Magnetic Reconnection and Associated Transient Phenomena Within the Magnetospheres of Jupiter and Saturn

  • Philippe LouarnEmail author
  • Nicolas Andre
  • Caitriona M. Jackman
  • Satoshi Kasahara
  • Elena A. Kronberg
  • Marissa F. Vogt
Part of the Space Sciences Series of ISSI book series (SSSI, volume 50)


We review in situ observations made in Jupiter and Saturn’s magnetosphere that illustrate the possible roles of magnetic reconnection in rapidly-rotating magnetospheres. In the Earth’s solar wind-driven magnetosphere, the magnetospheric convection is classically described as a cycle of dayside opening and tail closing reconnection (the Dungey cycle). For the rapidly-rotating Jovian and Kronian magnetospheres, heavily populated by internal plasma sources, the classical concept (the Vasyliunas cycle) is that the magnetic reconnection plays a key role in the final stage of the radial plasma transport across the disk. By cutting and closing flux tubes that have been elongated by the rotational stress, the reconnection process would lead to the formation of plasmoids that propagate down the tail, contributing to the final evacuation of the internally produced plasma and allowing the return of the magnetic flux toward the planet. This process has been studied by inspecting possible ‘local’ signatures of the reconnection, as magnetic field reversals, plasma flow anisotropies, energetic particle bursts, and more global consequences on the magnetospheric activity.

The investigations made at Jupiter support the concept of an ‘average’ X-line, extended in the dawn/dusk direction and located at 90–120 Jovian radius (\(\mathrm{R}_{\mathrm{J}}\)) on the night side. The existence of a similar average X-line has not yet been established at Saturn, perhaps by lack of statistics. Both at Jupiter and Saturn, the reconfiguration signatures are consistent with magnetospheric dipolarizations and formation of plasmoids and flux ropes. In several cases, the reconfigurations also appear to be closely associated with large scale activations of the magnetosphere, seen from the radio and auroral emissions. Nevertheless, the statistical study also suggests that the reconnection events and the associated plasmoids are not frequent enough to explain a plasma evacuation that matches the mass input rate from the satellites and the rings. Different forms of transport should thus act together to evacuate the plasma, which still needs to be established. Investigations of reconnection signatures at the magnetopause and other processes as the Kelvin-Helmholtz instability are also reviewed. A provisional conclusion would be that the dayside reconnection is unlikely a crucial process in the overall dynamics. On the small scales, the detailed analysis of one reconnection event at Jupiter shows that the local plasma signatures (field-aligned flows, energetic particle bursts…) are very similar to those observed at Earth, with likely a similar scaling with respect to characteristic kinetic lengths (Larmor radius and inertial scales).


Magnetosphere Giant planet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. V. Angelopoulos, The THEMIS mission. Space Sci. Rev. 141, 5–34 (2008). doi: 10.1007/s11214-008-9336-1 ADSCrossRefGoogle Scholar
  2. C.S. Arridge, N. Achilleos, M.K. Dougherty, K.K. Khurana, C.T. Russell, Modeling the size and shape of Saturn’s magnetopause with variable dynamic pressure. J. Geophys. Res. 111, A11227 (2006). doi: 10.1029/2005JA011574 ADSCrossRefGoogle Scholar
  3. S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Ann. Geophys. 25, 941–951 (2007) ADSCrossRefGoogle Scholar
  4. S.V. Badman, E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, S.E. Milan, Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates. J. Geophys. Res. 110, A11216 (2005). doi: 10.1029/2005JA011240 ADSCrossRefGoogle Scholar
  5. S.V. Badman, A. Masters, H. Hasegawa, M. Fujimoto, A. Radioti, D. Grodent, N. Sergis, M.K. Dougherty, A.J. Coates, Bursty magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 40, 1027–1031 (2013). doi: 10.1002/grl.50199 ADSCrossRefGoogle Scholar
  6. F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, A05209 (2011) ADSCrossRefGoogle Scholar
  7. F. Bagenal, J.D. Sullivan, Direct plasma measurements in the Io torus and inner magnetosphere of Jupiter. J. Geophys. Res. 86, 8447–8466 (1981). doi: 10.1029/JA096iA10p08447 ADSCrossRefGoogle Scholar
  8. C.H. Barrow, F. Genova, M.D. Desch, Solar wind control of Jupiter’s decametric radio emission. Astron. Astrophys. 165, 244–250 (1986) ADSGoogle Scholar
  9. J.W. Belcher, The low-energy plasma in the jovian magnetosphere, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983), pp. 68–105. doi: 10.1029/CBO9780511564574.005 CrossRefGoogle Scholar
  10. J. Birn, E.R. Priest (eds.), MHD and Collisionless Theory and Observations (Cambridge University Press, Cambridge, 2007) Google Scholar
  11. D. Biskamp, Magnetic Reconnection in Plasmas. Cambridge Monographs on Plasma Physics (2005) zbMATHGoogle Scholar
  12. B. Bonfond, M.F. Vogt, J.-C. Gerard, D. Grodent, A. Radioti, V. Coumans, Quasi-periodic polar flares at Jupiter: a signature of pulsed dayside reconnections? Geophys. Res. Lett. 38, L02104 (2011). doi: 10.1029/2010GL045981 ADSCrossRefGoogle Scholar
  13. A.H. Boozer, Model of magnetic reconnection in space and astrophysical plasmas. Phys. Plasmas 20, 032903 (2013) ADSCrossRefGoogle Scholar
  14. A.L. Borg, M.G.G.T. Taylor, J.P. Eastwood, Observations of magnetic flux ropes during magnetic reconnection in the Earth’s magnetotail. Ann. Geophys. 30, 761–773 (2012). doi: 10.5194/angeo-30-761-2012 ADSCrossRefGoogle Scholar
  15. E.J. Bunce, S.W.H. Cowley, D.M. Wright, A.J. Coates, M.K. Dougherty, N. Krupp, W.S. Kurth, A.M. Rymer, In situ observations of a solar wind compression-induced hot plasma injection in Saturn’s tail. Geophys. Res. Lett. 32, L20S04 (2005). doi: 10.1029/2005GL022888 CrossRefGoogle Scholar
  16. E.J. Bunce et al., Origin of Saturn’s aurora: simultaneous observations by Cassini and the Hubble Space Telescope. J. Geophys. Res. 113, A09209 (2008). doi: 10.1029/2008JA013257 ADSGoogle Scholar
  17. J.T. Clarke et al., Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. 114, A05210 (2009). doi: 10.1029/2008JA013694 ADSGoogle Scholar
  18. S.W.H. Cowley, E.J. Bunce, Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067–1088 (2001) ADSCrossRefGoogle Scholar
  19. S.W.H. Cowley, E.J. Bunce, Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras. Ann. Geophys. 21, 1691–1707 (2003) ADSCrossRefGoogle Scholar
  20. S.W.H. Cowley, E.J. Bunce, T.S. Stallard, S. Miller, Jupiter’s polar ionospheric flows: theoretical interpretation. Geophys. Res. Lett. 30, 1220 (2003) ADSCrossRefGoogle Scholar
  21. S.W.H. Cowley, E.J. Bunce, J.M. O’Rourke, A simple quantitative model of plasma flows and currents in Saturn’s polar ionosphere. J. Geophys. Res. 109, A05212 (2004). doi: 10.1029/2003JA010375 ADSCrossRefGoogle Scholar
  22. S.W.H. Cowley, I.I. Alexeev, E.S. Belenkaya, E.J. Bunce, C.E. Cottis, V.V. Kalegaev, J.D. Nichols, R. Prange, F.J. Wilson, A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter’s polar ionosphere. J. Geophys. Res. 110, 11209 (2005) CrossRefGoogle Scholar
  23. S.W.H. Cowley, J.D. Nichols, D.J. Andrews, Modulation of Jupiter’s plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: a simple theoretical model. Ann. Geophys. 25, 1433–1463 (2007) ADSCrossRefGoogle Scholar
  24. S.W.H. Cowley, S.V. Badman, S.M. Imber, S.E. Milan, Comment on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind” by D.J. McComas and F. Bagenal. Geophys. Res. Lett. 35, 10101 (2008) ADSCrossRefGoogle Scholar
  25. W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B.J. Albright, B. Bergen, K.J. Bowers, Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 7(7), 539–542 (2011) CrossRefGoogle Scholar
  26. P.A. Delamere, F. Bagenal, Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, 110201 (2010). doi: 10.1029/2010JA015347 Google Scholar
  27. P.A. Delamere, F. Bagenal, Magnetotail structure of the giant magnetospheres: implications of the viscous interaction with the solar wind. J. Geophys. Res. 118, 1–9 (2013) Google Scholar
  28. P.A. Delamere, R.J. Wilson, A. Masters, Kelvin-Helmholtz instability at Saturn’s magnetopause: hybrid simulations. J. Geophys. Res. 116, 10222 (2011) CrossRefGoogle Scholar
  29. P.A. Delamere, R.J. Wilson, S. Eriksson, F. Bagenal, Magnetic signatures of Kelvin-Helmholtz vortices on Saturn’s magnetopause: global survey. J. Geophys. Res. 118, 393–404 (2013) CrossRefGoogle Scholar
  30. M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction. J. Geophys. Res. 117, A07202 (2012). doi: 10.1029/2012JA017621 ADSCrossRefGoogle Scholar
  31. M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the magnetopause of Saturn and implications for the solar wind interaction. J. Geophys. Res. 118, 3087–3095 (2013). doi: 10.1002/jgra.50294 CrossRefGoogle Scholar
  32. J.F. Drake, M.A. Shay, Fundamentals of collisionless reconnection, in Reconnection of Magnetic Fields: MHD and Collisionless Theory and Observations, ed. by J. Birn, E.R. Priest (Cambridge University Press, Cambridge, 2007), p. 87 Google Scholar
  33. J.W. Dungey, Interplanetary field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961) ADSCrossRefGoogle Scholar
  34. M.P. Freeman, S.K. Morley, A minimal substorm model that explains the observed statistical distribution of times between substorms. Geophys. Res. Lett. 31(12), 807 (2004) CrossRefGoogle Scholar
  35. H.S. Fu, Y.V. Khotyaintsev, A. Vaivads, M. André, S.Y. Huang, Occurrence rate of earthward-propagating dipolarization fronts. Geophys. Res. Lett. 39, L10101 (2012). doi: 10.1029/2012GL051784 ADSCrossRefGoogle Scholar
  36. K. Fukazawa, T. Ogino, R.J. Walker, Configuration and dynamics of the Jovian magnetosphere. J. Geophys. Res. 111, 10207 (2006). doi: 10.1029/2006JA011874 CrossRefGoogle Scholar
  37. K. Fukazawa, T. Ogino, R.J. Walker, A simulation study of dynamics in the distant Jovian magnetotail. J. Geophys. Res. 115, A09219 (2010). doi: 10.1029/2009JA015228 ADSCrossRefGoogle Scholar
  38. S.A. Fuselier, R. Frahm, W.S. Lewis, A. Masters, J. Mukherjee, S.M. Petrinec, I.J. Sillanpaa, The location of magnetic reconnection at Saturn’s magnetopause: a comparison with Earth. J. Geophys. Res. 119 (2014). doi: 10.1002/2013JA019684 Google Scholar
  39. P.H.M. Galopeau, P. Zarka, D. Le Quéau, Source location of Saturn’s kilometric radiation: the Kelvin-Helmholtz instability hypothesis. J. Geophys. Res. 100(E12), 26397–26410 (1995). doi: 10.1029/95JE02132 ADSCrossRefGoogle Scholar
  40. Y.S. Ge, L.K. Jian, C.T. Russell, Growth phase of Jovian substorms. Geophys. Res. Lett. 34, L23106 (2007) ADSGoogle Scholar
  41. Y.S. Ge, C.T. Russell, K.K. Khurana, Reconnection sites in Jupiter’s magnetotail and relation to Jovian auroras. Planet. Space Sci. 58, 1455–1469 (2010) ADSCrossRefGoogle Scholar
  42. J.-C. Gérard, E.J. Bunce, D. Grodent, S.W.H. Cowley, J.T. Clarke, S.V. Badman, Signature of Saturn’s auroral cusp: simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring. J. Geophys. Res. 110, A11201 (2005). doi: 10.1029/2005JA011094 ADSCrossRefGoogle Scholar
  43. T.I. Gombosi, T.P. Armstrong, C.S. Arridge, K.K. Khurana, S.M. Krimigris, N. Krupp, A.M. Persoon, M.F. Thomsen, Saturn’s magnetospheric configuration, in Saturn from Cassini-Huyghens, ed. by M. Dougherty et al. (Springer, Berlin, 2009), p. 257 Google Scholar
  44. E.E. Grigorenko, M. Hoshino, M. Hirai, T. Mukai, L.M. Zelenyi, “Geography” of ion acceleration in the magnetotail: X-line versus current sheet effects. J. Geophys. Res. 114, A03203 (2009) ADSCrossRefGoogle Scholar
  45. A. Grocott, S.V. Badman, S.W.H. Cowley, S.E. Milan, J.D. Nichols, T.K. Yeoman, Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J. Geophys. Res. 114, A07219 (2009). doi: 10.1029/2009JA014330 ADSCrossRefGoogle Scholar
  46. D. Grodent, J.T. Clarke, J.H. Waite Jr., S.W.H. Cowley, J.-C. Gérard, J. Kim, Jupiter’s polar auroral emissions. J. Geophys. Res. 108, 1366 (2003). doi: 10.1029/2003JA010017 CrossRefGoogle Scholar
  47. D. Grodent, J.-C. Gérard, J.T. Clarke, G.R. Gladstone, J.H. Waite, A possible auroral signature of a magnetotail reconnection process on Jupiter. J. Geophys. Res. 109, A05201 (2004). doi: 10.1029/2003JA010341 ADSCrossRefGoogle Scholar
  48. D. Grodent, J. Gustin, J.-C. Gérard, A. Radioti, B. Bonfond, W.R. Pryor, Small-scale structures in Saturn’s ultraviolet aurora. J. Geophys. Res. 116, A09225 (2011). doi: 10.1029/2011JA016818 ADSCrossRefGoogle Scholar
  49. D.A. Gurnett, W.S. Kurth, R.R. Shaw, A. Roux, R. Gendrin, C.F. Kennel, F.L. Scarf, S.D. Shawhan, The Galileo plasma waves investigation. Space Sci. Rev. 60, 341 (1992) ADSCrossRefGoogle Scholar
  50. D.A. Gurnett et al., Control of Jupiter’s radio emission and aurorae by the solar wind. Nature 415(6875), 985–987 (2002) ADSCrossRefGoogle Scholar
  51. J. Gustin, J.-C. Gérard, W. Pryor, P.D. Feldman, D. Grodent, G. Holsclaw, Characteristics of Saturn’s polar atmosphere and auroral electrons derived from HST/STIS, FUSE and Cassini/UVIS spectra. Icarus 200, 176–187 (2009) ADSCrossRefGoogle Scholar
  52. T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84, 6554–6558 (1979). doi: 10.1029/JA084iA11p06554 ADSCrossRefGoogle Scholar
  53. T.W. Hill, The Jovian auroral oval. J. Geophys. Res. 106, 8101–8107 (2001) ADSCrossRefGoogle Scholar
  54. T.W. Hill et al., Plasmoids in Saturn’s magnetotail. J. Geophys. Res. 113, A01214 (2008). doi: 10.1029/2007JA012626 ADSGoogle Scholar
  55. M.E. Hill, D.K. Haggerty, R.L. McNutt, C.P. Paranicas, Energetic particle evidence for magnetic filaments in Jupiter’s magnetotail. J. Geophys. Res. 114, A11201 (2009) ADSGoogle Scholar
  56. D.E. Huddleston, C.T. Russell, G. Le, A. Szabo, Magnetopause structure and the role of reconnection at the outer planets. J. Geophys. Res. 102, 24289–24302 (1997) ADSCrossRefGoogle Scholar
  57. C.M. Jackman, C.S. Arridge, Statistical properties of the magnetic field in the Kronian magnetotail lobes and current sheet. J. Geophys. Res. 116, A05224 (2011). doi: 10.1029/2010JA015973 ADSCrossRefGoogle Scholar
  58. C.M. Jackman, C.T. Russell, D.J. Southwood, C.S. Arridge, N. Achilleos, M.K. Dougherty, Strong rapid dipolarizations in Saturn’s magnetotail: in situ evidence of reconnection. Geophys. Res. Lett. 34, L11203 (2007). doi: 10.1029/2007GL029764 ADSCrossRefGoogle Scholar
  59. C.M. Jackman et al., A multi-instrument view of tail reconnection at Saturn. J. Geophys. Res. 113, A11213 (2008). doi: 10.1029/2008JA013592 ADSCrossRefGoogle Scholar
  60. C.M. Jackman, C.S. Arridge, H.J. McAndrews, M.G. Henderson, R.J. Wilson, Northward field excursions in Saturn’s magnetotail and their relationship to magnetospheric periodicities. Geophys. Res. Lett. 36, L16101 (2009a). doi: 10.1029/2009GL039149 ADSCrossRefGoogle Scholar
  61. C.M. Jackman, L. Lamy, M.P. Freeman, P. Zarka, B. Cecconi, W.S. Kurth, S.W.H. Cowley, M.K. Dougherty, On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events. J. Geophys. Res. 114, A08211 (2009b). doi: 10.1029/2008JA013997 ADSGoogle Scholar
  62. C.M. Jackman, J.A. Slavin, S.W.H. Cowley, Cassini observations of plasmoid structure and dynamics: implications for the role of magnetic reconnection in magnetospheric circulation at Saturn. J. Geophys. Res. 116, A10212 (2011). doi: 10.1029/2011JA016682 ADSCrossRefGoogle Scholar
  63. C.M. Jackman, N. Achilleos, S.W.H. Cowley, E.J. Bunce, A. Radioti, D. Grodent, S.V. Badman, M.K. Dougherty, W. Pryor, Auroral counterpart of magnetic field dipolarizations in Saturn’s tail. Planet. Space Sci. 82–83, 34–42 (2013). doi: 10.1016/j.pss.2013.03.010 CrossRefGoogle Scholar
  64. C.M. Jackman, J.A. Slavin, M.G. Kivelson, D.J. Southwood, N. Achilleos, M.F. Thomsen, G.A. DiBraccio, J.P. Eastwood, M.P. Freeman, M.K. Dougherty, M.F. Vogt, Saturn’s dynamic magnetotail: a comprehensive magnetic field and plasma survey of plasmoids and travelling compression regions, and their role in global magnetospheric dynamics. J. Geophys. Res. (2014, submitted) Google Scholar
  65. X. Jia, K.C. Hansen, T.I. Gombosi, M.G. Kivelson, G. Tóth, D.L. DeZeeuw, A.J. Ridley, Magnetospheric configuration and dynamics of Saturn’s magnetosphere: a global MHD simulation. J. Geophys. Res. 117, A05225 (2012). doi: 10.1029/2012JA017575 ADSGoogle Scholar
  66. M.L. Kaiser, Time-variable magnetospheric radio emissions from Jupiter. J. Geophys. Res. 98, 18757 (1993) ADSCrossRefGoogle Scholar
  67. H. Karimabadi, W. Daughton, K.B. Quest, Physics of saturation of collisionless tearing mode as a function of guide field. J. Geophys. Res. 110, A03214 (2005). doi: 10.1029/2004JA010749 ADSGoogle Scholar
  68. S. Kasahara, E.A. Kronberg, N. Krupp, T. Kimura, C. Tao, S.V. Badman, A. Retino, M. Fujimoto, Magnetic reconnection in the Jovian tail: X-line evolution and consequent plasma sheet structures. J. Geophys. Res. 116, A11219 (2011). doi: 10.1029/2011JA016892 ADSCrossRefGoogle Scholar
  69. S. Kasahara, E.A. Kronberg, N. Krupp, T. Kimura, C. Tao, S.V. Badman, M. Fujimoto, Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere. J. Geophys. Res. 118, 375–384 (2013). doi: 10.1029/2012JA018130 CrossRefGoogle Scholar
  70. C.F. Kennel, Convection and Substorms: Paradigms of Magnetospheric Phenomenology (Oxford University Press, London, 1995) Google Scholar
  71. K.K. Khurana, M.G. Kivelson, Inference of the angular velocity of plasma in the Jovian magnetosphere from the sweepback of magnetic field. J. Geophys. Res. 98, 67 (1993) ADSCrossRefGoogle Scholar
  72. K.K. Khurana, M.G. Kivelson, V.M. Vasyliunas, N. Krupp, J. Woch, A. Lagg, B.H. Mauk, W.S. Kurth, The configuration of Jupiter’s magnetosphere, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon. Cambridge Planetary Science, vol. 1 (Cambridge University Press, Cambridge, 2004), pp. 593–616. ISBN 0-521-81808-7 Google Scholar
  73. M.G. Kivelson, K.K. Khurana, Properties of the magnetic field in the Jovian magnetotail. J. Geophys. Res. 107, 1196 (2002) CrossRefGoogle Scholar
  74. M.G. Kivelson, D.J. Southwood, Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res. 110, A12209 (2005) ADSCrossRefGoogle Scholar
  75. M.G. Kivelson, K.K. Khurana, J.D. Means, C.T. Russell, R.C. Snare, The Galileo magnetic field investigation. Space Sci. Rev. 60, 357–383 (1992) ADSCrossRefGoogle Scholar
  76. S.M. Krimigis, E.C. Roelof, Low energy particle population, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983), pp. 106–156. doi: 10.1029/CBO9780511564574.005 CrossRefGoogle Scholar
  77. E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, K.K. Khurana, K.-H. Glassmeier, Mass release at Jupiter: substorm-like processes in the Jovian magnetotail. J. Geophys. Res. 110, A03211 (2005) ADSCrossRefGoogle Scholar
  78. E.A. Kronberg, K.-H. Glassmeier, J. Woch, N. Krupp, A. Lagg, M.K. Dougherty, A possible intrinsic mechanism for the quasi-periodic dynamics of the Jovian magnetosphere. J. Geophys. Res. 112(A5), A05203 (2007). doi: 10.1029/2006JA011994 ADSCrossRefGoogle Scholar
  79. E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, P.W. Daly, A. Korth, Comparison of periodic substorms at Jupiter and Earth. J. Geophys. Res. 113, A04212 (2008a). doi: 10.1029/2007JA012880 ADSGoogle Scholar
  80. E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, Mass release process in the Jovian magnetosphere: statistics on particle burst parameters. J. Geophys. Res. 113, A10202 (2008b). doi: 10.1029/2008JA013332 ADSGoogle Scholar
  81. E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, A summary of observational records on periodicities above the rotational period in the Jovian magnetosphere. Ann. Geophys. 27, 2565–2573 (2009) ADSCrossRefGoogle Scholar
  82. E.A. Kronberg, S. Kasahara, N. Krupp, J. Woch, Field-aligned beams and reconnection in the Jovian magnetotail. Icarus 217, 55–65 (2012). doi: 10.1016/j.icarus.2011.10.011 ADSCrossRefGoogle Scholar
  83. N. Krupp, J. Woch, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Energetic particle bursts in the predawn Jovian magnetotail. Geophys. Res. Lett. 25, 1249–1252 (1998) ADSCrossRefGoogle Scholar
  84. N. Krupp, A. Lagg, S. Livi, B. Wilken, J. Woch, E.C. Roelof, D.J. Williams, Global flows of energetic ions in Jupiter’s equatorial plane: first-order approximation. J. Geophys. Res. 106, 26017–26032 (2001) ADSCrossRefGoogle Scholar
  85. H. Ladreiter, Y. Leblanc, Jovian hectometric radiation—beaming, source extension, and solar wind control. Astron. Astrophys. 226, 297–310 (1989) ADSGoogle Scholar
  86. H.R. Lai, H.Y. Wei, C.T. Russell, C.S. Arridge, M.K. Dougherty, Reconnection at the magnetopause of Saturn: perspective from FTE occurrence and magnetosphere size. J. Geophys. Res. 117, A05222 (2012). doi: 10.1029/2011JA017263 ADSCrossRefGoogle Scholar
  87. W.W. Liu, J. Liang, E.F. Donovan, E. Spanswick, If substorm onset triggers tail reconnection, what triggers substorm onset? J. Geophys. Res. 117, A11220 (2012). doi: 10.1029/2012JA018161 ADSCrossRefGoogle Scholar
  88. P. Louarn, A. Roux, S. Perraut, W. Kurth, D. Gurnett, A study of the largescale dynamics of the Jovian magnetosphere using the Galileo plasma wave experiment. Geophys. Res. Lett. 25, 2905–2908 (1998) ADSCrossRefGoogle Scholar
  89. P. Louarn, A. Roux, S. Perraut, W.S. Kurth, D.A. Gurnett, A study of the Jovian “energetic magnetospheric events” observed by Galileo: role in the radial plasma transport. J. Geophys. Res. 105, 13073–13088 (2000) ADSCrossRefGoogle Scholar
  90. P. Louarn, B. Mauk, D.J. Williams, C. Zimmer, M.G. Kivelson, W.S. Kurth, D.A. Gurnett, A. Roux, A multi-instrument study of a Jovian magnetospheric disturbance. J. Geophys. Res. 106, 29883 (2001) ADSCrossRefGoogle Scholar
  91. P. Louarn et al., Presentation at Magnetosphere of Outer Planets, Athens (2013, in preparation) Google Scholar
  92. A.T.Y. Lui et al., A cross-field current instability for substorm expansions. J. Geophys. Res. 96, 11389 (1991) ADSCrossRefGoogle Scholar
  93. S. Markidis, G. Lapenta, L. Bettarini, M. Goldman, D. Newman, L. Andersson, Kinetic simulations of magnetic reconnection in presence of a background \(\mathrm{O}^{+}\) population. J. Geophys. Res. 116, A00K16 (2011). doi: 10.1029/2011JA016429 ADSCrossRefGoogle Scholar
  94. A. Masters et al., The importance of plasma \(\beta\) conditions for magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 39, L08103 (2012). doi: 10.1029/2012GL051372 ADSCrossRefGoogle Scholar
  95. A. Masters, M. Fujimoto, H. Hasegawa, C.T. Russell, A.J. Coates, M.K. Dougherty, Can magnetopause reconnection drive Saturn’s magnetosphere? Geophys. Res. Lett. 41, 1862–1868 (2014). doi: 10.1002/2014GL059288 ADSCrossRefGoogle Scholar
  96. H.J. McAndrews et al., Evidence for reconnection at Saturn’s magnetopause. J. Geophys. Res. 113(A4), A04210 (2008). doi: 10.1029/2007JA012581 ADSCrossRefGoogle Scholar
  97. D.J. McComas, F. Bagenal, Jupiter: a fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. 34, L20106 (2007). doi: 10.1029/2007GL031078 ADSCrossRefGoogle Scholar
  98. D.J. McComas et al., Diverse plasma populations and structures in Jupiter’s magnetotail. Science 318, 217–220 (2007) ADSCrossRefGoogle Scholar
  99. R.L. McNutt et al., Energetic particles in the Jovian magnetotail. Science 318, 220–222 (2007) ADSCrossRefGoogle Scholar
  100. S.E. Milan, Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval. Geophys. Res. Lett. 36, L18101 (2009). doi: 10.1029/2009GL039997 ADSCrossRefGoogle Scholar
  101. D.G. Mitchell, P.C. Brandt, E.C. Roelof, J. Dandouras, S.M. Krimigis, B.H. Mauk, C.P. Paranicas, N. Krupp, D.C. Hamilton, W.S. Kurth, P. Zarka, M.K. Dougherty, E.J. Bunce, D.E. Shemansky, Energetic ion acceleration in Saturn’s magnetotail: substorms at Saturn? Geophys. Res. Lett. 32, L20S01 (2005) CrossRefGoogle Scholar
  102. D.G. Mitchell, S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, E.C. Roelof, W.S. Kurth, D.A. Gurnett, J.T. Clarke, J.D. Nichols, J.-C. Gérard, D.C. Grodent, M.K. Dougherty, W.R. Pryor, Recurrent energization of plasma in the midnight-to dawn quadrant of Saturn’s magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci. 57, 1732–1742 (2009). doi: 10.1016/j.pss.2009.04.002 ADSCrossRefGoogle Scholar
  103. T. Miyoshi, K. Kusano, A global MHD simulation of the Jovian magnetosphere interacting with/without the interplanetary magnetic field. J. Geophys. Res. 106(A6), 10723–10742 (2001). doi: 10.1029/2000JA900153 ADSCrossRefGoogle Scholar
  104. F.S. Mozer, D. Sundkvist, J.P. McFadden, P.L. Pritchett, I. Roth, Satellite observations of plasma physics near the magnetic field reconnection X line. J. Geophys. Res. 116(A12), A12224 (2011) ADSCrossRefGoogle Scholar
  105. J.D. Nichols, E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, W.R. Pryor, Response of Jupiter’s UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. J. Geophys. Res. 112, A02203 (2007). doi: 10.1029/2006JA012005 ADSGoogle Scholar
  106. A. Nishida, Reconnection in the Jovian magnetosphere. Geophys. Res. Lett. 10, 451–454 (1983) ADSCrossRefGoogle Scholar
  107. T. Ogino, R.J. Walker, M.G. Kivelson, A global magnetohydrodynamic simulation of the Jovian magnetosphere. J. Geophys. Res. 103(A1), 225–235 (1998). doi: 10.1029/97JA02247 ADSCrossRefGoogle Scholar
  108. V. Olshevsky, G. Lapenta, S. Markidis, Energetics of kinetic reconnection in a three-dimensional null-point cluster. Phys. Rev. Lett. 111(4), 045002 (2013) ADSCrossRefGoogle Scholar
  109. T.G. Onsager, M.F. Thomsen, R.C. Elphic, J.T. Gosling, Model of electron and ion distributions in the plasma sheet boundary layer. J. Geophys. Res. 96, 20999–21011 (1991). doi: 10.1029/91JA01983 ADSCrossRefGoogle Scholar
  110. L. Pallier, R. Prangé, More about the structure of the high latitude Jovian aurorae. Planet. Space Sci. 49, 1159 (2001) ADSCrossRefGoogle Scholar
  111. L. Pallier, R. Prangé, Detection of the southern counterpart of the Jovian northern polar cusp: shared properties. Geophys. Res. Lett. 31, L06701 (2004). doi: 10.1029/2003GL018041 ADSCrossRefGoogle Scholar
  112. T.D. Phan, J.F. Drake, M.A. Shay, F.S. Mozer, J.P. Eastwood, Evidence for an elongated (>60 ion skin depths) electron diffusion region during fast reconnection. Phys. Rev. Lett. 99, 255002 (2007). doi: 10.1103/PhysRevLett.99.255002 ADSCrossRefGoogle Scholar
  113. T.-D. Phan et al., The dependence of magnetic reconnection on plasma \(\beta\) and magnetic shear: evidence from solar wind observations. Astrophys. J. Lett. 719, L199–L203 (2010). doi: 10.1088/2041-8205/719/2/L199 ADSCrossRefGoogle Scholar
  114. R. Prangé, P. Zarka, G.E. Ballester, T.A. Livengood, L. Denis, T.D. Carr, F. Reyes, S.J. Bame, H.W. Moos, Correlated variations of UV and radio emissions during an outstanding Jovian auroral event. J. Geophys. Res. 98, 18779–18791 (1993). doi: 10.1029/93JE01802 ADSCrossRefGoogle Scholar
  115. R. Prangé et al., An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature 432, 78–81 (2004) ADSCrossRefGoogle Scholar
  116. E. Priest, T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge University Press, Cambridge, 2007) zbMATHGoogle Scholar
  117. P.L. Pritchett, F.S. Mozer, The magnetic field reconnection site and dissipation region. Phys. Plasmas 16, 080702 (2009). doi: 10.1063/1.3206947 ADSCrossRefGoogle Scholar
  118. W.R. Pryor et al., Cassini UVIS observations of Jupiter’s auroral variability. Icarus 178, 312–326 (2005). doi: 10.1016/j.icarus.2005.05.021 ADSCrossRefGoogle Scholar
  119. K.B. Quest, F.V. Coroniti, Linear theory of tearing in a high-\(\boldsymbol{\beta}\) plasma. J. Geophys. Res. 86(A5), 3299–3305 (1981). doi: 10.1029/JA086iA05p03299 ADSCrossRefGoogle Scholar
  120. A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, J.T. Clarke, Auroral polar dawn spots: signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophys. Res. Lett. 35, L03104 (2008). doi: 10.1029/2007GL032460 ADSCrossRefGoogle Scholar
  121. A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, Auroral signatures of flow bursts released during magnetotail reconnection at Jupiter. J. Geophys. Res. 115, A07214 (2010) ADSCrossRefGoogle Scholar
  122. A. Radioti, D. Grodent, J.-C. Gérard, M.F. Vogt, M. Lystrup, B. Bonfond, Nightside reconnection at Jupiter: auroral and magnetic field observations from 26 July 1998. J. Geophys. Res. 116, A03221 (2011) ADSCrossRefGoogle Scholar
  123. A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, J. Gustin, W. Pryor, J.M. Jasinski, C.S. Arridge, Auroral signatures of multiple magnetopause reconnection at Saturn. Geophys. Res. Lett. 40, 4498–4502 (2013). doi: 10.1002/grl.50889 ADSCrossRefGoogle Scholar
  124. I.G. Richardson, S.W.H. Cowley, E.W. Hones Jr., S.J. Bame, Plasmoid-associated energetic ion bursts in the deep geomagnetic tail: properties of plasmoids and the post-plasmoid plasma sheet. J. Geophys. Res. 92, 9997–10013 (1987). doi: 10.1029/JA092iA09p09997 ADSCrossRefGoogle Scholar
  125. A. Roux, S. Perraut, P. Robert, A. Morane, A. Pedersen, A. Korth, G. Kremser, B. Aparicio, D. Rodgers, R. Pellinen, Plasma sheet instability related to the westward traveling surge. J. Geophys. Res. 96, 17697–17714 (1991) (ISSN 0148-0227), Oct. 1 ADSCrossRefGoogle Scholar
  126. H.O. Rucker et al., Saturn kilometric radiation as a monitor for the solar wind? Adv. Space Res. 42, 40–47 (2008) ADSCrossRefGoogle Scholar
  127. A. Runov, V. Angelopoulos, M.I. Sitnov, V.A. Sergeev, J. Bonnell, J.P. McFadden, D. Larson, K.-H. Glassmeier, U. Auster, THEMIS observations of an earthward-propagating dipolarization front. Geophys. Res. Lett. 36, L14106 (2009). doi: 10.1029/2009GL038980 ADSCrossRefGoogle Scholar
  128. A. Runov, V. Angelopoulos, X.-Z. Zhou, X.-J. Zhang, S. Li, F. Plaschke, J. Bonnell, A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res. 116, A05216 (2011). doi: 10.1029/2010JA016316 ADSCrossRefGoogle Scholar
  129. C.T. Russell, K.K. Khurana, D.E. Huddleston, M.G. Kivelson, Localized reconnection in the near Jovian magnetotail. Science 280, 1061–1064 (1998) ADSCrossRefGoogle Scholar
  130. C.T. Russell, K.K. Khurana, M.G. Kivelson, D.E. Huddleston, Substorms at Jupiter: Galileo observations of transient reconnection in the near tail. Adv. Space Res. 26, 1499–1504 (2000) ADSCrossRefGoogle Scholar
  131. A. Rymer, D.G. Mitchell, T.W. Hill, E.A. Kronberg, N. Krupp, C.M. Jackman, Saturn’s magnetospheric refresh rate. Geophys. Res. Lett. 40, 2479–2483 (2013). doi: 10.1002/grl.50530 ADSCrossRefGoogle Scholar
  132. D.V. Sarafopoulos, E.T. Sarris, V. Angelopoulos, T. Yamamoto, S. Kokubun, Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL. Ann. Geophys. 15, 1246–1256 (1997). doi: 10.1007/s00585-997-1246-0 ADSGoogle Scholar
  133. M. Scholer, D.N. Baker, G. Gloeckler, B. Klecker, F.M. Ipavich, T. Terasawa, B.T. Tsurutani, A.B. Galvin, Energetic particle beams in the plasma sheet boundary layer following substorm expansion: simultaneous near-Earth and distant tail observations. J. Geophys. Res. 91, 4277–4286 (1986). doi: 10.1029/JA091iA04p04277 ADSCrossRefGoogle Scholar
  134. L. Scurry, C.T. Russell, Proxy studies of energy transfer to the magnetosphere. J. Geophys. Res. 96, 9541–9548 (1991). doi: 10.1029/91JA00569 ADSCrossRefGoogle Scholar
  135. V. Sergeev, V. Angelopoulos, S. Apatenkov, J. Bonnell, R. Ergun, R. Nakamura, J. McFadden, D. Larson, A. Runov, Kinetic structure of the sharp injection/dipolarization front in the flow-braking region. Geophys. Res. Lett. 36, L21105 (2009). doi: 10.1029/2009GL040658 ADSCrossRefGoogle Scholar
  136. M.A. Shay, M. Swisdak, Three species collisionless reconnection: effect of \(\mathrm{O}^{+}\) on magnetotail reconnection. Phys. Rev. Lett. 93(17), 175001 (2004) ADSCrossRefGoogle Scholar
  137. E.J. Smith, L. Davis Jr., D.E. Jones, P.J. Coleman Jr., D.S. Colburn, P. Dyal, C.P. Sonett, A.M.A. Frandsen, The planetary magnetic field and magnetosphere of Jupiter: Pioneer 10. J. Geophys. Res. 79, 25 (1974) Google Scholar
  138. D.J. Southwood, M.G. Kivelson, A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. J. Geophys. Res. 106(A4), 6123–6130 (2001) ADSCrossRefGoogle Scholar
  139. M. Swisdak, B.N. Rogers, J.F. Drake, M.A. Shay, Diamagnetic suppression of component magnetic reconnection at the magnetopause. J. Geophys. Res. 108(A5), 1218 (2003). doi: 10.1029/2002JA009726 CrossRefGoogle Scholar
  140. C. Tao, R. Kataoka, H. Fukunishi, Y. Takahashi, T. Yokoyama, Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements. J. Geophys. Res. 110, A11208 (2005). doi: 10.1029/2004JA010959 ADSCrossRefGoogle Scholar
  141. M.F. Thomsen, R.J. Wilson, R.L. Tokar, D.B. Reisenfeld, C.M. Jackman, Cassini/CAPS observations of duskside tail dynamics at Saturn. J. Geophys. Res. (2013). doi: 10.1002/jgra.50552, in press Google Scholar
  142. A. Vaivads, Y. Khotyaintsev, M. Andre, A. Retino, S.C. Buchert, B.N. Rogers, P. Decreau, G. Paschmann, T.D. Phan, Structure of the magnetic reconnection diffusion region from four-spacecraft observations. Phys. Rev. Lett. 93, 105001 (2004) ADSCrossRefGoogle Scholar
  143. A. Vaivads, A. Retino, M. André, Microphysics of magnetospheric reconnection. Space Sci. Rev. 122, 19–27 (2006). doi: 10.1007/s11214-006-7019-3 ADSCrossRefGoogle Scholar
  144. V.M. Vasyliunas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere (1983), pp. 395–453 CrossRefGoogle Scholar
  145. V.M. Vasyliunas, Comparing Jupiter and Saturn: dimensionless input rates from plasma sources within the magnetosphere. Ann. Geophys. 26, 1341–1343 (2008) ADSCrossRefGoogle Scholar
  146. V.M. Vasyliunas, L.A. Frank, K.L. Ackerson, W.R. Paterson, Geometry of the plasma sheet in the midnight-to-dawn sector of the Jovian magnetosphere: plasma observations with the Galileo spacecraft. Geophys. Res. Lett. 24, 869–872 (1997) ADSCrossRefGoogle Scholar
  147. M.F. Vogt, M.G. Kivelson, K.K. Khurana, S.P. Joy, R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. 115, A06219 (2010) ADSGoogle Scholar
  148. M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, B. Bonfond, D. Grodent, A. Radioti, Improved mapping of Jupiter’s auroral features to magnetospheric sources. J. Geophys. Res. 116, A03220 (2011). doi: 10.1029/2010JA016148 ADSCrossRefGoogle Scholar
  149. M.F. Vogt, C.M. Jackman, J.A. Slavin, E.J. Bunce, S.W.H. Cowley, M.G. Kivelson, K.K. Khurana, The structure and statistical properties of plasmoids in Jupiter’s magnetotail. J. Geophys. Res. 119(2), 821–843 (2014). doi: 10.1002/2013JA019393 CrossRefGoogle Scholar
  150. J.H. Waite et al., An auroral flare at Jupiter. Nature 410, 787–789 (2001). doi: 10.1038/35071018 ADSCrossRefGoogle Scholar
  151. R.J. Walker, C.T. Russell, Flux transfer events at the Jovian magnetopause. J. Geophys. Res. 90(A8), 7397–7404 (1985) ADSCrossRefGoogle Scholar
  152. R.J. Walker, T. Ogino, M.G. Kivelson, Magnetohydrodynamic simulations of the effects of the solar wind on the Jovian magnetosphere. Planet. Space Sci. 49, 237–245 (2001) ADSCrossRefGoogle Scholar
  153. D.J. Williams, R.W. McEntire, S. Jaskulek, B. Wilken, The Galileo energetic particles detector. Space Sci. Rev. 60, 385–412 (1992) ADSCrossRefGoogle Scholar
  154. J. Woch, N. Krupp, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Quasi-periodic modulations of the Jovian magnetotail. Geophys. Res. Lett. 25, 1253–1256 (1998) ADSCrossRefGoogle Scholar
  155. J. Woch, N. Krupp, K.K. Khurana, M.G. Kivelson, A. Roux, S. Perraut, P. Louarn, A. Lagg, D.J. Williams, S. Livi, B. Wilken, Plasma sheet dynamics in the Jovian magnetotail: signatures for substorm-like processes? Geophys. Res. Lett. 26, 2137–2140 (1999) ADSCrossRefGoogle Scholar
  156. J. Woch, N. Krupp, A. Lagg, Particle bursts in the Jovian magnetosphere: evidence for a near-Jupiter neutral line. Geophys. Res. Lett. 29, 42 (2002) CrossRefGoogle Scholar
  157. L. Yin, F.V. Coronoti, P.L. Pritchett, L.A. Frank, L.A. Paterson, Kinetic aspects of the Jovian current sheet. J. Geophys. Res. 115(A11), 25345 (2000) ADSCrossRefGoogle Scholar
  158. P. Zarka, Auroral radio emissions at the outer planets: observations and theories. J. Geophys. Res. 103(E9), 20159–20194 (1998). doi: 10.1029/98JE01323 ADSCrossRefGoogle Scholar
  159. B. Zieger, K.C. Hansen, T.I. Gombosi, D.L. De Zeeuw, Periodic plasma escape from the mass-loaded Kronian magnetosphere. J. Geophys. Res. 115, A08208 (2010). doi: 10.1029/2009JA014951 ADSCrossRefGoogle Scholar
  160. G. Zimbardo, Observable implications of tearing-mode instability in Jupiter’s nightside magnetosphere. Planet. Space Sci. 41, 357–361 (1993) ADSCrossRefGoogle Scholar
  161. Q.-G. Zong et al., Cluster observations of earthward flowing plasmoid in the tail. Geophys. Res. Lett. 31, L18803 (2004). doi: 10.1029/2004GL020692 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Philippe Louarn
    • 1
    Email author
  • Nicolas Andre
    • 1
  • Caitriona M. Jackman
    • 2
  • Satoshi Kasahara
    • 3
  • Elena A. Kronberg
    • 4
  • Marissa F. Vogt
    • 5
  1. 1.Institut d’Astrophysique et de Planétologie (IRAP)CNRS/UPSToulouseFrance
  2. 2.University of SouthamptonSouthamptonUK
  3. 3.Institute of Space and Astronautical Science JAXASagamiharaJapan
  4. 4.Max Planck Institute for Solar System ResearchGöttingenGermany
  5. 5.University of LeicesterLeicesterUK

Personalised recommendations