci DS, Mendiola J, Swan SH, Chavarro JE. Dietary patterns and semen quality in young men. Hum Reprod. 2012;27(10):2899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Attaman JA, Toth TL, Furtado J, Campos H, Hauser R, Chavarro JE. Dietary fat and semen quality among men attending a fertility clinic. Hum Reprod. 2012;27(5):1466–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chiu YH, Afeiche MC, Gaskins AJ, Williams PL, Mendiola J, Jørgensen N, Swan SH, Chavarro JE. Sugar-sweetened beverage intake in relation to semen quality and reproductive hormone levels in young men. Hum Reprod. 2014;29(7):1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Afeiche MC, Gaskins AJ, Williams PL, Toth TL, Wright DL, Tanrikut C, Hauser R, Chavarro JE. Processed meat intake is unfavorably and fish intake favorably associated with semen quality indicators among men attending a fertility clinic. J Nutr. 2014;144(7):1091–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Eslamian G, Amirjannati N, Rashidkhani B, Sadeghi MR, Hekmatdoost A. Intake of food groups and idiopathic asthenozoospermia: a case-control study. Hum Reprod. 2012;27(11):3328–36.

    Article  CAS  PubMed  Google Scholar 

  63. Braga DP, Halpern G, Figueira Rde C, Setti AS, Iaconelli A Jr, Borges E Jr. Food intake and social habits in male patients and its relationship to intracytoplasmic sperm injection outcomes. Fertil Steril. 2012;97(1):53–9.

    Article  PubMed  Google Scholar 

  64. O’Keefe JH, Gheewala NM, O’Keefe JO. Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol. 2008;51(3):249–55.

    Article  PubMed  Google Scholar 

  65. Wahlqvist ML. Antioxidant relevance to human health. Asia Pac J Clin Nutr. 2013;22(2):171–6.

    CAS  PubMed  Google Scholar 

  66. Maleki BH, Tartibian B, Eghbali M, Asri-Rezaei S. Comparison of seminal oxidants and antioxidants in subjects with different levels of physical fitness. Andrology. 2013;1(4):607–14.

    Article  Google Scholar 

  67. Tartibian B, Maleki BH. Correlation between seminal oxidative stress biomarkers and antioxidants with sperm DNA damage in elite athletes and recreationally active men. Clin J Sport Med. 2012;22(2):132–9.

    Article  PubMed  Google Scholar 

  68. Gomes EC, Silva AN, de Oliveira MR. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid Med Cell Longev. 2012;2012:756132.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Manna I, Jana K, Samanta PK. Effect of intensive exercise-induced testicular gametogenic and steroidogenic disorders in mature male Wistar strain rats: a correlative approach to oxidative stress. Acta Physiol Scand. 2003;178(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  70. Manna I, Jana K, Samanta PK. Intensive swimming exercise-induced oxidative stress and reproductive dysfunction in male wistar rats: protective role of alpha-tocopherol succinate. Can J Appl Physiol. 2004;29(2):172–85.

    Article  CAS  PubMed  Google Scholar 

  71. Maleki BH, Tartibian B, Vaamonde D. The effects of 16 weeks of intensive cycling training on seminal oxidants and antioxidants in male road cyclists. Clin J Sport Med. 2014;24(4):302–7.

    Article  PubMed  Google Scholar 

  72. Tartibian B, Maleki BH. The effects of honey supplementation on seminal plasma cytokines, oxidative stress biomarkers, and antioxidants during 8 weeks of intensive cycling training. J Androl. 2012;33(3):449–61.

    Article  CAS  PubMed  Google Scholar 

  73. Afeiche M, Williams PL, Mendiola J, Gaskins AJ, Jørgensen N, Swan SH, Chavarro JE. Dairy food intake in relation to semen quality and reproductive hormone levels among physically active young men. Hum Reprod. 2013;28(8):2265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chavarro JE, Mínguez-Alarcón L, Mendiola J, Cutillas-Tolín A, López-Espín JJ, Torres-Cantero AM. Trans fatty acid intake is inversely related to total sperm count in young healthy men. Hum Reprod. 2014;29(3):429–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cerri RL, Juchem SO, Chebel RC, Rutigliano HM, Bruno RG, Galvão KN, Thatcher WW, Santos JE. Effect of fat source differing in fatty acid profile on metabolic parameters, fertilization, and embryo quality in high-producing dairy cows. J Dairy Sci. 2009;92(4):1520–31.

    Article  CAS  PubMed  Google Scholar 

  76. Demeter RM, Schopen GC, Lansink AG, Meuwissen MP, van Arendonk JA. Effects of milk fat composition, DGAT1, and SCD1 on fertility traits in Dutch Holstein cattle. J Dairy Sci. 2009;92(11):5720–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Marcelo Fernández MSc PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fernández, J. (2016). Nutritional Deficiencies and Impairment of Fertility in Athletes. In: Vaamonde, D., du Plessis, S., Agarwal, A. (eds) Exercise and Human Reproduction. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3402-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3402-7_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3400-3

  • Online ISBN: 978-1-4939-3402-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics