Skip to main content

Physiologic Influences of Transepithelial K+ Secretion

  • Chapter
  • First Online:
Ion Channels and Transporters of Epithelia in Health and Disease

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Cellular ionic balance relies on ion channels and coupled transporters to maintain and use the transmembrane electrochemical gradients of the cations Na+ and K+. High intracellular K+ concentration provides a ready reserve within the body allowing epithelia to secrete K+ into the fluid covering the apical membrane in the service of numerous physiologic activities. A major role for transepithelial K+ secretion concerns the balance of total body K+ such that excretion of excess K+ in the diet safeguards against disturbances to cellular balance. Accomplishing this transepithelial flow involves two archetypical cellular mechanisms, Na+ absorption and Cl secretion. Ion channels for K+, Na+, and Cl, as well as cotransporters, exchangers, and pumps contribute to produce transepithelial flow by coupling electrochemical gradients such that K+ flow enters across the basolateral membrane and exits through the apical membrane. Beyond excretion, transepithelial K+ secretion serves to create the high K+ concentration of endolymph in the inner ear that supports sensation of sound and body orientation. For several epithelia such as those in airways and gastric mucosa, the elevated K+ concentration of apical fluid may occur largely as a consequence of supporting the secretion of other ions such as Clor H+. Less well-appreciated consequences of K+ secretion may result as in saliva and colonic luminal fluid where a high K+ concentration likely influences interactions with the resident microbiome. Independent control of K+ secretion also allows for specific adjustments in rate that serve the physiology of organs large and small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott GW (2012) KCNE2 and the K+ channel: the tail wagging the dog. Channels (Austin) 6:1–10

    Article  CAS  Google Scholar 

  • Agarwal R, Afzalpurkar R, Fordtran JS (1994) Pathophysiology of potassium absorption and secretion by the human intestine. Gastroenterology 107:548–571

    Article  CAS  PubMed  Google Scholar 

  • Almassy J, Won JH, Begenisich TB et al (2012) Apical Ca2+-activated potassium channels in mouse parotid acinar cells. J Gen Physiol 139:121–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen OS, Silveira JE, Steinmetz PR (1985) Intrinsic characteristics of the proton pump in the luminal membrane of a tight urinary epithelium. The relation between transport rate and ΔμH. J Gen Physiol 86:215–234

    Article  CAS  PubMed  Google Scholar 

  • Bachmann O, Juric M, Seidler U et al (2011) Basolateral ion transporters involved in colonic epithelial electrolyte absorption, anion secretion and cellular homeostasis. Acta Physiol (Oxf) 201:33–46

    Article  CAS  Google Scholar 

  • Barmeyer C, Rahner C, Yang Y et al (2010) Cloning and identification of tissue-specific expression of KCNN4 splice variants in rat colon. Am J Physiol Cell Physiol 299:C251–C263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennekou P, Christophersen P (1990) The gating of human red cell Ca2+-activated K+-channels is strongly affected by the permeant cation species. Biochim Biophys Acta 1030:183–187

    Article  CAS  PubMed  Google Scholar 

  • Berliner RW (1961) Renal mechanisms for potassium excretion, vol 55, The Harvey lectures, series. Academic, New York, pp 141–171

    Google Scholar 

  • Bijman J, Quinton PM (1984) Influence of abnormal Cl impermeability on sweating in cystic fibrosis. Am J Physiol Cell Physiol 247:C3–C9

    CAS  Google Scholar 

  • Blaug S, Rymer J, Jalickee S et al (2003) P2 purinoceptors regulate calcium-activated chloride and fluid transport in 31EG4 mammary epithelia. Am J Physiol Cell Physiol 284:C897–C909

    Article  CAS  PubMed  Google Scholar 

  • Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286

    Article  PubMed  CAS  Google Scholar 

  • Brusilow SW, Ikai K, Gordes E (1968) Comparative physiological aspects of solute secretion by the eccrine sweat gland of the rat. Proc Soc Exp Biol Med 129:731–732

    Article  CAS  PubMed  Google Scholar 

  • Butterworth MB, Edinger RS, Frizzell RA et al (2009) Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 296:F10–F24

    Article  CAS  PubMed  Google Scholar 

  • Carew MA, Thorn P (2000) Carbachol-stimulated Cl secretion in mouse colon: evidence of a role for autocrine prostaglandin-E2 release. Exp Physiol 85:67–72

    Article  CAS  PubMed  Google Scholar 

  • Carpenter GH (2013) The secretion, components, and properties of saliva. Annu Rev Food Sci Technol 4:267–276

    Article  CAS  PubMed  Google Scholar 

  • Carrisoza-Gaytán R, Salvador C, Satlin LM et al (2010) Potassium secretion by voltage-gated potassium channel Kv1.3 in the rat kidney. Am J Physiol Renal Physiol 299:F255–F264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Casslén B, Nilsson B (1984) Human uterine fluid, examined in undiluted samples for osmolarity and the concentrations of inorganic ions, albumin, glucose, and urea. Am J Obstet Gynecol 150:877–881

    Article  PubMed  Google Scholar 

  • Catalán M, Cornejo I, Figueroa CD et al (2002) CLC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization. Am J Physiol Gastrointest Liver Physiol 283:G1004–G1013

    Article  PubMed  Google Scholar 

  • Christophersen P (1991) Ca2+-activated K+ channel from human erythrocyte membranes: single channel rectification and selectivity. J Membr Biol 119:75–83

    Article  CAS  PubMed  Google Scholar 

  • Clarke LL, Chinet T, Boucher RC (1997) Extracellular ATP stimulates K+ secretion across cultured human airway epithelium. Am J Physiol Lung Cell Mol Physiol 272:L1084–L1091

    CAS  Google Scholar 

  • Clausen C, Lewis SA, Diamond JM (1979) Impedance analysis of a tight epithelium using a distributed resistance model. Biophys J 26:291–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Codina J, Pressley TA, DuBose TD Jr (1999) The colonic H+, K + -ATPase functions as a Na + -dependent K+(NH4+)-ATPase in apical membranes from rat distal colon. J Biol Chem 274:19693–19698

    Article  CAS  PubMed  Google Scholar 

  • Cook DI, Young JA (1989) Effect of K+ channels in the apical plasma membrane on epithelial secretion based on secondary active Cl transport. J Membr Biol 110:139–146

    Article  CAS  PubMed  Google Scholar 

  • Cougnon M, Bouyer P, Jaisser F et al (1999) Ammonium transport by the colonic H+-K+-ATPase expressed in Xenopus oocytes. Am J Physiol Cell Physiol 277:C280–C287

    CAS  Google Scholar 

  • Crambert G (2014) H-K-ATPase type 2: relevance for renal physiology and beyond. Am J Physiol Renal Physiol 306:F693–F700

    Article  CAS  PubMed  Google Scholar 

  • Crane RK (1965) Na+-dependent transport in the intestine and other animal tissues. Fed Proc 24:1000–1006

    CAS  PubMed  Google Scholar 

  • Crowson MS, Shull GE (1992) Isolation and characterization of a cDNA encoding the putative distal colon H, K-ATPase. Similarity of deduced amino acid sequence to gastric H+, K + -ATPase and Na+, K + -ATPase and mRNA expression in distal colon, kidney, and uterus. J Biol Chem 267:13740–13748

    CAS  PubMed  Google Scholar 

  • Dauner K, Lissmann J, Jeridi S et al (2012) Expression patterns of anoctamin 1 and anoctamin 2 chloride channels in the mammalian nose. Cell Tissue Res 347:327–341

    Article  CAS  PubMed  Google Scholar 

  • Davila AM, Blachier F, Gotteland M et al (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 68:95–107

    Article  CAS  PubMed  Google Scholar 

  • Dawson DC, Frizzell RA (1989) Mechanism of active K+ secretion by flounder urinary bladder. Pflugers Arch 414:393–400

    Article  CAS  PubMed  Google Scholar 

  • Dawson DC, Richards NW (1990) Basolateral K+ conductance: role in regulation of Na+Cl absorption and secretion. Am J Physiol Cell Physiol 259:C181–C195

    CAS  Google Scholar 

  • Duta V, Duta F, Puttagunta L et al (2006) Regulation of basolateral Cl channels in airway epithelial cells: the role of nitric oxide. J Membr Biol 213:165–174

    Article  PubMed  CAS  Google Scholar 

  • Edmonds CJ (1981) Amiloride sensitivity of the transepithelial electrical potential and of sodium and potassium transport in rat distal colon in vivo. J Physiol 313:547–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenman G, Latorre R, Miller C (1986) Multi-ion conduction and selectivity in the high-conductance Ca2+-activated K+ channel from skeletal muscle. Biophys J 50:1025–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellison DH, Velázquez H, Wright FS (1987) Mechanisms of sodium, potassium and chloride transport by the renal distal tubule. Miner Electrolyte Metab 13:422–432

    CAS  PubMed  Google Scholar 

  • Epstein W, Schultz SG (1965) Cation transport in Escherichia coli: V. Regulation of cation content. J Gen Physiol 49:221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst SA, Mills JW (1977) Basolateral plasma membrane localization of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland. J Cell Biol 75:74–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estilo G, Liu W, Pastor-Soler N et al (2008) Effect of aldosterone on BK channel expression in mammalian cortical collecting duct. Am J Physiol Renal Physiol 295:F780–F788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan S, Harfoot N, Bartolo RC et al (2012) CFTR is restricted to a small population of high expresser cells that provide a forskolin-sensitive transepithelial Cl conductance in the proximal colon of the possum, Trichosurus vulpecula. J Exp Biol 215:1218–1230

    Article  CAS  PubMed  Google Scholar 

  • Field M (1993) Intestinal electrolyte secretion. History of a paradigm. Arch Surg 128:273–278

    Article  CAS  PubMed  Google Scholar 

  • Fischer H, Illek B, Finkbeiner WE et al (2007) Basolateral Cl channels in primary airway epithelial cultures. Am J Physiol Lung Cell Mol Physiol 292:L1432–L1443

    Article  CAS  PubMed  Google Scholar 

  • Forte JG, Zhu L (2010) Apical recycling of the gastric parietal cell H+, K + -ATPase. Annu Rev Physiol 72:273–296

    Article  CAS  PubMed  Google Scholar 

  • Foster ES, Hayslett JP, Binder HJ (1984) Mechanism of active potassium absorption and secretion in the rat colon. Am J Physiol Gastrointest Liver Physiol 246:G611–G617

    CAS  Google Scholar 

  • Frizzell RA, Hanrahan JW (2012) Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2(6):a009563. doi:10.1101/cshperspect.a009563

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frizzell RA, Koch MJ, Schultz SG (1976) Ion transport by rabbit colon. I. Active and passive components. J Membr Biol 27:297–316

    Article  CAS  PubMed  Google Scholar 

  • Frizzell RA, Field M, Schultz SG (1979) Sodium-coupled chloride transport by epithelial tissues. Am J Physiol Renal Physiol 236:F1–F8

    CAS  Google Scholar 

  • Frizzell RA, Halm DR, Krasny EJ Jr (1983) Active secretion of chloride and potassium across the large intestine. In: Skadhauge E, Heintze K (eds) Intestinal absorption and secretion, Falk symposium 36. MTP Press Ltd, Boston, pp 313–324

    Google Scholar 

  • Frizzell RA, Halm DR, Musch MW et al (1984) Potassium transport by flounder intestinal mucosa. Am J Physiol Renal Physiol 246:F946–F951

    CAS  Google Scholar 

  • Frömter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nat New Biol 235:9–13

    Article  PubMed  Google Scholar 

  • Furukawa F, Watanabe S, Kimura S et al (2012) Potassium excretion through ROMK potassium channel expressed in gill mitochondrion-rich cells of Mozambique tilapia. Am J Physiol Regul Integr Comp Physiol 302:R568–R576

    Article  CAS  PubMed  Google Scholar 

  • Furuse M (2010) Claudins, tight junctions, and the paracellular barrier. In: Yu ASL (ed) Claudins, vol 65, Current topics in membranes. Elsevier, Boston, pp 1–19

    Google Scholar 

  • Gamba G (2013) Physiology and pathophysiology of the Na+Cl co-transporters in the kidney. In: Alpern RJ, Moe OW, Caplan M (eds) Seldin and Giebisch’s the kidney: physiology and pathophysiology, 5th edn. Elsevier, Boston, pp 1047–1080

    Chapter  Google Scholar 

  • Gamba G, Saltzberg SN, Lombardi M et al (1993) Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci USA 90:2749–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamba G, Wang W, Schild L (2013) Sodium chloride transport in the loop of Henle, distal convoluted tubule, and collecting duct. In: Alpern RJ, Moe OW, Caplan M (eds) Seldin and Giebisch’s the kidney: physiology and pathophysiology, 5th edn. Elsevier, Boston, pp 1143–1179

    Chapter  Google Scholar 

  • Giebisch G, Klose RM, Malnic G (1967) Renal tubular potassium transport. Bull Schweiz Akad Med Wiss 23:287–312

    CAS  PubMed  Google Scholar 

  • Giménez I, Isenring P, Forbush B (2002) Spatially distributed alternative splice variants of the renal Na+-K+-Cl cotransporter exhibit dramatically different affinities for the transported ions. J Biol Chem 277:8767–8770

    Article  PubMed  CAS  Google Scholar 

  • González C, Baez-Nieto D, Valencia I et al (2012) K+ channels: function-structural overview. Compr Physiol 2:2087–2149

    PubMed  Google Scholar 

  • Grahammer F, Herling AW, Lang HJ et al (2001) The cardiac K+ channel KCNQ1 is essential for gastric acid secretion. Gastroenterology 120:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Grimm PR, Foutz RM, Brenner R et al (2007) Identification and localization of BK-β subunits in the distal nephron of the mouse kidney. Am J Physiol Renal Physiol 293:F350–F359

    Article  CAS  PubMed  Google Scholar 

  • Grotjohann I, Gitter AH, Köckerling A et al (1998) Localization of cAMP- and aldosterone-induced K+ secretion in rat distal colon by conductance scanning. J Physiol 507:561–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubb BR, Rogers TD, Boucher RC et al (2009) Ion transport across CF and normal murine olfactory and ciliated epithelium. Am J Physiol Cell Physiol 296:C1301–C1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumz ML, Lynch IJ, Greenlee MM et al (2010) The renal H+-K+-ATPases: physiology, regulation, and structure. Am J Physiol Renal Physiol 298:F12–F21

    Article  CAS  PubMed  Google Scholar 

  • Gutman GA, Chandy KG, Adelman JP et al (2003) International union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharm Rev 55:583–586

    Article  CAS  PubMed  Google Scholar 

  • Halm DR, Dawson DC (1983) Cation activation of the basolateral sodium-potassium pump in turtle colon. J Gen Physiol 82:315–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halm DR, Dawson DC (1984) Control of potassium transport by turtle colon: role of membrane potential. Am J Physiol Cell Physiol 247:C26–C32

    CAS  Google Scholar 

  • Halm DR, Frizzell RA (1986) Active K+ transport across rabbit distal colon: relation to Na+ absorption and Cl secretion. Am J Physiol Cell Physiol 251:C252–C267

    CAS  Google Scholar 

  • Halm DR, Frizzell RA (1991) Ion transport across the large intestine. In: Field M, Frizzell RA (eds) Intestinal absorption and secretion. Schultz SG (ed) The gastrointestinal system. Rauner BB (ed) Handbook of physiology, Sect 6, vol IV, Chap 8. American Physiological Society, Bethesda, pp 257–273

    Google Scholar 

  • Halm DR, Halm ST (1994) Aldosterone stimulates K+ secretion prior to onset of Na+ absorption in guinea pig distal colon. Am J Physiol Cell Physiol 266:C552–C558

    CAS  Google Scholar 

  • Halm DR, Halm ST (2001) Prostanoids stimulate K+ secretion and Cl secretion in guinea pig distal colon via distinct pathways. Am J Physiol Gastrointest Liver Physiol 281:G984–G996

    CAS  PubMed  Google Scholar 

  • Halm DR, Rick R (1992) Secretion of K+ and Cl across colonic epithelium: cellular localization using electron microprobe analysis. Am J Physiol Cell Physiol 262:C1392–C1402

    CAS  Google Scholar 

  • Halm DR, Krasny EJ Jr, Frizzell RA (1985) Electrophysiology of flounder intestinal mucosa. II. Relation of the electrical potential profile to coupled NaCl absorption. J Gen Physiol 85:865–883

    Article  CAS  PubMed  Google Scholar 

  • Halm ST, Zhang J, Halm DR (2010) β-adrenergic activation of K+ and Cl secretion in guinea pig distal colonic epithelium proceeds via separate cAMP signaling pathways. Am J Physiol Gastrointest Liver Physiol 299:G81–G95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Häse CC, Barquera B (2001) Role of sodium bioenergetics in Vibrio cholerae. Biochim Biophys Acta 1505:169–178

    Article  PubMed  Google Scholar 

  • Häse CC, Fedorova ND, Galperin MY et al (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65:353–370

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi M, Novak I (2013) Molecular basis of potassium channels in pancreatic duct epithelial cells. Channels (Austin) 7:432–441

    Article  CAS  Google Scholar 

  • Hazard LC (2001) Ion secretion by salt glands of desert iguanas (Dipsosaurus dorsalis). Physiol Biochem Zool 74:22–31

    Article  CAS  PubMed  Google Scholar 

  • He Q, Halm ST, Zhang J et al (2011) Activation of the basolateral membrane Cl conductance essential for electrogenic K+ secretion suppresses electrogenic Cl secretion. Exp Physiol 96:305–316

    Article  CAS  PubMed  Google Scholar 

  • Hegg CC, Irwin M, Lucero MT (2009) Calcium store-mediated signaling in sustentacular cells of the mouse olfactory epithelium. Glia 57:634–644

    Article  PubMed  PubMed Central  Google Scholar 

  • Heginbotham L, MacKinnon R (1993) Conduction properties of the cloned Shaker K+ channel. Biophys J 65:2089–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heitzmann D, Warth R (2007) No potassium, no acid: K+ channels and gastric acid secretion. Physiology (Bethesda) 22:335–341

    Article  CAS  Google Scholar 

  • Heitzmann D, Warth R (2008) Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 88:1119–1182

    Article  CAS  PubMed  Google Scholar 

  • Heitzmann D, Grahammer F, von Hahn T et al (2004) Heteromeric KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal cells. J Physiol 561:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibino H, Kurachi Y (2006) Molecular and physiological bases of the K+ circulation in the mammalian inner ear. Physiology (Bethesda) 21:336–345

    Article  CAS  Google Scholar 

  • Holtzclaw JD, Grimm PR, Sansom SC (2011) Role of BK channels in hypertension and potassium secretion. Curr Opin Nephrol Hypertens 20:512–517

    Article  CAS  PubMed  Google Scholar 

  • Hosoda Y, Karaki S, Shimoda Y et al (2002) Substance P-evoked Cl secretion in guinea pig distal colonic epithelia: interaction with PGE2. Am J Physiol Gastrointest Liver Physiol 283:G347–G356

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Wong X, Jan LY (2012) International union of basic and clinical pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol Rev 64:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson RL, Schultz SG (1984) Sodium-coupled sugar transport: effects on intracellular sodium activities and sodium-pump activity. Science 224:1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Iritani A, Sato E, Nishikawa Y (1974) Secretion rates and chemical composition of oviduct and uterine fluids in sows. J Anim Sci 39:582–588

    Article  CAS  PubMed  Google Scholar 

  • Jakab RL, Collaco AM, Ameen NA (2013) Characterization of CFTR high expresser cells in the intestine. Am J Physiol Gastrointest Liver Physiol 305:G453–G465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joiner WJ, Basavappa S, Vidyasagar S et al (2003) Active K+ secretion through multiple KCa-type channels and regulation by IKCa channels in rat proximal colon. Am J Physiol Gastrointest Liver Physiol 285:G185–G196

    Article  CAS  PubMed  Google Scholar 

  • Joris L, Dab I, Quinton PM (1993) Elemental composition of human airway surface fluid in healthy and diseased airways. Am Rev Respir Dis 148:1633–1637

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Ma L, Jensen KL et al (2012) Paradoxical contribution of SK3 and GIRK channels to the activation of mouse vomeronasal organ. Nat Neurosci 15:1236–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinne R, Kinne-Saffran E, Schütz H et al (1986) Ammonium transport in medullary thick ascending limb of rabbit kidney: involvement of the Na+, K+, Cl − -cotransporter. J Membr Biol 94:279–284

    Article  CAS  PubMed  Google Scholar 

  • Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeog Palaeoclim Palaeoecol 219:53–69

    Article  Google Scholar 

  • Knowles MR, Robinson JM, Wood RE et al (1997) Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects. J Clin Invest 100:2588–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köckerling A, Fromm M (1993) Origin of cAMP-dependent Cl secretion from both crypts and surface epithelia of rat intestine. Am J Physiol Cell Physiol 264:C1294–C1301

    Google Scholar 

  • Köckerling A, Sorgenfrei D, Fromm M (1993) Electrogenic Na+ absorption of rat distal colon is confined to surface epithelium: a voltage-scanning study. Am J Physiol Cell Physiol 264:C1285–C1293

    Google Scholar 

  • Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308

    Article  CAS  PubMed  Google Scholar 

  • Koeppen BM, Giebisch GH (1985) Mineralocorticoid regulation of sodium and potassium transport by the cortical collecting duct. In: Graves S (ed) Regulation and development of membrane transport processes, vol 39, Society of general physiologists series. Wiley, New York, pp 89–104

    Google Scholar 

  • Kopic S, Murek M, Geibel JP (2010) Revisiting the parietal cell. Am J Physiol Cell Physiol 298:C1–C10

    Article  CAS  PubMed  Google Scholar 

  • Kriz W, Kaissling B (2013) Structural organization of the mammalian kidney. In: Alpern RJ, Moe OW, Caplan M (eds) Seldin and Giebisch’s the kidney: physiology and pathophysiology, 5th edn. Elsevier, Boston, pp 595–691

    Chapter  Google Scholar 

  • Lambrecht NW, Yakubov I, Scott D et al (2005) Identification of the K+ efflux channel coupled to the gastric H+-K+-ATPase during acid secretion. Physiol Genomics 21:81–91

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH (2011) Reconciling the Krogh and Ussing interpretations of epithelial chloride transport - presenting a novel hypothesis for the physiological significance of the passive cellular chloride uptake. Acta Physiol (Oxf) 202:435–464

    Article  CAS  Google Scholar 

  • Larsen EH, Ramløv H (2013) Role of cutaneous surface fluid in frog osmoregulation. Comp Biochem Physiol A Mol Integr Physiol 165:365–370

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Maniak PJ, Ingbar DH et al (2003) Adult alveolar epithelial cells express multiple subtypes of voltage-gated K+ channels that are located in apical membrane. Am J Physiol Cell Physiol 284:C1614–C1624

    Article  CAS  PubMed  Google Scholar 

  • Lee FN, Oh G, McDonough AA et al (2007) Evidence for gut factor in K+ homeostasis. Am J Physiol Renal Physiol 293:F541–F547

    Article  CAS  PubMed  Google Scholar 

  • Lewis SA, Clausen C, Wills NK (1996) Impedance analysis of epithelia. In: Wills NK, Reuss L, Lewis SA (eds) Epithelial transport: a guide to methods and experimental analysis. Chapman & Hall, New York, pp 118–145

    Chapter  Google Scholar 

  • Li Y, Halm DR (2002) Secretory modulation of basolateral membrane inwardly rectified K+ channel in guinea pig distal colonic crypts. Am J Physiol Cell Physiol 282:C719–C735

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Halm ST, Halm DR (2003) Secretory activation of basolateral membrane Cl channels in guinea pig distal colonic crypts. Am J Physiol Cell Physiol 284:C918–C933

    Article  CAS  PubMed  Google Scholar 

  • Liao T, Wang L, Halm ST et al (2005) The K+ channel KVLQT (Kcnq1) located in the basolateral membrane of distal colonic epithelium is not essential for activating Cl secretion. Am J Physiol Cell Physiol 289:C564–C575

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Schreck C, Coleman RA et al (2011) Role of NKCC in BK channel-mediated net K+ secretion in the CCD. Am J Physiol Renal Physiol 301:F1088–F1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucero MT (2013) Peripheral modulation of smell: fact or fiction? Semin Cell Dev Biol 24:58–70

    Article  PubMed  Google Scholar 

  • Malnic G, Giebisch G, Muto S et al (2013) Regulation of K+ excretion. In: Alpern RJ, Moe OW, Caplan M (eds) Seldin and Giebisch’s the kidney: physiology and pathophysiology, 5th edn. Elsevier, Boston, pp 1659–1715

    Chapter  Google Scholar 

  • Mangos JA, McSherry NR, Nousia-Arvanitakis S et al (1973) Secretion and transductal fluxes of ions in exocrine glands of the mouse. Am J Physiol 225:18–24

    CAS  PubMed  Google Scholar 

  • Manzanares D, Gonzalez C, Ivonnet P et al (2011) Functional apical large conductance, Ca2+-activated, and voltage-dependent K+ channels are required for maintenance of airway surface liquid volume. J Biol Chem 286:19830–19839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcus DC, Wangemann P (2009) Cochlear and vestibular function and dysfunction. In: Alvarez-Leefmans FJ, Delpire E (eds) Physiology and pathology of chloride transporters and channels in the nervous system – from molecules to diseases. Elsevier, Boston, pp 425–437

    Google Scholar 

  • McCabe RD, Smith PL, Sullivan LP (1984) Ion transport by rabbit descending colon: mechanisms of transepithelial potassium transport. Am J Physiol Gastrointest Liver Physiol 246:G594–G602

    CAS  Google Scholar 

  • Meneton P, Schultheis PJ, Greeb J et al (1998) Increased sensitivity to K+ deprivation in colonic H+, K + -ATPase-deficient mice. J Clin Invest 101:536–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merigo F, Mucignat-Caretta C, Cristofoletti M et al (2011) Epithelial membrane transporters expression in the developing to adult mouse vomeronasal organ and olfactory mucosa. Dev Neurobiol 71:854–869

    Article  CAS  PubMed  Google Scholar 

  • Mignen O, Egee S, Liberge M et al (2000) Basolateral outward rectifier chloride channel in isolated crypts of mouse colon. Am J Physiol Gastrointest Liver Physiol 279:G277–G287

    CAS  PubMed  Google Scholar 

  • Moser SL, Harron SA, Crack J et al (2008) Multiple KCNQ potassium channel subtypes mediate basal anion secretion from the human airway epithelial cell line Calu-3. J Membr Biol 221:153–163

    Article  CAS  PubMed  Google Scholar 

  • Musch MW, Orellana SA, Kimberg LS et al (1982) Na+-K+-Cl co-transport in the intestine of a marine teleost. Nature 300:351–353

    Article  CAS  PubMed  Google Scholar 

  • Musch MW, McConnell FM, Goldstein L et al (1987) Tyrosine transport in winter flounder intestine: interaction with Na+-K+-2Cl cotransport. Am J Physiol Regul Integr Comp Physiol 253:R264–R269

    CAS  Google Scholar 

  • Nakamoto T, Romanenko VG, Takahashi A et al (2008) Apical maxi-K (KCa1.1) channels mediate K+ secretion by the mouse submandibular exocrine gland. Am J Physiol Cell Physiol 294:C810–C819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Amlal H, Galla JH et al (1999) NH4 + secretion in inner medullary collecting duct in potassium deprivation: role of colonic H+-K+-ATPase. Kidney Int 56:2160–2167

    Article  CAS  PubMed  Google Scholar 

  • Namkung W, Song Y, Mills AD et al (2009) In situ measurement of airway surface liquid [K+] using a ratioable K+-sensitive fluorescent dye. J Biol Chem 284:15916–15926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda Kumar NS, Singh SK, Rajendran VM (2010) Mucosal potassium efflux mediated via Kcnn4 channels provides the driving force for electrogenic anion secretion in colon. Am J Physiol Gastrointest Liver Physiol 299:G707–G714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen N, Kozer-Gorevich N, Gliddon BL et al (2013) Independent trafficking of the KCNQ1 K+ channel and H+-K+-ATPase in gastric parietal cells from mice. Am J Physiol Gastrointest Liver Physiol 304:G157–G166

    Article  CAS  PubMed  Google Scholar 

  • Nielson DW (1986) Electrolyte composition of pulmonary alveolar subphase in anesthetized rabbits. J Appl Physiol 60:972–979

    CAS  PubMed  Google Scholar 

  • O’Grady SM, Lee SY (2003) Chloride and potassium channel function in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 284:L689–L700

    Article  PubMed  Google Scholar 

  • O’Grady SM, Lee SY (2005) Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells. Int J Biochem Cell Biol 37:1578–1594

    Article  PubMed  CAS  Google Scholar 

  • Oh KS, Oh YT, Kim SW et al (2011) Gut sensing of dietary K+ intake increases renal K+ excretion. Am J Physiol Regul Integr Comp Physiol 301:R421–R429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neil RG, Helman SI (1977) Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am J Physiol Renal Physiol 233:F544–F558

    Google Scholar 

  • Palk L, Sneyd J, Shuttleworth TJ et al (2010) A dynamic model of saliva secretion. J Theor Biol 266:625–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer ML, Schiller KR, O’Grady SM (2008) Apical SK potassium channels and Ca2+-dependent anion secretion in endometrial epithelial cells. J Physiol 586:717–726

    Article  CAS  PubMed  Google Scholar 

  • Palmer ML, Peitzman ER, Maniak PJ et al (2011) KCa3.1 channels facilitate K+ secretion or Na+ absorption depending on apical or basolateral P2Y receptor stimulation. J Physiol 589:3483–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinti DL (2005) The origin and evolution of the oceans. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology, vol 1, Advances in astrobiology and biogeophysics. Springer, Berlin, pp 83–112

    Chapter  Google Scholar 

  • Pongs O, Schwarz JR (2010) Ancillary subunits associated with voltage-dependent K+ channels. Physiol Rev 90:755–796

    Article  CAS  PubMed  Google Scholar 

  • Preidis GA, Versalovic J (2009) Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 136:2015–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quatrale RP, Laden K (1968) Solute and water secretion by the eccrine sweat glands of the rat. J Invest Dermatol 51:502–504

    Article  CAS  PubMed  Google Scholar 

  • Quinton PM, Elder HY, Jenkinson DM et al (1999) Structure and function of human sweat glands. In: Laden K (ed) Antiperspirants and deodorants, 2nd edn. Marcel Dekker, New York, pp 17–57

    Google Scholar 

  • Rakowski RF, Paxson CL (1988) Voltage dependence of Na+/K+ pump current in Xenopus oocytes. J Membr Biol 106:173–182

    Article  CAS  PubMed  Google Scholar 

  • Rakowski RF, Gadsby DC, De Weer P (1989) Stoichiometry and voltage dependence of the sodium pump in voltage-clamped, internally dialyzed squid giant axon. J Gen Physiol 93:903–941

    Article  CAS  PubMed  Google Scholar 

  • Rechkemmer G, Halm DR (1989) Aldosterone stimulates K+ secretion across mammalian colon independent of Na+ absorption. Proc Natl Acad Sci USA 86:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rechkemmer G, von Engelhardt W (1993) Absorption and secretion of electrolytes and short-chain fatty acids in the guinea pig large intestine. In: Clauss W (ed) Ion transport in vertebrate colon, vol 16, Advances in comparative and environmental physiology. Springer, New York, pp 139–167

    Chapter  Google Scholar 

  • Rechkemmer G, Frizzell RA, Halm DR (1996) Active K+ transport across guinea pig distal colon: action of secretagogues. J Physiol 493:485–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter D, Zierold K, Schröder WH et al (1998) A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons in situ. J Neurosci 18:6623–6630

    CAS  PubMed  Google Scholar 

  • Sabolić I, Herak-Kramberger CM, Breton S et al (1999) Na+/K+-ATPase in intercalated cells along the rat nephron revealed by antigen retrieval. J Am Soc Nephrol 10:913–922

    PubMed  Google Scholar 

  • Sackin H, Palmer LG (2013) Electrophysiological analysis of transepithelial transport. In: Alpern RJ, Moe OW, Caplan M (eds) Seldin and Giebisch’s the kidney: physiology and pathophysiology, 5th edn. Elsevier, Boston, pp 177–216

    Chapter  Google Scholar 

  • Sandle GI, Hunter M (2010) Apical potassium (BK) channels and enhanced potassium secretion in human colon. Q J Med 103:85–89

    Article  CAS  Google Scholar 

  • Sansom SC, O’Neil RG (1985) Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am J Physiol Renal Physiol 248:F858–F868

    CAS  Google Scholar 

  • Sansom SC, O’Neil RG (1986) Effects of mineralocorticoids on transport properties of cortical collecting duct basolateral membrane. Am J Physiol Renal Physiol 251:F743–F757

    CAS  Google Scholar 

  • Satlin LM, Carattino MD, Liu W et al (2006) Regulation of cation transport in the distal nephron by mechanical forces. Am J Physiol Renal Physiol 291:F923–F931

    Article  CAS  PubMed  Google Scholar 

  • Sato K (1980) Electrochemical driving forces for K+ secretion by rat paw eccrine sweat gland. Am J Physiol Cell Physiol 239:C90–C97

    CAS  Google Scholar 

  • Sato K (2001) The mechanism of eccrine sweat secretion. In: Gisolfi CV, Lamb DR, Nadel ER (eds) Exercise, heat, and thermoregulation, vol 6, Perspectives in exercise science and sports medicine. Cooper Publishing Group, Traverse City MI, pp 85–117

    Google Scholar 

  • Sato F, Sato K (1978) Secretion of a potassium-rich fluid by the secretory coil of the rat paw eccrine sweat gland. J Physiol 274:37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Sato F (1990) Na+, K+, H+, Cl, and Ca2+ concentrations in cystic fibrosis eccrine sweat in vivo and in vitro. J Lab Clin Med 115:504–511

    CAS  PubMed  Google Scholar 

  • Sato K, Cavallin S, Sato KT et al (1994) Secretion of ions and pharmacological responsiveness in the mouse paw sweat gland. Clin Sci (Lond) 86:133–139

    Article  CAS  Google Scholar 

  • Sausbier M, Matos JE, Sausbier U et al (2006) Distal colonic K+ secretion occurs via BK channels. J Am Soc Nephrol 17:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Schultz SG, Thompson SM, Suzuki Y (1981) Equivalent electrical circuit models and the study of Na transport across epithelia: nonsteady-state current–voltage relations. Fed Proc 40:2443–2449

    CAS  PubMed  Google Scholar 

  • Schwartz GJ, Burg MB (1978) Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Physiol Renal Physiol 235:F576–F585

    CAS  Google Scholar 

  • Shao J, Gumz ML, Cain BD et al (2010) Pharmacological profiles of the murine gastric and colonic H, K-ATPases. Biochim Biophys Acta 1800:906–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shennan DB, Peaker M (2000) Transport of milk constituents by the mammary gland. Physiol Rev 80:925–951

    CAS  PubMed  Google Scholar 

  • Shuttleworth TJ, Thompson JL, Dantzler WH (1987) Potassium secretion by nasal salt glands of desert lizard Sauromalus obesus. Am J Physiol Regul Integr Comp Physiol 253:R83–R90

    CAS  Google Scholar 

  • Silva P, Stoff J, Field M et al (1977) Mechanism of active chloride secretion by shark rectal gland: role of Na+-K+-ATPase in chloride transport. Am J Physiol Renal Physiol 233:F298–F306

    CAS  Google Scholar 

  • Skou JC, Esmann M (1992) The Na+, K + -ATPase. J Bioenerg Biomembr 24:249–261

    CAS  PubMed  Google Scholar 

  • Song P, Groos S, Riederer B et al (2011) Kir4.1 channel expression is essential for parietal cell control of acid secretion. J Biol Chem 286:14120–14128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen MV, Grossmann S, Roesinger M et al (2013) Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int 83:811–824

    Article  CAS  PubMed  Google Scholar 

  • Sørensen JB, Nielsen MS, Gudme CN et al (2001) Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion. Pflugers Arch 442:1–11

    Article  PubMed  CAS  Google Scholar 

  • Sørensen MV, Sausbier M, Ruth P et al (2010) Adrenaline-induced colonic K+ secretion is mediated by KCa1.1 (BK) channels. J Physiol 588:1763–1777

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sørensen MV, Strandsby AB, Larsen CK et al (2011) The secretory KCa1.1 channel localises to crypts of distal mouse colon: functional and molecular evidence. Pflugers Arch 462:745–752

    Article  PubMed  CAS  Google Scholar 

  • Stauber T, Weinert S, Jentsch TJ (2012) Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2:1701–1744

    PubMed  Google Scholar 

  • Stokes JB, Lee I, Williams A (1981) Potassium secretion by cortical collecting tubule: relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am J Physiol Renal Physiol 241:F395–F402

    CAS  Google Scholar 

  • Stokes JB, Lee I, D’Amico M (1984) Sodium chloride absorption by the urinary bladder of the winter flounder. A thiazide-sensitive, electrically neutral transport system. J Clin Invest 74:7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan SK, Smith PL (1986) Active potassium secretion by rabbit proximal colon. Am J Physiol Gastrointest Liver Physiol 250:G475–G483

    CAS  Google Scholar 

  • Suzuki Y, Kaneko K (1987) Acid secretion in isolated guinea pig colon. Am J Physiol Gastrointest Liver Physiol 253:G155–G164

    CAS  Google Scholar 

  • Swarts HG, Koenderink JB, Willems PH et al (2005) The non-gastric H, K-ATPase is oligomycin-sensitive and can function as an H+, NH4 + -ATPase. J Biol Chem 280:33115–33122

    Article  CAS  PubMed  Google Scholar 

  • Sweiry JH, Binder HJ (1989) Characterization of aldosterone-induced potassium secretion in rat distal colon. J Clin Invest 83:844–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thévenod F (2002) Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am J Physiol Cell Physiol 283:C651–C672

    Article  PubMed  Google Scholar 

  • Thompson SM (1986) Relations between chord and slope conductances and equivalent electromotive forces. Am J Physiol Cell Physiol 250:C333–C339

    CAS  Google Scholar 

  • Thompson KA, Kleinzeller A (1985) Glucose transport in intestinal epithelia of winter flounder. Am J Physiol Regul Integr Comp Physiol 248:R573–R577

    CAS  Google Scholar 

  • Tirindelli R, Dibattista M, Pifferi S et al (2009) From pheromones to behavior. Physiol Rev 89:921–956

    Article  CAS  PubMed  Google Scholar 

  • Traynor TR, O’Grady SM (1996) Regulation of colonic ion transport by GRP. I. GRP stimulates transepithelial K+ and Na+ secretion. Am J Physiol Cell Physiol 270:C848–C858

    CAS  Google Scholar 

  • Vallon V, Osswald H, Blantz RC et al (1997) Potential role of luminal potassium in tubuloglomerular feedback. J Am Soc Nephrol 8:1831–1837

    CAS  PubMed  Google Scholar 

  • van’t Hof W, Veerman EC, Nieuw Amerongen AV et al (2014) Antimicrobial defense systems in saliva. Monogr Oral Sci 24:40–51

    Article  Google Scholar 

  • Viejo-Díaz M, Andrés MT, Fierro JF (2004) Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extracellular cation concentration and target cell metabolic activity. Antimicrob Agents Chemother 48:1242–1248

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vogalis F, Hegg CC, Lucero MT (2005) Electrical coupling in sustentacular cells of the mouse olfactory epithelium. J Neurophysiol 94:1001–1012

    Article  PubMed  Google Scholar 

  • Vucic E, Alfadda T, MacGregor GG et al (2014) Kir1.1 (ROMK) and KV7.1 (KCNQ1/KVLQT1) are essential for normal gastric acid secretion: importance of functional Kir1.1. Pflugers Arch 46(7):1457–1468

    Google Scholar 

  • Wagner CA, Finberg KE, Breton S et al (2004) Renal vacuolar H+-ATPase. Physiol Rev 84:1263–1314

    Article  CAS  PubMed  Google Scholar 

  • Wales RG, Wallace JC, White IG (1966) Composition of bull epididymal and testicular fluid. J Reprod Fertil 12:139–144

    Article  CAS  PubMed  Google Scholar 

  • Wall SM, Koger LM (1994) NH4 + transport mediated by Na+-K+-ATPase in rat inner medullary collecting duct. Am J Physiol Renal Physiol 267:F660–F670

    CAS  Google Scholar 

  • Wang YB, Germaine GR (1993) Effects of pH, potassium, magnesium, and bacterial growth phase on lysozyme inhibition of glucose fermentation by Streptococcus mutans 10449. J Dent Res 72:907–911

    Article  CAS  PubMed  Google Scholar 

  • Wang WH, Huang CL (2013) The molecular biology of renal K+ channels. In: Alpern RJ, Moe OW, Caplan M (eds) Seldin and Giebisch’s the kidney: physiology and pathophysiology, 5th edn. Elsevier, Boston, pp 1601–1627

    Chapter  Google Scholar 

  • Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watlington CO, Huf EG (1971) β-adrenergic stimulation of frog skin mucous glands: non-specific inhibition by adrenergic blocking agents. Comp Gen Pharmacol 2:295–305

    Article  CAS  PubMed  Google Scholar 

  • Weiner ID, Verlander JW (2013) Renal ammonia metabolism and transport. Compr Physiol 3:201–220

    PubMed  PubMed Central  Google Scholar 

  • Weiner ID, Verlander JW (2014) Ammonia transport in the kidney by Rhesus glycoproteins. Am J Physiol Renal Physiol 306:F1107–F1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein AM (2010) A mathematical model of rat ascending Henle limb. I. Cotransporter function. Am J Physiol Renal Physiol 298:F512–F524

    Article  CAS  PubMed  Google Scholar 

  • Welling PA (2013) Regulation of renal potassium secretion: molecular mechanisms. Semin Nephrol 33:215–228

    Article  CAS  PubMed  Google Scholar 

  • Welsh MJ, Karp P, Ruppert TR (1983) Evidence for basolateral membrane potassium conductance in canine tracheal epithelium. Am J Physiol Cell Physiol 244:C377–C384

    CAS  Google Scholar 

  • Whittamore JM, Cooper CA, Wilson RW (2010) HCO3 secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo. Am J Physiol Regul Integr Comp Physiol 298:R877–R886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JA, Dawson DC (2006) Cell structure and function. In: Mulholland MW, Lillemoe KD, Doherty GM, Maier RV, Upchurch GR Jr (eds) Greenfield’s surgery: scientific principles and practice, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2–42

    Google Scholar 

  • Woodward OM, Guggino WB (2013) Anion channels. In: Alpern RJ, Moe OW, Caplan M (eds) Seldin and Giebisch’s the kidney: physiology and pathophysiology, 5th edn. Elsevier, Boston, pp 1019–1045

    Chapter  Google Scholar 

  • Worrell RT, Merk L, Matthews JB (2008) Ammonium transport in the colonic crypt cell line, T84: role for Rhesus glycoproteins and NKCC1. Am J Physiol Gastrointest Liver Physiol 294:G429–G440

    Article  CAS  PubMed  Google Scholar 

  • Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794

    Article  CAS  PubMed  Google Scholar 

  • Wrong OM, Edmonds CJ, Chadwick VS (eds) (1981) The large intestine: it’s role in mammalian nutrition and homeostasis. MTP Press, Lancaster, UK, p 217

    Google Scholar 

  • Yang L, Edvinsson J, Sackin H et al (2012) Ion selectivity and current saturation in inward-rectifier K+ channels. J Gen Physiol 139:145–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youn JH (2013) Gut sensing of potassium intake and its role in potassium homeostasis. Semin Nephrol 33:248–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu FH, Catterall WA (2004) The VGL-Chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 253:re15

    Google Scholar 

  • Zdebik AA, Cuffe JE, Bertog M et al (2004) Additional disruption of the CLC-2 Cl channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J Biol Chem 279:22276–22283

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Halm ST, Halm DR (2009a) Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: involvement of β1- and β2-adrenergic receptors. Am J Physiol Gastrointest Liver Physiol 297:G269–G277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Halm ST, Halm DR (2009b) Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: desensitization via the Y2-neuropeptide receptor. Am J Physiol Gastrointest Liver Physiol 297:G278–G291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Halm ST, Halm DR (2012) Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 303:G1322–G1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan R. Halm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Halm, D.R. (2016). Physiologic Influences of Transepithelial K+ Secretion. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_3

Download citation

Publish with us

Policies and ethics