Skip to main content

Magnetic Reconnection and Associated Transient Phenomena Within the Magnetospheres of Jupiter and Saturn

  • Chapter
  • First Online:
The Magnetodiscs and Aurorae of Giant Planets

Abstract

We review in situ observations made in Jupiter and Saturn’s magnetosphere that illustrate the possible roles of magnetic reconnection in rapidly-rotating magnetospheres. In the Earth’s solar wind-driven magnetosphere, the magnetospheric convection is classically described as a cycle of dayside opening and tail closing reconnection (the Dungey cycle). For the rapidly-rotating Jovian and Kronian magnetospheres, heavily populated by internal plasma sources, the classical concept (the Vasyliunas cycle) is that the magnetic reconnection plays a key role in the final stage of the radial plasma transport across the disk. By cutting and closing flux tubes that have been elongated by the rotational stress, the reconnection process would lead to the formation of plasmoids that propagate down the tail, contributing to the final evacuation of the internally produced plasma and allowing the return of the magnetic flux toward the planet. This process has been studied by inspecting possible ‘local’ signatures of the reconnection, as magnetic field reversals, plasma flow anisotropies, energetic particle bursts, and more global consequences on the magnetospheric activity.

The investigations made at Jupiter support the concept of an ‘average’ X-line, extended in the dawn/dusk direction and located at 90–120 Jovian radius (\(\mathrm{R}_{\mathrm{J}}\)) on the night side. The existence of a similar average X-line has not yet been established at Saturn, perhaps by lack of statistics. Both at Jupiter and Saturn, the reconfiguration signatures are consistent with magnetospheric dipolarizations and formation of plasmoids and flux ropes. In several cases, the reconfigurations also appear to be closely associated with large scale activations of the magnetosphere, seen from the radio and auroral emissions. Nevertheless, the statistical study also suggests that the reconnection events and the associated plasmoids are not frequent enough to explain a plasma evacuation that matches the mass input rate from the satellites and the rings. Different forms of transport should thus act together to evacuate the plasma, which still needs to be established. Investigations of reconnection signatures at the magnetopause and other processes as the Kelvin-Helmholtz instability are also reviewed. A provisional conclusion would be that the dayside reconnection is unlikely a crucial process in the overall dynamics. On the small scales, the detailed analysis of one reconnection event at Jupiter shows that the local plasma signatures (field-aligned flows, energetic particle bursts…) are very similar to those observed at Earth, with likely a similar scaling with respect to characteristic kinetic lengths (Larmor radius and inertial scales).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • V. Angelopoulos, The THEMIS mission. Space Sci. Rev. 141, 5–34 (2008). doi:10.1007/s11214-008-9336-1

    Article  ADS  Google Scholar 

  • C.S. Arridge, N. Achilleos, M.K. Dougherty, K.K. Khurana, C.T. Russell, Modeling the size and shape of Saturn’s magnetopause with variable dynamic pressure. J. Geophys. Res. 111, A11227 (2006). doi:10.1029/2005JA011574

    Article  ADS  Google Scholar 

  • S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Ann. Geophys. 25, 941–951 (2007)

    Article  ADS  Google Scholar 

  • S.V. Badman, E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, S.E. Milan, Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates. J. Geophys. Res. 110, A11216 (2005). doi:10.1029/2005JA011240

    Article  ADS  Google Scholar 

  • S.V. Badman, A. Masters, H. Hasegawa, M. Fujimoto, A. Radioti, D. Grodent, N. Sergis, M.K. Dougherty, A.J. Coates, Bursty magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 40, 1027–1031 (2013). doi:10.1002/grl.50199

    Article  ADS  Google Scholar 

  • F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, A05209 (2011)

    Article  ADS  Google Scholar 

  • F. Bagenal, J.D. Sullivan, Direct plasma measurements in the Io torus and inner magnetosphere of Jupiter. J. Geophys. Res. 86, 8447–8466 (1981). doi:10.1029/JA096iA10p08447

    Article  ADS  Google Scholar 

  • C.H. Barrow, F. Genova, M.D. Desch, Solar wind control of Jupiter’s decametric radio emission. Astron. Astrophys. 165, 244–250 (1986)

    ADS  Google Scholar 

  • J.W. Belcher, The low-energy plasma in the jovian magnetosphere, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983), pp. 68–105. doi:10.1029/CBO9780511564574.005

    Chapter  Google Scholar 

  • J. Birn, E.R. Priest (eds.), MHD and Collisionless Theory and Observations (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  • D. Biskamp, Magnetic Reconnection in Plasmas. Cambridge Monographs on Plasma Physics (2005)

    MATH  Google Scholar 

  • B. Bonfond, M.F. Vogt, J.-C. Gerard, D. Grodent, A. Radioti, V. Coumans, Quasi-periodic polar flares at Jupiter: a signature of pulsed dayside reconnections? Geophys. Res. Lett. 38, L02104 (2011). doi:10.1029/2010GL045981

    Article  ADS  Google Scholar 

  • A.H. Boozer, Model of magnetic reconnection in space and astrophysical plasmas. Phys. Plasmas 20, 032903 (2013)

    Article  ADS  Google Scholar 

  • A.L. Borg, M.G.G.T. Taylor, J.P. Eastwood, Observations of magnetic flux ropes during magnetic reconnection in the Earth’s magnetotail. Ann. Geophys. 30, 761–773 (2012). doi:10.5194/angeo-30-761-2012

    Article  ADS  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, D.M. Wright, A.J. Coates, M.K. Dougherty, N. Krupp, W.S. Kurth, A.M. Rymer, In situ observations of a solar wind compression-induced hot plasma injection in Saturn’s tail. Geophys. Res. Lett. 32, L20S04 (2005). doi:10.1029/2005GL022888

    Article  Google Scholar 

  • E.J. Bunce et al., Origin of Saturn’s aurora: simultaneous observations by Cassini and the Hubble Space Telescope. J. Geophys. Res. 113, A09209 (2008). doi:10.1029/2008JA013257

    ADS  Google Scholar 

  • J.T. Clarke et al., Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. 114, A05210 (2009). doi:10.1029/2008JA013694

    ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067–1088 (2001)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras. Ann. Geophys. 21, 1691–1707 (2003)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, T.S. Stallard, S. Miller, Jupiter’s polar ionospheric flows: theoretical interpretation. Geophys. Res. Lett. 30, 1220 (2003)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, J.M. O’Rourke, A simple quantitative model of plasma flows and currents in Saturn’s polar ionosphere. J. Geophys. Res. 109, A05212 (2004). doi:10.1029/2003JA010375

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, I.I. Alexeev, E.S. Belenkaya, E.J. Bunce, C.E. Cottis, V.V. Kalegaev, J.D. Nichols, R. Prange, F.J. Wilson, A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter’s polar ionosphere. J. Geophys. Res. 110, 11209 (2005)

    Article  Google Scholar 

  • S.W.H. Cowley, J.D. Nichols, D.J. Andrews, Modulation of Jupiter’s plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: a simple theoretical model. Ann. Geophys. 25, 1433–1463 (2007)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, S.V. Badman, S.M. Imber, S.E. Milan, Comment on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind” by D.J. McComas and F. Bagenal. Geophys. Res. Lett. 35, 10101 (2008)

    Article  ADS  Google Scholar 

  • W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B.J. Albright, B. Bergen, K.J. Bowers, Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 7(7), 539–542 (2011)

    Article  Google Scholar 

  • P.A. Delamere, F. Bagenal, Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, 110201 (2010). doi:10.1029/2010JA015347

    Google Scholar 

  • P.A. Delamere, F. Bagenal, Magnetotail structure of the giant magnetospheres: implications of the viscous interaction with the solar wind. J. Geophys. Res. 118, 1–9 (2013)

    Google Scholar 

  • P.A. Delamere, R.J. Wilson, A. Masters, Kelvin-Helmholtz instability at Saturn’s magnetopause: hybrid simulations. J. Geophys. Res. 116, 10222 (2011)

    Article  Google Scholar 

  • P.A. Delamere, R.J. Wilson, S. Eriksson, F. Bagenal, Magnetic signatures of Kelvin-Helmholtz vortices on Saturn’s magnetopause: global survey. J. Geophys. Res. 118, 393–404 (2013)

    Article  Google Scholar 

  • M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction. J. Geophys. Res. 117, A07202 (2012). doi:10.1029/2012JA017621

    Article  ADS  Google Scholar 

  • M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the magnetopause of Saturn and implications for the solar wind interaction. J. Geophys. Res. 118, 3087–3095 (2013). doi:10.1002/jgra.50294

    Article  Google Scholar 

  • J.F. Drake, M.A. Shay, Fundamentals of collisionless reconnection, in Reconnection of Magnetic Fields: MHD and Collisionless Theory and Observations, ed. by J. Birn, E.R. Priest (Cambridge University Press, Cambridge, 2007), p. 87

    Google Scholar 

  • J.W. Dungey, Interplanetary field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961)

    Article  ADS  Google Scholar 

  • M.P. Freeman, S.K. Morley, A minimal substorm model that explains the observed statistical distribution of times between substorms. Geophys. Res. Lett. 31(12), 807 (2004)

    Article  Google Scholar 

  • H.S. Fu, Y.V. Khotyaintsev, A. Vaivads, M. André, S.Y. Huang, Occurrence rate of earthward-propagating dipolarization fronts. Geophys. Res. Lett. 39, L10101 (2012). doi:10.1029/2012GL051784

    Article  ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, Configuration and dynamics of the Jovian magnetosphere. J. Geophys. Res. 111, 10207 (2006). doi:10.1029/2006JA011874

    Article  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, A simulation study of dynamics in the distant Jovian magnetotail. J. Geophys. Res. 115, A09219 (2010). doi:10.1029/2009JA015228

    Article  ADS  Google Scholar 

  • S.A. Fuselier, R. Frahm, W.S. Lewis, A. Masters, J. Mukherjee, S.M. Petrinec, I.J. Sillanpaa, The location of magnetic reconnection at Saturn’s magnetopause: a comparison with Earth. J. Geophys. Res. 119 (2014). doi:10.1002/2013JA019684

    Google Scholar 

  • P.H.M. Galopeau, P. Zarka, D. Le Quéau, Source location of Saturn’s kilometric radiation: the Kelvin-Helmholtz instability hypothesis. J. Geophys. Res. 100(E12), 26397–26410 (1995). doi:10.1029/95JE02132

    Article  ADS  Google Scholar 

  • Y.S. Ge, L.K. Jian, C.T. Russell, Growth phase of Jovian substorms. Geophys. Res. Lett. 34, L23106 (2007)

    ADS  Google Scholar 

  • Y.S. Ge, C.T. Russell, K.K. Khurana, Reconnection sites in Jupiter’s magnetotail and relation to Jovian auroras. Planet. Space Sci. 58, 1455–1469 (2010)

    Article  ADS  Google Scholar 

  • J.-C. Gérard, E.J. Bunce, D. Grodent, S.W.H. Cowley, J.T. Clarke, S.V. Badman, Signature of Saturn’s auroral cusp: simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring. J. Geophys. Res. 110, A11201 (2005). doi:10.1029/2005JA011094

    Article  ADS  Google Scholar 

  • T.I. Gombosi, T.P. Armstrong, C.S. Arridge, K.K. Khurana, S.M. Krimigris, N. Krupp, A.M. Persoon, M.F. Thomsen, Saturn’s magnetospheric configuration, in Saturn from Cassini-Huyghens, ed. by M. Dougherty et al. (Springer, Berlin, 2009), p. 257

    Google Scholar 

  • E.E. Grigorenko, M. Hoshino, M. Hirai, T. Mukai, L.M. Zelenyi, “Geography” of ion acceleration in the magnetotail: X-line versus current sheet effects. J. Geophys. Res. 114, A03203 (2009)

    Article  ADS  Google Scholar 

  • A. Grocott, S.V. Badman, S.W.H. Cowley, S.E. Milan, J.D. Nichols, T.K. Yeoman, Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J. Geophys. Res. 114, A07219 (2009). doi:10.1029/2009JA014330

    Article  ADS  Google Scholar 

  • D. Grodent, J.T. Clarke, J.H. Waite Jr., S.W.H. Cowley, J.-C. Gérard, J. Kim, Jupiter’s polar auroral emissions. J. Geophys. Res. 108, 1366 (2003). doi:10.1029/2003JA010017

    Article  Google Scholar 

  • D. Grodent, J.-C. Gérard, J.T. Clarke, G.R. Gladstone, J.H. Waite, A possible auroral signature of a magnetotail reconnection process on Jupiter. J. Geophys. Res. 109, A05201 (2004). doi:10.1029/2003JA010341

    Article  ADS  Google Scholar 

  • D. Grodent, J. Gustin, J.-C. Gérard, A. Radioti, B. Bonfond, W.R. Pryor, Small-scale structures in Saturn’s ultraviolet aurora. J. Geophys. Res. 116, A09225 (2011). doi:10.1029/2011JA016818

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, R.R. Shaw, A. Roux, R. Gendrin, C.F. Kennel, F.L. Scarf, S.D. Shawhan, The Galileo plasma waves investigation. Space Sci. Rev. 60, 341 (1992)

    Article  ADS  Google Scholar 

  • D.A. Gurnett et al., Control of Jupiter’s radio emission and aurorae by the solar wind. Nature 415(6875), 985–987 (2002)

    Article  ADS  Google Scholar 

  • J. Gustin, J.-C. Gérard, W. Pryor, P.D. Feldman, D. Grodent, G. Holsclaw, Characteristics of Saturn’s polar atmosphere and auroral electrons derived from HST/STIS, FUSE and Cassini/UVIS spectra. Icarus 200, 176–187 (2009)

    Article  ADS  Google Scholar 

  • T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84, 6554–6558 (1979). doi:10.1029/JA084iA11p06554

    Article  ADS  Google Scholar 

  • T.W. Hill, The Jovian auroral oval. J. Geophys. Res. 106, 8101–8107 (2001)

    Article  ADS  Google Scholar 

  • T.W. Hill et al., Plasmoids in Saturn’s magnetotail. J. Geophys. Res. 113, A01214 (2008). doi:10.1029/2007JA012626

    ADS  Google Scholar 

  • M.E. Hill, D.K. Haggerty, R.L. McNutt, C.P. Paranicas, Energetic particle evidence for magnetic filaments in Jupiter’s magnetotail. J. Geophys. Res. 114, A11201 (2009)

    ADS  Google Scholar 

  • D.E. Huddleston, C.T. Russell, G. Le, A. Szabo, Magnetopause structure and the role of reconnection at the outer planets. J. Geophys. Res. 102, 24289–24302 (1997)

    Article  ADS  Google Scholar 

  • C.M. Jackman, C.S. Arridge, Statistical properties of the magnetic field in the Kronian magnetotail lobes and current sheet. J. Geophys. Res. 116, A05224 (2011). doi:10.1029/2010JA015973

    Article  ADS  Google Scholar 

  • C.M. Jackman, C.T. Russell, D.J. Southwood, C.S. Arridge, N. Achilleos, M.K. Dougherty, Strong rapid dipolarizations in Saturn’s magnetotail: in situ evidence of reconnection. Geophys. Res. Lett. 34, L11203 (2007). doi:10.1029/2007GL029764

    Article  ADS  Google Scholar 

  • C.M. Jackman et al., A multi-instrument view of tail reconnection at Saturn. J. Geophys. Res. 113, A11213 (2008). doi:10.1029/2008JA013592

    Article  ADS  Google Scholar 

  • C.M. Jackman, C.S. Arridge, H.J. McAndrews, M.G. Henderson, R.J. Wilson, Northward field excursions in Saturn’s magnetotail and their relationship to magnetospheric periodicities. Geophys. Res. Lett. 36, L16101 (2009a). doi:10.1029/2009GL039149

    Article  ADS  Google Scholar 

  • C.M. Jackman, L. Lamy, M.P. Freeman, P. Zarka, B. Cecconi, W.S. Kurth, S.W.H. Cowley, M.K. Dougherty, On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events. J. Geophys. Res. 114, A08211 (2009b). doi:10.1029/2008JA013997

    ADS  Google Scholar 

  • C.M. Jackman, J.A. Slavin, S.W.H. Cowley, Cassini observations of plasmoid structure and dynamics: implications for the role of magnetic reconnection in magnetospheric circulation at Saturn. J. Geophys. Res. 116, A10212 (2011). doi:10.1029/2011JA016682

    Article  ADS  Google Scholar 

  • C.M. Jackman, N. Achilleos, S.W.H. Cowley, E.J. Bunce, A. Radioti, D. Grodent, S.V. Badman, M.K. Dougherty, W. Pryor, Auroral counterpart of magnetic field dipolarizations in Saturn’s tail. Planet. Space Sci. 82–83, 34–42 (2013). doi:10.1016/j.pss.2013.03.010

    Article  Google Scholar 

  • C.M. Jackman, J.A. Slavin, M.G. Kivelson, D.J. Southwood, N. Achilleos, M.F. Thomsen, G.A. DiBraccio, J.P. Eastwood, M.P. Freeman, M.K. Dougherty, M.F. Vogt, Saturn’s dynamic magnetotail: a comprehensive magnetic field and plasma survey of plasmoids and travelling compression regions, and their role in global magnetospheric dynamics. J. Geophys. Res. (2014, submitted)

    Google Scholar 

  • X. Jia, K.C. Hansen, T.I. Gombosi, M.G. Kivelson, G. Tóth, D.L. DeZeeuw, A.J. Ridley, Magnetospheric configuration and dynamics of Saturn’s magnetosphere: a global MHD simulation. J. Geophys. Res. 117, A05225 (2012). doi:10.1029/2012JA017575

    ADS  Google Scholar 

  • M.L. Kaiser, Time-variable magnetospheric radio emissions from Jupiter. J. Geophys. Res. 98, 18757 (1993)

    Article  ADS  Google Scholar 

  • H. Karimabadi, W. Daughton, K.B. Quest, Physics of saturation of collisionless tearing mode as a function of guide field. J. Geophys. Res. 110, A03214 (2005). doi:10.1029/2004JA010749

    ADS  Google Scholar 

  • S. Kasahara, E.A. Kronberg, N. Krupp, T. Kimura, C. Tao, S.V. Badman, A. Retino, M. Fujimoto, Magnetic reconnection in the Jovian tail: X-line evolution and consequent plasma sheet structures. J. Geophys. Res. 116, A11219 (2011). doi:10.1029/2011JA016892

    Article  ADS  Google Scholar 

  • S. Kasahara, E.A. Kronberg, N. Krupp, T. Kimura, C. Tao, S.V. Badman, M. Fujimoto, Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere. J. Geophys. Res. 118, 375–384 (2013). doi:10.1029/2012JA018130

    Article  Google Scholar 

  • C.F. Kennel, Convection and Substorms: Paradigms of Magnetospheric Phenomenology (Oxford University Press, London, 1995)

    Google Scholar 

  • K.K. Khurana, M.G. Kivelson, Inference of the angular velocity of plasma in the Jovian magnetosphere from the sweepback of magnetic field. J. Geophys. Res. 98, 67 (1993)

    Article  ADS  Google Scholar 

  • K.K. Khurana, M.G. Kivelson, V.M. Vasyliunas, N. Krupp, J. Woch, A. Lagg, B.H. Mauk, W.S. Kurth, The configuration of Jupiter’s magnetosphere, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon. Cambridge Planetary Science, vol. 1 (Cambridge University Press, Cambridge, 2004), pp. 593–616. ISBN 0-521-81808-7

    Google Scholar 

  • M.G. Kivelson, K.K. Khurana, Properties of the magnetic field in the Jovian magnetotail. J. Geophys. Res. 107, 1196 (2002)

    Article  Google Scholar 

  • M.G. Kivelson, D.J. Southwood, Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res. 110, A12209 (2005)

    Article  ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, J.D. Means, C.T. Russell, R.C. Snare, The Galileo magnetic field investigation. Space Sci. Rev. 60, 357–383 (1992)

    Article  ADS  Google Scholar 

  • S.M. Krimigis, E.C. Roelof, Low energy particle population, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983), pp. 106–156. doi:10.1029/CBO9780511564574.005

    Chapter  Google Scholar 

  • E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, K.K. Khurana, K.-H. Glassmeier, Mass release at Jupiter: substorm-like processes in the Jovian magnetotail. J. Geophys. Res. 110, A03211 (2005)

    Article  ADS  Google Scholar 

  • E.A. Kronberg, K.-H. Glassmeier, J. Woch, N. Krupp, A. Lagg, M.K. Dougherty, A possible intrinsic mechanism for the quasi-periodic dynamics of the Jovian magnetosphere. J. Geophys. Res. 112(A5), A05203 (2007). doi:10.1029/2006JA011994

    Article  ADS  Google Scholar 

  • E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, P.W. Daly, A. Korth, Comparison of periodic substorms at Jupiter and Earth. J. Geophys. Res. 113, A04212 (2008a). doi:10.1029/2007JA012880

    ADS  Google Scholar 

  • E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, Mass release process in the Jovian magnetosphere: statistics on particle burst parameters. J. Geophys. Res. 113, A10202 (2008b). doi:10.1029/2008JA013332

    ADS  Google Scholar 

  • E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, A summary of observational records on periodicities above the rotational period in the Jovian magnetosphere. Ann. Geophys. 27, 2565–2573 (2009)

    Article  ADS  Google Scholar 

  • E.A. Kronberg, S. Kasahara, N. Krupp, J. Woch, Field-aligned beams and reconnection in the Jovian magnetotail. Icarus 217, 55–65 (2012). doi:10.1016/j.icarus.2011.10.011

    Article  ADS  Google Scholar 

  • N. Krupp, J. Woch, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Energetic particle bursts in the predawn Jovian magnetotail. Geophys. Res. Lett. 25, 1249–1252 (1998)

    Article  ADS  Google Scholar 

  • N. Krupp, A. Lagg, S. Livi, B. Wilken, J. Woch, E.C. Roelof, D.J. Williams, Global flows of energetic ions in Jupiter’s equatorial plane: first-order approximation. J. Geophys. Res. 106, 26017–26032 (2001)

    Article  ADS  Google Scholar 

  • H. Ladreiter, Y. Leblanc, Jovian hectometric radiation—beaming, source extension, and solar wind control. Astron. Astrophys. 226, 297–310 (1989)

    ADS  Google Scholar 

  • H.R. Lai, H.Y. Wei, C.T. Russell, C.S. Arridge, M.K. Dougherty, Reconnection at the magnetopause of Saturn: perspective from FTE occurrence and magnetosphere size. J. Geophys. Res. 117, A05222 (2012). doi:10.1029/2011JA017263

    Article  ADS  Google Scholar 

  • W.W. Liu, J. Liang, E.F. Donovan, E. Spanswick, If substorm onset triggers tail reconnection, what triggers substorm onset? J. Geophys. Res. 117, A11220 (2012). doi:10.1029/2012JA018161

    Article  ADS  Google Scholar 

  • P. Louarn, A. Roux, S. Perraut, W. Kurth, D. Gurnett, A study of the largescale dynamics of the Jovian magnetosphere using the Galileo plasma wave experiment. Geophys. Res. Lett. 25, 2905–2908 (1998)

    Article  ADS  Google Scholar 

  • P. Louarn, A. Roux, S. Perraut, W.S. Kurth, D.A. Gurnett, A study of the Jovian “energetic magnetospheric events” observed by Galileo: role in the radial plasma transport. J. Geophys. Res. 105, 13073–13088 (2000)

    Article  ADS  Google Scholar 

  • P. Louarn, B. Mauk, D.J. Williams, C. Zimmer, M.G. Kivelson, W.S. Kurth, D.A. Gurnett, A. Roux, A multi-instrument study of a Jovian magnetospheric disturbance. J. Geophys. Res. 106, 29883 (2001)

    Article  ADS  Google Scholar 

  • P. Louarn et al., Presentation at Magnetosphere of Outer Planets, Athens (2013, in preparation)

    Google Scholar 

  • A.T.Y. Lui et al., A cross-field current instability for substorm expansions. J. Geophys. Res. 96, 11389 (1991)

    Article  ADS  Google Scholar 

  • S. Markidis, G. Lapenta, L. Bettarini, M. Goldman, D. Newman, L. Andersson, Kinetic simulations of magnetic reconnection in presence of a background \(\mathrm{O}^{+}\) population. J. Geophys. Res. 116, A00K16 (2011). doi:10.1029/2011JA016429

    Article  ADS  Google Scholar 

  • A. Masters et al., The importance of plasma \(\beta\) conditions for magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 39, L08103 (2012). doi:10.1029/2012GL051372

    Article  ADS  Google Scholar 

  • A. Masters, M. Fujimoto, H. Hasegawa, C.T. Russell, A.J. Coates, M.K. Dougherty, Can magnetopause reconnection drive Saturn’s magnetosphere? Geophys. Res. Lett. 41, 1862–1868 (2014). doi:10.1002/2014GL059288

    Article  ADS  Google Scholar 

  • H.J. McAndrews et al., Evidence for reconnection at Saturn’s magnetopause. J. Geophys. Res. 113(A4), A04210 (2008). doi:10.1029/2007JA012581

    Article  ADS  Google Scholar 

  • D.J. McComas, F. Bagenal, Jupiter: a fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. 34, L20106 (2007). doi:10.1029/2007GL031078

    Article  ADS  Google Scholar 

  • D.J. McComas et al., Diverse plasma populations and structures in Jupiter’s magnetotail. Science 318, 217–220 (2007)

    Article  ADS  Google Scholar 

  • R.L. McNutt et al., Energetic particles in the Jovian magnetotail. Science 318, 220–222 (2007)

    Article  ADS  Google Scholar 

  • S.E. Milan, Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval. Geophys. Res. Lett. 36, L18101 (2009). doi:10.1029/2009GL039997

    Article  ADS  Google Scholar 

  • D.G. Mitchell, P.C. Brandt, E.C. Roelof, J. Dandouras, S.M. Krimigis, B.H. Mauk, C.P. Paranicas, N. Krupp, D.C. Hamilton, W.S. Kurth, P. Zarka, M.K. Dougherty, E.J. Bunce, D.E. Shemansky, Energetic ion acceleration in Saturn’s magnetotail: substorms at Saturn? Geophys. Res. Lett. 32, L20S01 (2005)

    Article  Google Scholar 

  • D.G. Mitchell, S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, E.C. Roelof, W.S. Kurth, D.A. Gurnett, J.T. Clarke, J.D. Nichols, J.-C. Gérard, D.C. Grodent, M.K. Dougherty, W.R. Pryor, Recurrent energization of plasma in the midnight-to dawn quadrant of Saturn’s magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci. 57, 1732–1742 (2009). doi:10.1016/j.pss.2009.04.002

    Article  ADS  Google Scholar 

  • T. Miyoshi, K. Kusano, A global MHD simulation of the Jovian magnetosphere interacting with/without the interplanetary magnetic field. J. Geophys. Res. 106(A6), 10723–10742 (2001). doi:10.1029/2000JA900153

    Article  ADS  Google Scholar 

  • F.S. Mozer, D. Sundkvist, J.P. McFadden, P.L. Pritchett, I. Roth, Satellite observations of plasma physics near the magnetic field reconnection X line. J. Geophys. Res. 116(A12), A12224 (2011)

    Article  ADS  Google Scholar 

  • J.D. Nichols, E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, W.R. Pryor, Response of Jupiter’s UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. J. Geophys. Res. 112, A02203 (2007). doi:10.1029/2006JA012005

    ADS  Google Scholar 

  • A. Nishida, Reconnection in the Jovian magnetosphere. Geophys. Res. Lett. 10, 451–454 (1983)

    Article  ADS  Google Scholar 

  • T. Ogino, R.J. Walker, M.G. Kivelson, A global magnetohydrodynamic simulation of the Jovian magnetosphere. J. Geophys. Res. 103(A1), 225–235 (1998). doi:10.1029/97JA02247

    Article  ADS  Google Scholar 

  • V. Olshevsky, G. Lapenta, S. Markidis, Energetics of kinetic reconnection in a three-dimensional null-point cluster. Phys. Rev. Lett. 111(4), 045002 (2013)

    Article  ADS  Google Scholar 

  • T.G. Onsager, M.F. Thomsen, R.C. Elphic, J.T. Gosling, Model of electron and ion distributions in the plasma sheet boundary layer. J. Geophys. Res. 96, 20999–21011 (1991). doi:10.1029/91JA01983

    Article  ADS  Google Scholar 

  • L. Pallier, R. Prangé, More about the structure of the high latitude Jovian aurorae. Planet. Space Sci. 49, 1159 (2001)

    Article  ADS  Google Scholar 

  • L. Pallier, R. Prangé, Detection of the southern counterpart of the Jovian northern polar cusp: shared properties. Geophys. Res. Lett. 31, L06701 (2004). doi:10.1029/2003GL018041

    Article  ADS  Google Scholar 

  • T.D. Phan, J.F. Drake, M.A. Shay, F.S. Mozer, J.P. Eastwood, Evidence for an elongated (>60 ion skin depths) electron diffusion region during fast reconnection. Phys. Rev. Lett. 99, 255002 (2007). doi:10.1103/PhysRevLett.99.255002

    Article  ADS  Google Scholar 

  • T.-D. Phan et al., The dependence of magnetic reconnection on plasma \(\beta\) and magnetic shear: evidence from solar wind observations. Astrophys. J. Lett. 719, L199–L203 (2010). doi:10.1088/2041-8205/719/2/L199

    Article  ADS  Google Scholar 

  • R. Prangé, P. Zarka, G.E. Ballester, T.A. Livengood, L. Denis, T.D. Carr, F. Reyes, S.J. Bame, H.W. Moos, Correlated variations of UV and radio emissions during an outstanding Jovian auroral event. J. Geophys. Res. 98, 18779–18791 (1993). doi:10.1029/93JE01802

    Article  ADS  Google Scholar 

  • R. Prangé et al., An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature 432, 78–81 (2004)

    Article  ADS  Google Scholar 

  • E. Priest, T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  • P.L. Pritchett, F.S. Mozer, The magnetic field reconnection site and dissipation region. Phys. Plasmas 16, 080702 (2009). doi:10.1063/1.3206947

    Article  ADS  Google Scholar 

  • W.R. Pryor et al., Cassini UVIS observations of Jupiter’s auroral variability. Icarus 178, 312–326 (2005). doi:10.1016/j.icarus.2005.05.021

    Article  ADS  Google Scholar 

  • K.B. Quest, F.V. Coroniti, Linear theory of tearing in a high-\(\boldsymbol{\beta}\) plasma. J. Geophys. Res. 86(A5), 3299–3305 (1981). doi:10.1029/JA086iA05p03299

    Article  ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, J.T. Clarke, Auroral polar dawn spots: signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophys. Res. Lett. 35, L03104 (2008). doi:10.1029/2007GL032460

    Article  ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, Auroral signatures of flow bursts released during magnetotail reconnection at Jupiter. J. Geophys. Res. 115, A07214 (2010)

    Article  ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, M.F. Vogt, M. Lystrup, B. Bonfond, Nightside reconnection at Jupiter: auroral and magnetic field observations from 26 July 1998. J. Geophys. Res. 116, A03221 (2011)

    Article  ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, J. Gustin, W. Pryor, J.M. Jasinski, C.S. Arridge, Auroral signatures of multiple magnetopause reconnection at Saturn. Geophys. Res. Lett. 40, 4498–4502 (2013). doi:10.1002/grl.50889

    Article  ADS  Google Scholar 

  • I.G. Richardson, S.W.H. Cowley, E.W. Hones Jr., S.J. Bame, Plasmoid-associated energetic ion bursts in the deep geomagnetic tail: properties of plasmoids and the post-plasmoid plasma sheet. J. Geophys. Res. 92, 9997–10013 (1987). doi:10.1029/JA092iA09p09997

    Article  ADS  Google Scholar 

  • A. Roux, S. Perraut, P. Robert, A. Morane, A. Pedersen, A. Korth, G. Kremser, B. Aparicio, D. Rodgers, R. Pellinen, Plasma sheet instability related to the westward traveling surge. J. Geophys. Res. 96, 17697–17714 (1991) (ISSN 0148-0227), Oct. 1

    Article  ADS  Google Scholar 

  • H.O. Rucker et al., Saturn kilometric radiation as a monitor for the solar wind? Adv. Space Res. 42, 40–47 (2008)

    Article  ADS  Google Scholar 

  • A. Runov, V. Angelopoulos, M.I. Sitnov, V.A. Sergeev, J. Bonnell, J.P. McFadden, D. Larson, K.-H. Glassmeier, U. Auster, THEMIS observations of an earthward-propagating dipolarization front. Geophys. Res. Lett. 36, L14106 (2009). doi:10.1029/2009GL038980

    Article  ADS  Google Scholar 

  • A. Runov, V. Angelopoulos, X.-Z. Zhou, X.-J. Zhang, S. Li, F. Plaschke, J. Bonnell, A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res. 116, A05216 (2011). doi:10.1029/2010JA016316

    Article  ADS  Google Scholar 

  • C.T. Russell, K.K. Khurana, D.E. Huddleston, M.G. Kivelson, Localized reconnection in the near Jovian magnetotail. Science 280, 1061–1064 (1998)

    Article  ADS  Google Scholar 

  • C.T. Russell, K.K. Khurana, M.G. Kivelson, D.E. Huddleston, Substorms at Jupiter: Galileo observations of transient reconnection in the near tail. Adv. Space Res. 26, 1499–1504 (2000)

    Article  ADS  Google Scholar 

  • A. Rymer, D.G. Mitchell, T.W. Hill, E.A. Kronberg, N. Krupp, C.M. Jackman, Saturn’s magnetospheric refresh rate. Geophys. Res. Lett. 40, 2479–2483 (2013). doi:10.1002/grl.50530

    Article  ADS  Google Scholar 

  • D.V. Sarafopoulos, E.T. Sarris, V. Angelopoulos, T. Yamamoto, S. Kokubun, Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL. Ann. Geophys. 15, 1246–1256 (1997). doi:10.1007/s00585-997-1246-0

    ADS  Google Scholar 

  • M. Scholer, D.N. Baker, G. Gloeckler, B. Klecker, F.M. Ipavich, T. Terasawa, B.T. Tsurutani, A.B. Galvin, Energetic particle beams in the plasma sheet boundary layer following substorm expansion: simultaneous near-Earth and distant tail observations. J. Geophys. Res. 91, 4277–4286 (1986). doi:10.1029/JA091iA04p04277

    Article  ADS  Google Scholar 

  • L. Scurry, C.T. Russell, Proxy studies of energy transfer to the magnetosphere. J. Geophys. Res. 96, 9541–9548 (1991). doi:10.1029/91JA00569

    Article  ADS  Google Scholar 

  • V. Sergeev, V. Angelopoulos, S. Apatenkov, J. Bonnell, R. Ergun, R. Nakamura, J. McFadden, D. Larson, A. Runov, Kinetic structure of the sharp injection/dipolarization front in the flow-braking region. Geophys. Res. Lett. 36, L21105 (2009). doi:10.1029/2009GL040658

    Article  ADS  Google Scholar 

  • M.A. Shay, M. Swisdak, Three species collisionless reconnection: effect of \(\mathrm{O}^{+}\) on magnetotail reconnection. Phys. Rev. Lett. 93(17), 175001 (2004)

    Article  ADS  Google Scholar 

  • E.J. Smith, L. Davis Jr., D.E. Jones, P.J. Coleman Jr., D.S. Colburn, P. Dyal, C.P. Sonett, A.M.A. Frandsen, The planetary magnetic field and magnetosphere of Jupiter: Pioneer 10. J. Geophys. Res. 79, 25 (1974)

    Google Scholar 

  • D.J. Southwood, M.G. Kivelson, A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. J. Geophys. Res. 106(A4), 6123–6130 (2001)

    Article  ADS  Google Scholar 

  • M. Swisdak, B.N. Rogers, J.F. Drake, M.A. Shay, Diamagnetic suppression of component magnetic reconnection at the magnetopause. J. Geophys. Res. 108(A5), 1218 (2003). doi:10.1029/2002JA009726

    Article  Google Scholar 

  • C. Tao, R. Kataoka, H. Fukunishi, Y. Takahashi, T. Yokoyama, Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements. J. Geophys. Res. 110, A11208 (2005). doi:10.1029/2004JA010959

    Article  ADS  Google Scholar 

  • M.F. Thomsen, R.J. Wilson, R.L. Tokar, D.B. Reisenfeld, C.M. Jackman, Cassini/CAPS observations of duskside tail dynamics at Saturn. J. Geophys. Res. (2013). doi:10.1002/jgra.50552, in press

