Skip to main content

Membrane Protein Folding and Structure

  • Chapter
  • First Online:
Ion Channels and Transporters of Epithelia in Health and Disease

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1465 Accesses

Abstract

Seminal structural and biochemical studies demonstrated that proteins are organized by specific structural elements and that the information necessary to form these ordered structures is encoded in the polypeptide chain. Questions related to the mechanisms of protein folding for both soluble and transmembrane proteins remain a large field of research utilizing a combination of biochemical, biophysical, genetic, and large-scale computational approaches. Understanding these processes has broad implications for the functional identification of unknown and putative proteins found in sequenced genomes, for the characterization of disease-causing mutations identified in genetic studies, and for rational design and protein engineering efforts to introduce novel biological function. This chapter will outline the basic principles related to transmembrane protein folding and provide an overview of transmembrane protein structure determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers SV, Koning SM, Konings WN, Driessen AJ (2004) Insights into ABC transport in archaea. J Bioenerg Biomembr 36(1):5–15

    Article  CAS  PubMed  Google Scholar 

  • Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323(5922):1718–1722. doi:10.1126/science.1168750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almo SC, Garforth SJ, Hillerich BS, Love JD, Seidel RD, Burley SK (2013) Protein production from the structural genomics perspective: achievements and future needs. Curr Opin Struct Biol 23(3):335–344. doi:10.1016/j.sbi.2013.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambudkar SV, Kim IW, Xia D, Sauna ZE (2006) The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett 580(4):1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(4096):223–230

    Article  CAS  PubMed  Google Scholar 

  • Anfinsen CB, Redfield RR (1956) Protein structure in relation to function and biosynthesis. Adv Protein Chem 48(11):1–100

    Article  Google Scholar 

  • Ataide SF, Schmitz N, Shen K, Ke A, Shan SO, Doudna JA, Ban N (2011) The crystal structure of the signal recognition particle in complex with its receptor. Science 331(6019):881–886. doi:10.1126/science.1196473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baeza-Delgado C, Marti-Renom MA, Mingarro I (2013) Structure-based statistical analysis of transmembrane helices. Eur Biophy J 42(2–3):199–207. doi:10.1007/s00249-012-0813-9

    Article  CAS  Google Scholar 

  • Baker D (2014) Centenary Award and Sir Frederick Gowland Hopkins Memorial Lecture. Protein folding, structure prediction and design. Biochem Soc Trans 42(2):225–229. doi:10.1042/BST20130055

    Article  CAS  PubMed  Google Scholar 

  • Baker D, Sohl JL, Agard DA (1992) A protein-folding reaction under kinetic control. Nature 356(6366):263–265

    Article  CAS  PubMed  Google Scholar 

  • Bianchet MA, Ko YH, Amzel LM, Pedersen PL (1997) Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). J Bioenerg Biomembr 29(5):503–524

    Article  CAS  PubMed  Google Scholar 

  • Bigelow H, Rost B (2009) Online tools for predicting integral membrane proteins. Methods Mol Biol 528:3–23. doi:10.1007/978-1-60327-310-7_1

    Article  CAS  PubMed  Google Scholar 

  • Bornemann T, Jockel J, Rodnina MV, Wintermeyer W (2008) Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat Struct Mol Biol 15(5):494–499. doi:10.1038/nsmb.1402

    Article  CAS  PubMed  Google Scholar 

  • Boutet S, Lomb L, Williams GJ, Barends TR, Aquila A, Doak RB, Weierstall U, DePonte DP, Steinbrener J, Shoeman RL, Messerschmidt M, Barty A, White TA, Kassemeyer S, Kirian RA, Seibert MM, Montanez PA, Kenney C, Herbst R, Hart P, Pines J, Haller G, Gruner SM, Philipp HT, Tate MW, Hromalik M, Koerner LJ, van Bakel N, Morse J, Ghonsalves W, Arnlund D, Bogan MJ, Caleman C, Fromme R, Hampton CY, Hunter MS, Johansson LC, Katona G, Kupitz C, Liang M, Martin AV, Nass K, Redecke L, Stellato F, Timneanu N, Wang D, Zatsepin NA, Schafer D, Defever J, Neutze R, Fromme P, Spence JC, Chapman HN, Schlichting I (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337(6092):362–364. doi:10.1126/science.1217737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bragg L (1956) The diffraction of x-rays. Br J Radiol 29(339):121–126

    Article  CAS  PubMed  Google Scholar 

  • Buchaklian AH, Klug CS (2006) Characterization of the LSGGQ and H motifs from the Escherichia coli lipid A transporter MsbA. Biochemistry 45(41):12539–12546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchegger F, Trowbridge IS, Liu LF, White S, Collawn JF (1996) Functional analysis of human/chicken transferrin receptor chimeras indicates that the carboxy-terminal region is important for ligand binding. Eur J Biochem 235(1–2):9–17

    Article  CAS  PubMed  Google Scholar 

  • Burton BM, Baker TA (2005) Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Protein Sci 14(8):1945–1954. doi:10.1110/ps.051417505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carson MR, Welsh MJ (1995) Structural and functional similarities between the nucleotide-binding domains of CFTR and GTP-binding proteins. Biophys J 69(6):2443–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha JY, Ahn G, Kim JY, Kang SB, Kim MR, Su’udi M, Kim WY, Son D (2013) Structural and functional differences of cytosolic 90-kDa heat-shock proteins (Hsp90s) in Arabidopsis thaliana. Plant Physiol Biochem 70:368–373. doi:10.1016/j.plaphy.2013.05.039

    Article  CAS  PubMed  Google Scholar 

  • Chan HS, Dill KA (1996) A simple model of chaperonin-mediated protein folding. Proteins 24(3):345–351. doi:10.1002/(SICI)1097-0134(199603)24:3<345::AID-PROT7=3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  • Chan HS, Dill KA (1997) Solvation: how to obtain microscopic energies from partitioning and solvation experiments. Annu Rev Biophys Biomol Struct 26:425–459. doi:10.1146/annurev.biophys.26.1.425

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Lu G, Lin J, Davidson AL, Quiocho FA (2003) A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell 12(3):651–661

    Article  CAS  PubMed  Google Scholar 

  • Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O’Riordan CR, Smith AE (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63(4):827–834

    Article  CAS  PubMed  Google Scholar 

  • Crowley KS, Reinhart GD, Johnson AE (1993) The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73(6):1101–1115

    Article  CAS  PubMed  Google Scholar 

  • Crowley KS, Liao S, Worrell VE, Reinhart GD, Johnson AE (1994) Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78(3):461–471

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Hou YX, Riordan JR, Chang XB (2001) Mutations of the Walker B motif in the first nucleotide binding domain of multidrug resistance protein MRP1 prevent conformational maturation. Arch Biochem Biophys 392(1):153–161

    Article  CAS  PubMed  Google Scholar 

  • Davidson AL, Chen J (2004) ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241–268

    Article  CAS  PubMed  Google Scholar 

  • Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443(7108):180–185

    Article  CAS  PubMed  Google Scholar 

  • Dawson RJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581(5):935–938

    Article  CAS  PubMed  Google Scholar 

  • de Marco A, Vigh L, Diamant S, Goloubinoff P (2005) Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones 10(4):329–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11(7):1156–1166

    Article  CAS  PubMed  Google Scholar 

  • Deber CM, Brandl CJ, Deber RB, Hsu LC, Young XK (1986) Amino acid composition of the membrane and aqueous domains of integral membrane proteins. Arch Biochem Biophys 251(1):68–76

    Article  CAS  PubMed  Google Scholar 

  • DeCarvalho AC, Gansheroff LJ, Teem JL (2002) Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator delta f508. J Biol Chem 277(39):35896–35905

    Article  CAS  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. Nature 318(6047):618–624

    Article  CAS  PubMed  Google Scholar 

  • Devaraneni PK, Conti B, Matsumura Y, Yang Z, Johnson AE, Skach WR (2011) Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome-Sec61 translocon complex. Cell 146(1):134–147. doi:10.1016/j.cell.2011.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diederichs K, Diez J, Greller G, Muller C, Breed J, Schnell C, Vonrhein C, Boos W, Welte W (2000) Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J 19(22):5951–5961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. Biochemistry 29(31):7133

    Article  CAS  PubMed  Google Scholar 

  • Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4(1):10–19

    Article  CAS  PubMed  Google Scholar 

  • Dill KA, Fiebig KM, Chan HS (1993) Cooperativity in protein-folding kinetics. Proc Natl Acad Sci USA 90(5):1942–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do H, Falcone D, Lin J, Andrews DW, Johnson AE (1996) The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85(3):369–378

    Article  CAS  PubMed  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890. doi:10.1038/nature02261

    Article  CAS  PubMed  Google Scholar 

  • Drumm ML, Pope HA, Cliff WH, Rommens JM, Marvin SA, Tsui LC, Collins FS, Frizzell RA, Wilson JM (1990) Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62(6):1227–1233

    Article  CAS  PubMed  Google Scholar 

  • Du K, Sharma M, Lukacs GL (2005) The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nat Struct Mol Biol 12(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179(1):125–142

    Article  CAS  PubMed  Google Scholar 

  • Engelman DM, Steitz TA, Goldman A (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem 15:321–353. doi:10.1146/annurev.bb.15.060186.001541

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JJ, Chen JC, Miao Y, Shao Y, Lin J, Bock PE, Johnson AE (2003) Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. J Biol Chem 278(20):18628–18637. doi:10.1074/jbc.M300173200

    Article  CAS  PubMed  Google Scholar 

  • Friedland J, Hastings JW (1967) The reversibility of the denaturation of bacterial luciferase. Biochemistry 6(9):2893–2900

    Article  CAS  PubMed  Google Scholar 

  • Fulop K, Barna L, Symmons O, Zavodszky P, Varadi A (2009) Clustering of disease-causing mutations on the domain-domain interfaces of ABCC6. Biochem Biophys Res Commun 379(3):706–709. doi:10.1016/j.bbrc.2008.12.142

    Article  CAS  PubMed  Google Scholar 

  • Gafvelin G, Sakaguchi M, Andersson H, von Heijne G (1997) Topological rules for membrane protein assembly in eukaryotic cells. J Biol Chem 272(10):6119–6127

    Article  CAS  PubMed  Google Scholar 

  • Glasser O (1945) Half a century of roentgen rays. Proc Rudolf Virchow Med Soc City N Y 4:96–102

    CAS  PubMed  Google Scholar 

  • Gomes CM (2012) Protein misfolding in disease and small molecule therapies. Curr Top Med Chem 12(22):2460–2469

    Article  CAS  PubMed  Google Scholar 

  • Gorlich D, Prehn S, Hartmann E, Herz J, Otto A, Kraft R, Wiedmann M, Knespel S, Dobberstein B, Rapoport TA (1990) The signal sequence receptor has a second subunit and is part of a translocation complex in the endoplasmic reticulum as probed by bifunctional reagents. J Cell Biol 111(6 Pt 1):2283–2294

    Article  CAS  PubMed  Google Scholar 

  • Guerriero CJ, Weiberth KF, Brodsky JL (2013) Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase. J Biol Chem 288(25):18506–18520. doi:10.1074/jbc.M113.475905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann E, Rapoport TA, Lodish HF (1989) Predicting the orientation of eukaryotic membrane-spanning proteins. Proc Natl Acad Sci USA 86(15):5786–5790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Aleksandrov LA, Cui L, Jensen TJ, Nesbitt KL, Riordan JR (2010) Restoration of domain folding and interdomain assembly by second-site suppressors of the DeltaF508 mutation in CFTR. FASEB J 24(8):3103–3112. doi:10.1096/fj.09-141788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho BK, Brasseur R (2005) The Ramachandran plots of glycine and pre-proline. BMC Struct Biol 5:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101(7):789–800

    Article  CAS  PubMed  Google Scholar 

  • Hosen MJ, Zubaer A, Thapa S, Khadka B, De Paepe A, Vanakker OM (2014) Molecular docking simulations provide insights in the substrate binding sites and possible substrates of the ABCC6 transporter. PLoS ONE 9(7), e102779. doi:10.1371/journal.pone.0102779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hung LW, Wang IX, Nikaido K, Liu PQ, Ames GF, Kim SH (1998) Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396(6712):703–707

    Article  CAS  PubMed  Google Scholar 

  • Hunter MS, Fromme P (2011) Toward structure determination using membrane-protein nanocrystals and microcrystals. Methods 55(4):387–404. doi:10.1016/j.ymeth.2011.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansens A, van Duijn E, Braakman I (2002) Coordinated nonvectorial folding in a newly synthesized multidomain protein. Science 298(5602):2401–2403

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Cheng Z, Mandon EC, Gilmore R (2008) An interaction between the SRP receptor and the translocon is critical during cotranslational protein translocation. J Cell Biol 180(6):1149–1161. doi:10.1083/jcb.200707196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490(7421):566–569. doi:10.1038/nature11448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AE, Chen JC, Flanagan JJ, Miao Y, Shao Y, Lin J, Bock PE (2001) Structure, function, and regulation of free and membrane-bound ribosomes: the view from their substrates and products. Cold Spring Harb Symp Quant Biol 66:531–541

    Article  CAS  PubMed  Google Scholar 

  • Karpowich N, Martsinkevich O, Millen L, Yuan YR, Dai PL, MacVey K, Thomas PJ, Hunt JF (2001) Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure 9(7):571–586

    Article  CAS  PubMed  Google Scholar 

  • Karpusas M, Baase WA, Matsumura M, Matthews BW (1989) Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. Proc Natl Acad Sci USA 86(21):8237–8241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keevil GM (1896) The Roentgen rays. Br Med J 1(1833):433–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181(4610):662–666

    Article  CAS  PubMed  Google Scholar 

  • King J, Haase-Pettingell C, Robinson AS, Speed M, Mitraki A (1996) Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB J 10(1):57–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krieg UC, Johnson AE, Walter P (1989) Protein translocation across the endoplasmic reticulum membrane: identification by photocross-linking of a 39-kD integral membrane glycoprotein as part of a putative translocation tunnel. J Cell Biol 109(5):2033–2043

    Article  CAS  PubMed  Google Scholar 

  • Lakkaraju AK, Mary C, Scherrer A, Johnson AE, Strub K (2008) SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell 133(3):440–451. doi:10.1016/j.cell.2008.02.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnert U, Xia Y, Royce TE, Goh CS, Liu Y, Senes A, Yu H, Zhang ZL, Engelman DM, Gerstein M (2004) Computational analysis of membrane proteins: genomic occurrence, structure prediction and helix interactions. Q Rev Biophys 37(2):121–146

    Article  CAS  PubMed  Google Scholar 

  • Levinthal C (1968) Are there pathways for protein folding? J Chim Phys 65:44–45

    Google Scholar 

  • Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas PJ, Zhang M, Zhao X, Emtage S (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23(2):282–293. doi:10.1038/sj.emboj.7600040 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lewis HA, Zhao X, Wang C, Sauder JM, Rooney I, Noland BW, Lorimer D, Kearins MC, Conners K, Condon B, Maloney PC, Guggino WB, Hunt JF, Emtage S (2005) Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J Biol Chem 280(2):1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Liu PQ, Liu CE, Ames GF (1999) Modulation of ATPase activity by physical disengagement of the ATP-binding domains of an ABC transporter, the histidine permease. J Biol Chem 274(26):18310–18318

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Mei Z, Li N, Qi Y, Xu Y, Shi Y, Wang F, Lei J, Gao N (2013a) Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine. J Biol Chem 288(24):17597–17608. doi:10.1074/jbc.M113.458752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wacker D, Gati C, Han GW, James D, Wang D, Nelson G, Weierstall U, Katritch V, Barty A, Zatsepin NA, Li D, Messerschmidt M, Boutet S, Williams GJ, Koglin JE, Seibert MM, Wang C, Shah ST, Basu S, Fromme R, Kupitz C, Rendek KN, Grotjohann I, Fromme P, Kirian RA, Beyerlein KR, White TA, Chapman HN, Caffrey M, Spence JC, Stevens RC, Cherezov V (2013b) Serial femtosecond crystallography of G protein-coupled receptors. Science 342(6165):1521–1524. doi:10.1126/science.1244142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locher KP (2004) Structure and mechanism of ABC transporters. Curr Opin Struct Biol 14(4):426–431

    Article  CAS  PubMed  Google Scholar 

  • Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296(5570):1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2002) The “LSGGQ” motif in each nucleotide-binding domain of human P-glycoprotein is adjacent to the opposing walker A sequence. J Biol Chem 277(44):41303–41306

    Article  CAS  PubMed  Google Scholar 

  • Lukacs GL, Verkman AS (2012) CFTR: folding, misfolding and correcting the DeltaF508 conformational defect. Trends Mol Med 18(2):81–91. doi:10.1016/j.molmed.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  • Lukacs GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13(24):6076–6086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mary C, Scherrer A, Huck L, Lakkaraju AK, Thomas Y, Johnson AE, Strub K (2010) Residues in SRP9/14 essential for elongation arrest activity of the signal recognition particle define a positively charged functional domain on one side of the protein. RNA 16(5):969–979. doi:10.1261/rna.2040410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura M, Becktel WJ, Matthews BW (1988) Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3. Nature 334(6181):406–410

    Article  CAS  PubMed  Google Scholar 

  • McCormick PJ, Miao Y, Shao Y, Lin J, Johnson AE (2003) Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol Cell 12(2):329–341

    Article  CAS  PubMed  Google Scholar 

  • Mehnert M, Sommermeyer F, Berger M, Lakshmipathy SK, Gauss R, Aebi M, Jarosch E, Sommer T (2014) The interplay of Hrd3 and the molecular chaperone system ensures efficient degradation of malfolded secretory proteins. Mol Biol Cell. doi:10.1091/mbc.E14-07-1202

    PubMed  Google Scholar 

  • Mendoza JL, Schmidt A, Li Q, Nuvaga E, Barrett T, Bridges RJ, Feranchak AP, Brautigam CA, Thomas PJ (2012) Requirements for efficient correction of DeltaF508 CFTR revealed by analyses of evolved sequences. Cell 148(1–2):164–174. doi:10.1016/j.cell.2011.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel H (1982) Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 158(3):567–572

    Article  CAS  PubMed  Google Scholar 

  • Moelbert S, Emberly E, Tang C (2004) Correlation between sequence hydrophobicity and surface-exposure pattern of database proteins. Protein Sci 13(3):752–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffat K, Bilderback D, Schildkamp W, Szebenyi D, Teng TY (1989) Laue photography from protein crystals. Basic Life Sci 51:325–330

    CAS  PubMed  Google Scholar 

  • Moller I, Jung M, Beatrix B, Levy R, Kreibich G, Zimmermann R, Wiedmann M, Lauring B (1998) A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes. Proc Natl Acad Sci USA 95(23):13425–13430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moody JE, Millen L, Binns D, Hunt JF, Thomas PJ (2002) Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J Biol Chem 277(24):21111–21114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mus-Veteau I (2010) Heterologous expression of membrane proteins for structural analysis. Methods Mol Biol 601:1–16. doi:10.1007/978-1-60761-344-2_1

    Article  CAS  PubMed  Google Scholar 

  • Nikaido K, Ames GF (1999) One intact ATP-binding subunit is sufficient to support ATP hydrolysis and translocation in an ABC transporter, the histidine permease. J Biol Chem 274(38):26727–26735

    Article  CAS  PubMed  Google Scholar 

  • Nilsson I, Lara P, Hessa T, Johnson AE, von Heijne G, Karamyshev AL (2014) The code for directing proteins for translocation across ER membrane: SRP cotranslationally recognizes specific features of a signal sequence. J Mol Biol. doi:10.1016/j.jmb.2014.06.014

    Google Scholar 

  • Noriega TR, Chen J, Walter P, Puglisi JD (2014) Real-time observation of signal recognition particle binding to actively translating ribosomes. eLife 3.doi:10.7554/eLife.04418

  • Nozaki Y, Tanford C (1971) The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem 246(7):2211–2217

    CAS  PubMed  Google Scholar 

  • Pace CN, Shaw KL (2000) Linear extrapolation method of analyzing solvent denaturation curves. Proteins Suppl 4:1–7

    Article  CAS  PubMed  Google Scholar 

  • Paddon C, Loayza D, Vangelista L, Solari R, Michaelis S (1996) Analysis of the localization of STE6/CFTR chimeras in a Saccharomyces cerevisiae model for the cystic fibrosis defect CFTR delta F508. Mol Microbiol 19(5):1007–1017

    Article  CAS  PubMed  Google Scholar 

  • pdb.org. http://www.pdb.org

  • Pinkett HW, Lee AT, Lum P, Locher KP, Rees DC (2007) An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 315(5810):373–377

    Article  CAS  PubMed  Google Scholar 

  • Pitonzo D, Yang Z, Matsumura Y, Johnson AE, Skach WR (2009) Sequence-specific retention and regulated integration of a nascent membrane protein by the endoplasmic reticulum Sec61 translocon. Mol Biol Cell 20(2):685–698. doi:10.1091/mbc.E08-09-0902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomozi V, Brampton C, Fulop K, Chen LH, Apana A, Li Q, Uitto J, Le Saux O, Varadi A (2014) Analysis of pseudoxanthoma elasticum-causing missense mutants of ABCC6 in vivo; pharmacological correction of the mislocalized proteins. J Invest Dermatol 134(4):946–953. doi:10.1038/jid.2013.482

    Article  CAS  PubMed  Google Scholar 

  • Powis K, Schrul B, Tienson H, Gostimskaya I, Breker M, High S, Schuldiner M, Jakob U, Schwappach B (2013) Get3 is a holdase chaperone and moves to deposition sites for aggregated proteins when membrane targeting is blocked. J Cell Sci 126(Pt 2):473–483. doi:10.1242/jcs.112151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeb J, Kloppmann E, Bernhofer M, Rost B (2014) Evaluation of transmembrane helix predictions in 2014. Proteins. doi:10.1002/prot.24749

    Google Scholar 

  • Religa TL, Markson JS, Mayor U, Freund SM, Fersht AR (2005) Solution structure of a protein denatured state and folding intermediate. Nature 437(7061):1053–1056

    Article  CAS  PubMed  Google Scholar 

  • Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N et al (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245(4922):1059–1065

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum G, Ginell SL, Chen JC (2015) Energy optimization of a regular macromolecular crystallography beamline for ultra-high-resolution crystallography. J Synchrotron Radiat 22(Pt 1):172–174. doi:10.1107/S1600577514022619

    Article  CAS  PubMed  Google Scholar 

  • Rost B, Casadio R, Fariselli P, Sander C (1995) Transmembrane helices predicted at 95% accuracy. Protein Sci 4(3):521–533. doi:10.1002/pro.5560040318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SS, Patra M, Nandy SK, Banik M, Dasgupta R, Basu T (2014) In vitro holdase activity of E. coli small heat-shock proteins IbpA, IbpB and IbpAB: a biophysical study with some unconventional techniques. Protein Pept Lett 21(6):564–571

    Article  CAS  PubMed  Google Scholar 

  • Sadlish H, Pitonzo D, Johnson AE, Skach WR (2005) Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein. Nat Struct Mol Biol 12(10):870–878. doi:10.1038/nsmb994

    Article  CAS  PubMed  Google Scholar 

  • Sanders SL, Schekman R (1992) Polypeptide translocation across the endoplasmic reticulum membrane. J Biol Chem 267(20):13791–13794

    CAS  PubMed  Google Scholar 

  • Schlesinger MJ, Barrett K (1965) The reversible dissociation of the alkaline phosphatase of Escherichia coli. I. Formation and reactivation of subunits. J Biol Chem 240(11):4284–4292

    CAS  PubMed  Google Scholar 

  • Schneider E, Hunke S (1998) ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 22(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569(1–2):29–63. doi:10.1016/j.mrfmmm.2004.06.056

    Article  PubMed  CAS  Google Scholar 

  • Senes A, Ubarretxena-Belandia I, Engelman DM (2001) The Calpha ---H…O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci USA 98(16):9056–9061. doi:10.1073/pnas.161280798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senior AE, Gadsby DC (1997) ATP hydrolysis cycles and mechanism in P-glycoprotein and CFTR. Semin Cancer Biol 8(3):143–150

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Benharouga M, Hu W, Lukacs GL (2001) Conformational and temperature-sensitive stability defects of the delta F508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments. J Biol Chem 276(12):8942–8950

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Christen P, Goloubinoff P (2009) Disaggregating chaperones: an unfolding story. Curr Protein Pept Sci 10(5):432–446

    Article  CAS  PubMed  Google Scholar 

  • Shimamura T, Weyand S, Beckstein O, Rutherford NG, Hadden JM, Sharples D, Sansom MS, Iwata S, Henderson PJ, Cameron AD (2010) Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328(5977):470–473. doi:10.1126/science.1186303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shintre CA, Pike AC, Li Q, Kim JI, Barr AJ, Goubin S, Shrestha L, Yang J, Berridge G, Ross J, Stansfeld PJ, Sansom MS, Edwards AM, Bountra C, Marsden BD, von Delft F, Bullock AN, Gileadi O, Burgess-Brown NA, Carpenter EP (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci USA 110(24):9710–9715. doi:10.1073/pnas.1217042110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skarina T, Xu X, Evdokimova E, Savchenko A (2014) High-throughput crystallization screening. Methods Mol Biol 1140:159–168. doi:10.1007/978-1-4939-0354-2_12

    Article  CAS  PubMed  Google Scholar 

  • Skolnick J, Fetrow JS, Kolinski A (2000) Structural genomics and its importance for gene function analysis. Nat Biotechnol 18(3):283–287. doi:10.1038/73723

    Article  CAS  PubMed  Google Scholar 

  • Slepenkov SV, Witt SN (2002) The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? Mol Microbiol 45(5):1197–1206

    Article  CAS  PubMed  Google Scholar 

  • Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ, Hunt JF (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10(1):139–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song W, Raden D, Mandon EC, Gilmore R (2000) Role of Sec61alpha in the regulated transfer of the ribosome-nascent chain complex from the signal recognition particle to the translocation channel. Cell 100(3):333–343

    Article  CAS  PubMed  Google Scholar 

  • Structure MPoKD. http://blanco.biomol.uci.edu/mpstruc/

  • Sun S, Brem R, Chan HS, Dill KA (1995) Designing amino acid sequences to fold with good hydrophobic cores. Protein Eng 8(12):1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Tamayo AG, Slater L, Taylor-Parker J, Bharti A, Harrison R, Hung DT, Murphy JR (2011) GRP78(BiP) facilitates the cytosolic delivery of anthrax lethal factor (LF) in vivo and functions as an unfoldase in vitro. Mol Microbiol 81(5):1390–1401. doi:10.1111/j.1365-2958.2011.07770.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teem JL, Berger HA, Ostedgaard LS, Rich DP, Tsui LC, Welsh MJ (1993) Identification of revertants for the cystic fibrosis delta F508 mutation using STE6-CFTR chimeras in yeast. Cell 73(2):335–346

    Article  CAS  PubMed  Google Scholar 

  • Teem JL, Carson MR, Welsh MJ (1996) Mutation of R555 in CFTR-delta F508 enhances function and partially corrects defective processing. Receptors Channels 4(1):63–72

    CAS  PubMed  Google Scholar 

  • Thibodeau PH, Brautigam CA, Machius M, Thomas PJ (2005) Side chain and backbone contributions of Phe508 to CFTR folding. Nat Struct Mol Biol 12(1):10–16

    Article  CAS  PubMed  Google Scholar 

  • Thibodeau PH, Richardson JM 3rd, Wang W, Millen L, Watson J, Mendoza JL, Du K, Fischman S, Senderowitz H, Lukacs GL, Kirk K, Thomas PJ (2010) The cystic fibrosis-causing mutation deltaF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis. J Biol Chem 285(46):35825–35835. doi:10.1074/jbc.M110.131623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas PJ, Qu BH, Pedersen PL (1995) Defective protein folding as a basis of human disease. Trends Biochem Sci 20(11):456–459

    Article  CAS  PubMed  Google Scholar 

  • Trowbridge IS, Collawn J, Jing S, White S, Esekogwu V, Stangel M (1991) Structure-function analysis of the human transferrin receptor: effects of anti-receptor monoclonal antibodies on tumor growth. Curr Stud Hematol Blood Transfus 58:139–147

    Article  CAS  Google Scholar 

  • Vendruscolo M, Paci E, Dobson CM, Karplus M (2001) Three key residues form a critical contact network in a protein folding transition state. Nature 409(6820):641–645. doi:10.1038/35054591

    Article  CAS  PubMed  Google Scholar 

  • Vergani P, Lockless SW, Nairn AC, Gadsby DC (2005) CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature 433(7028):876–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7(4):1029–1038. doi:10.1002/pro.5560070420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Dobberstein B (1999) Oligomeric complexes involved in translocation of proteins across the membrane of the endoplasmic reticulum. FEBS Lett 457(3):316–322

    Article  CAS  PubMed  Google Scholar 

  • Wang CC, Tsou CL (1998) Enzymes as chaperones and chaperones as enzymes. FEBS Lett 425(3):382–384

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  CAS  PubMed  Google Scholar 

  • White SH (2009) Biophysical dissection of membrane proteins. Nature 459(7245):344–346. doi:10.1038/nature08142

    Article  CAS  PubMed  Google Scholar 

  • Wilken S, Schmees G, Schneider E (1996) A putative helical domain in the MalK subunit of the ATP-binding-cassette transport system for maltose of Salmonella typhimurium (MalFGK2) is crucial for interaction with MalF and MalG. A study using the LacK protein of Agrobacterium radiobacter as a tool. Mol Microbiol 22(4):655–666

    Article  CAS  PubMed  Google Scholar 

  • Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY, Ma LC, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R, Swapna GV, Tong SN, Wang D, Wang H, Zhao L, Montelione GT, Acton TB (2010) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 172(1):21–33. doi:10.1016/j.jsb.2010.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan YR, Blecker S, Martsinkevich O, Millen L, Thomas PJ, Hunt JF (2001) The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. J Biol Chem 276(34):32313–32321

    Article  CAS  PubMed  Google Scholar 

  • Zacchi LF, Wu HC, Bell SL, Millen L, Paton AW, Paton JC, Thomas PJ, Zolkiewski M, Brodsky JL (2014) The BiP molecular chaperone plays multiple roles during the biogenesis of torsinA, an AAA+ ATPase associated with the neurological disease early-onset torsion dystonia. J Biol Chem 289(18):12727–12747. doi:10.1074/jbc.M113.529123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaitseva J, Jenewein S, Jumpertz T, Holland IB, Schmitt L (2005) H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J 24(11):1901–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Conway JF, Thibodeau PH (2012) Calcium-induced folding and stabilization of the Pseudomonas aeruginosa alkaline protease. J Biol Chem 287(6):4311–4322. doi:10.1074/jbc.M111.310300

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Levin EJ, Pan Y, McCoy JG, Sharma R, Kloss B, Bruni R, Quick M, Zhou M (2014) Structural basis of the alternating-access mechanism in a bile acid transporter. Nature 505(7484):569–573. doi:10.1038/nature12811

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick H. Thibodeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Zhang, L., Thibodeau, P.H. (2016). Membrane Protein Folding and Structure. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_8

Download citation

Publish with us

Policies and ethics