    Google Scholar 

  • A. Vaivads, Y. Khotyaintsev, M. Andre, A. Retino, S.C. Buchert, B.N. Rogers, P. Decreau, G. Paschmann, T.D. Phan, Structure of the magnetic reconnection diffusion region from four-spacecraft observations. Phys. Rev. Lett. 93, 105001 (2004)

    Article  ADS  Google Scholar 

  • A. Vaivads, A. Retino, M. André, Microphysics of magnetospheric reconnection. Space Sci. Rev. 122, 19–27 (2006). doi:10.1007/s11214-006-7019-3

    Article  ADS  Google Scholar 

  • V.M. Vasyliunas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere (1983), pp. 395–453

    Chapter  Google Scholar 

  • V.M. Vasyliunas, Comparing Jupiter and Saturn: dimensionless input rates from plasma sources within the magnetosphere. Ann. Geophys. 26, 1341–1343 (2008)

    Article  ADS  Google Scholar 

  • V.M. Vasyliunas, L.A. Frank, K.L. Ackerson, W.R. Paterson, Geometry of the plasma sheet in the midnight-to-dawn sector of the Jovian magnetosphere: plasma observations with the Galileo spacecraft. Geophys. Res. Lett. 24, 869–872 (1997)

    Article  ADS  Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, S.P. Joy, R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. 115, A06219 (2010)

    ADS  Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, B. Bonfond, D. Grodent, A. Radioti, Improved mapping of Jupiter’s auroral features to magnetospheric sources. J. Geophys. Res. 116, A03220 (2011). doi:10.1029/2010JA016148

    Article  ADS  Google Scholar 

  • M.F. Vogt, C.M. Jackman, J.A. Slavin, E.J. Bunce, S.W.H. Cowley, M.G. Kivelson, K.K. Khurana, The structure and statistical properties of plasmoids in Jupiter’s magnetotail. J. Geophys. Res. 119(2), 821–843 (2014). doi:10.1002/2013JA019393

    Article  Google Scholar 

  • J.H. Waite et al., An auroral flare at Jupiter. Nature 410, 787–789 (2001). doi:10.1038/35071018

    Article  ADS  Google Scholar 

  • R.J. Walker, C.T. Russell, Flux transfer events at the Jovian magnetopause. J. Geophys. Res. 90(A8), 7397–7404 (1985)

    Article  ADS  Google Scholar 

  • R.J. Walker, T. Ogino, M.G. Kivelson, Magnetohydrodynamic simulations of the effects of the solar wind on the Jovian magnetosphere. Planet. Space Sci. 49, 237–245 (2001)

    Article  ADS  Google Scholar 

  • D.J. Williams, R.W. McEntire, S. Jaskulek, B. Wilken, The Galileo energetic particles detector. Space Sci. Rev. 60, 385–412 (1992)

    Article  ADS  Google Scholar 

  • J. Woch, N. Krupp, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Quasi-periodic modulations of the Jovian magnetotail. Geophys. Res. Lett. 25, 1253–1256 (1998)

    Article  ADS  Google Scholar 

  • J. Woch, N. Krupp, K.K. Khurana, M.G. Kivelson, A. Roux, S. Perraut, P. Louarn, A. Lagg, D.J. Williams, S. Livi, B. Wilken, Plasma sheet dynamics in the Jovian magnetotail: signatures for substorm-like processes? Geophys. Res. Lett. 26, 2137–2140 (1999)

    Article  ADS  Google Scholar 

  • J. Woch, N. Krupp, A. Lagg, Particle bursts in the Jovian magnetosphere: evidence for a near-Jupiter neutral line. Geophys. Res. Lett. 29, 42 (2002)

    Article  Google Scholar 

  • L. Yin, F.V. Coronoti, P.L. Pritchett, L.A. Frank, L.A. Paterson, Kinetic aspects of the Jovian current sheet. J. Geophys. Res. 115(A11), 25345 (2000)

    Article  ADS  Google Scholar 

  • P. Zarka, Auroral radio emissions at the outer planets: observations and theories. J. Geophys. Res. 103(E9), 20159–20194 (1998). doi:10.1029/98JE01323

    Article  ADS  Google Scholar 

  • B. Zieger, K.C. Hansen, T.I. Gombosi, D.L. De Zeeuw, Periodic plasma escape from the mass-loaded Kronian magnetosphere. J. Geophys. Res. 115, A08208 (2010). doi:10.1029/2009JA014951

    Article  ADS  Google Scholar 

  • G. Zimbardo, Observable implications of tearing-mode instability in Jupiter’s nightside magnetosphere. Planet. Space Sci. 41, 357–361 (1993)

    Article  ADS  Google Scholar 

  • Q.-G. Zong et al., Cluster observations of earthward flowing plasmoid in the tail. Geophys. Res. Lett. 31, L18803 (2004). doi:10.1029/2004GL020692

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Louarn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Louarn, P., Andre, N., Jackman, C.M., Kasahara, S., Kronberg, E.A., Vogt, M.F. (2016). Magnetic Reconnection and Associated Transient Phenomena Within the Magnetospheres of Jupiter and Saturn. In: Szego, K., et al. The Magnetodiscs and Aurorae of Giant Planets. Space Sciences Series of ISSI, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3395-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3395-2_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3394-5

  • Online ISBN: 978-1-4939-3395-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics