Skip to main content

Recent Developments in the Pharmacology of Epithelial Ca2+-Activated K+ Channels

  • Chapter
  • First Online:

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Calcium (Ca2+)-activated potassium (K+) channels (KCa) in epithelia serve important functions in fluid and salt secretion and may be attractive targets for drug development for epithelial disorders, such as cystic fibrosis, diarrhoea, COPD, polycystic kidney disease, and glaucoma. Two very different types of KCa channels are generally found in epithelia: the big conductance, Ca2+-activated K+ channel (BK, KCa1.1), and the intermediate conductance, Ca2+-activated K+ channel (IK, KCa3.1). These channels are differentially expressed in various cells and tissues and serve different physiological and potentially also pathophysiological functions in epithelia.

The present chapter aims at giving a brief review of the physiology and function of BK and IK channels, a description of the classical pharmacology of these channels, and an in-depth overview of the status of drug discovery and development programmes in the pharmaceutical industry as well as academia, based on both literature and patent references, and it ends with a discussion of recent advances in the understanding of the molecular pharmacology of these channels. The review is comprehensive and the focus is throughout ion channel pharmacology with exemplary cases from the epithelial as well as non-epithelial fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BK channel:

Big conductance Ca2+-activated K+ channel, KCa1.1

Cam:

Calmodulin

ChTx:

Charybdotoxin

COPD:

Chronic obstructive pulmonary disorder

CFTR:

Cystic fibrosis transmembrane conductance regulator

CYP:

Cytochrome P450

FLIPR:

Fluorescent imaging plate reader

IbTx:

Iberiotoxin

IK channel:

Intermediate conductance Ca2+-activated K+ channel KCa3.1

IV relation:

Current through the ion channel depicted as function of the membrane potential

KCa :

Ca2+-activated K+ channel including all SK IK, and BK channels (IUPHAR nomenclature)

k off :

Kinetic off-rate of ligand (inhibitor or activator) binding to the channel (s−1)

k on :

Kinetic on-rate of ligand binding to the channel (M−1 × s−1)

Kv :

Voltage-gated K channel (IUPHAR nomenclature)

KCNN :

Potassium intermediate/small conductance calcium-activated channel subfamily N (gene name)

KCNMA :

Potassium large conductance calcium-activated channel subfamily M, alpha member 1 (gene name)

KCNMB :

Potassium large conductance calcium-activated channel subfamily M, beta member 1 (gene name)

P2Y:

Purinergic 2Y receptors

pS:

Conductance though a single ion channel measured by the unit 10−12 Siemens

RKC domain:

Regulator of K+ conductance domain

SK channel:

Small conductance Ca2+-activated K+ channel (KCa2.1, KCa2.2, KCa2.3)

TEA:

Tetraethylammonium

TM:

Transmembrane domain

TMEM16A:

Transmembrane protein member 16A, Ca2+-activated Cl channel

V m :

Membrane potential (mV)

References

  • Adorante JS, Woldemussie E, Ruiz G (1996) Method for reducing intraocular pressure in the mammalian eye by administration of potassium channel blockers. WO 1996033719

    Google Scholar 

  • Agarwal JJ, Zhu Y, Zhang QY, Mongin AA, Hough LB (2013) TRAM-34, a putatively selective blocker of intermediate-conductance, calcium-activated potassium channels, inhibits cytochrome P450 activity. PLoS One 8(5), e63028. doi:10.1371/journal.pone.0063028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aihara H, Hosaka T, Kashiwagi T, Kohnomi S, Kono RTCC (2004) Calcium-activated K channel activator. EP 1400243

    Google Scholar 

  • Akada K, Izumi S, Yasuura H (2002) Sustained release oral preparations. WO 2001070221

    Google Scholar 

  • Albaqumi M, Srivastava S, Li Z, Zhdnova O, Wulff H, Itani O, Wallace DP, Skolnik EY (2008) KCa3.1 potassium channels are critical for cAMP-dependent chloride secretion and cyst growth in autosomal-dominant polycystic kidney disease. Kidney Int 74(6):740–749. doi:10.1038/ki.2008.246

    Article  CAS  PubMed  Google Scholar 

  • Alper S, Bellot EM, Brugnara C, Clifford JJ, Froimowitz M, Gao YD, Haidar RM, Halperin J, Kelleher EW, Kher FM (1999a) Use of substituted 11-phenyl-dibenzazepine compounds for the treatment or prevention of sickle cell disease, inflammatory diseases characterized by abnormal cell proliferation, diarrhea and scour. WO 1999026628

    Google Scholar 

  • Alper S, Bellot EM, Brugnara C, Clifford JJ, Froimowitz M, Gao YD, Haidar RM, Halperin J, Kelleher EW, Kher FM (1999b) Use of substituted diphenyl indanone, indane and indole compounds for the treatment or prevention of sickle cell disease, inflammatory diseases characterized by abnormal cell proliferation, diarrhea and scours. WO1999026624

    Google Scholar 

  • Alvarez J, Montero M, Garcia-Sancho J (1992) High affinity inhibition of Ca2+-dependent K+ channels by cytochrome P-450 inhibitors. J Biol Chem 267(17):11789–11793

    CAS  PubMed  Google Scholar 

  • Anderson CS, MacKinnon R, Smith C, Miller C (1988) Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength. J Gen Physiol 91(3):317–333

    Article  CAS  PubMed  Google Scholar 

  • Anderson NJ, Slough S, Watson WP (2006) In vivo characterisation of the small-conductance KCa (SK) channel activator 1-ethyl-2-benzimidazolinone (1-EBIO) as a potential anticonvulsant. Eur J Pharmacol 546(1–3):48–53. doi:10.1016/j.ejphar.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  • Aon MA, Cortassa S, Wei AC, Grunnet M, O’Rourke B (2010) Energetic performance is improved by specific activation of K+ fluxes through KCa channels in heart mitochondria. Biochim Biophys Acta 1797(1):71–80. doi:10.1016/j.bbabio.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  • Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK (1994) Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci U S A 91(16):7583–7587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ataga KI, Stocker J (2009) Senicapoc (ICA-17043): a potential therapy for the prevention and treatment of hemolysis-associated complications in sickle cell anemia. Expert Opin Investig Drugs 18(2):231–239. doi:10.1517/13543780802708011

    Article  CAS  PubMed  Google Scholar 

  • Ataga KI, Orringer EP, Styles L, Vichinsky EP, Swerdlow P, Davis GA, Desimone PA, Stocker JW (2006) Dose-escalation study of ICA-17043 in patients with sickle cell disease. Pharmacotherapy 26(11):1557–1564. doi:10.1592/phco.26.11.1557

    Article  CAS  PubMed  Google Scholar 

  • Ataga KI, Smith WR, De Castro LM, Swerdlow P, Saunthararajah Y, Castro O, Vichinsky E, Kutlar A, Orringer EP, Rigdon GC, Stocker JW, Investigators ICA (2008) Efficacy and safety of the Gardos channel blocker, senicapoc (ICA-17043), in patients with sickle cell anemia. Blood 111(8):3991–3997. doi:10.1182/blood-2007-08-110098

    Article  CAS  PubMed  Google Scholar 

  • Ataga KI, Reid M, Ballas SK, Yasin Z, Bigelow C, James LS, Smith WR, Galacteros F, Kutlar A, Hull JH, Stocker JW, Investigators ICAS (2011) Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043). Br J Haematol 153(1):92–104. doi:10.1111/j.1365-2141.2010.08520.x

    Article  CAS  PubMed  Google Scholar 

  • Atkinson RN, Mcnaughton-Smith GA, Reed AD (2004) Sulfonamides as potassium channel blockers. WO 2004016221

    Google Scholar 

  • Balut CM, Gao Y, Luke C, Devor DC (2010) Immunofluorescence-based assay to identify modulators of the number of plasma membrane KCa3.1 channels. Future Med Chem 2(5):707–713. doi:10.4155/fmc.10.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balut CM, Hamilton KL, Devor DC (2012) Trafficking of intermediate (KCa3.1) and small (KCa2.x) conductance, Ca2+-activated K+ channels: a novel target for medicinal chemistry efforts? ChemMedChem 7(10):1741–1755. doi:10.1002/cmdc.201200226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baqi Y, Weyler S, Iqbal J, Zimmermann H, Muller CE (2009) Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases). Purinergic Signal 5(1):91–106. doi:10.1007/s11302-008-9103-5

    Article  CAS  PubMed  Google Scholar 

  • Bardou O, Trinh NT, Brochiero E (2009) Molecular diversity and function of K+ channels in airway and alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 296(2):L145–L155. doi:10.1152/ajplung.90525.2008

    Article  CAS  PubMed  Google Scholar 

  • Barrett JN, Magleby KL, Pallotta BS (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J Physiol 331:211–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bednarczyk P, Koziel A, Jarmuszkiewicz W, Szewczyk A (2013) Large-conductance Ca2+-activated potassium channel in mitochondria of endothelial EA.hy926 cells. Am J Physiol Heart Circ Physiol 304(11):H1415–H1427. doi:10.1152/ajpheart.00976.2012

    Article  CAS  PubMed  Google Scholar 

  • Bellott EM, Brugnara C, Clifford JJ, Fluckiger R, Gao YD, Haidar RM, Halperin J, Kelleher EW, Lombardy RJ, Moussa AM (1999a) Substituted 11-phenyl-dibenzazepine compounds useful for the treatment or prevention of diseases characterized by abnormal cell proliferation. WO 1999026929

    Google Scholar 

  • Bellott EM, Brugnara C, Clifford JJ, Fluckiger R, Gao YD, Haidar RM, Halperin J, Kelleher EW, Lombardy RJ, Moussa AM (1999b) Substituted diphenyl indanone, indane and indole compounds and analogues thereof useful for the treatment or prevention of diseases characterized by abnormal cell proliferation. WO 1999026611

    Google Scholar 

  • Benoit C, Renaudon B, Salvail D, Rousseau E (2001) EETs relax airway smooth muscle via an EpDHF effect: BK(Ca) channel activation and hyperpolarization. Am J Physiol Lung Cell Mol Physiol 280(5):L965–L973

    CAS  PubMed  Google Scholar 

  • Bentzen BH, Nardi A, Calloe K, Madsen LS, Olesen SP, Grunnet M (2007) The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels. Mol Pharmacol 72(4):1033–1044. doi:10.1124/mol.107.038331

    Article  CAS  PubMed  Google Scholar 

  • Bentzen BH, Osadchii O, Jespersen T, Hansen RS, Olesen SP, Grunnet M (2009) Activation of big conductance Ca2+-activated K+ channels (BK) protects the heart against ischemia-reperfusion injury. Pflugers Archiv Eur J Physiol 457(5):979–988. doi:10.1007/s00424-008-0583-5

    Article  CAS  Google Scholar 

  • Bentzen BH, Andersen RW, Olesen SP, Grunnet M, Nardi A (2010) Synthesis and characterisation of NS13558: a new important tool for addressing KCa1.1 channel function ex vivo. Naunyn Schmiedebergs Arch Pharmacol 381(3):271–283. doi:10.1007/s00210-009-0456-2

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz LR, Orringer EP (1981) Effect of cetiedil, an in vitro antisickling agent, on erythrocyte membrane cation permeability. J Clin Invest 68(5):1215–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biot C, Bauer H, Schirmer RH, Davioud-Charvet E (2004) 5-Substituted tetrazoles as bioisosteres of carboxylic acids. Bioisosterism and mechanistic studies on glutathione reductase inhibitors as antimalarials. J Med Chem 47(24):5972–5983. doi:10.1021/jm0497545

    Article  CAS  PubMed  Google Scholar 

  • Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368(6474):850–853. doi:10.1038/368850a0

    Article  CAS  PubMed  Google Scholar 

  • Borchert GH, Hlavackova M, Kolar F (2013) Pharmacological activation of mitochondrial BK(Ca) channels protects isolated cardiomyocytes against simulated reperfusion-induced injury. Exp Biol Med 238(2):233–241. doi:10.1177/1535370212474596

    Article  CAS  Google Scholar 

  • Boy K (2005) Such as N-[4-[[4-(5-chloro-2-hydroxyphenyl)-1,2-dihydro-2-oxo-6-(trifluoromethyl)-3-quinolinyl]thio]phenyl]-4-morpholineacetamide; potassium channel modulators. US 20050124611

    Google Scholar 

  • Boy KM, Guernon JM, Sit SY, Xie K, Hewawasam P, Boissard CG, Dworetzky SI, Natale J, Gribkoff VK, Lodge N, Starrett JE Jr (2004) 3-Thio-quinolinone maxi-K openers for the treatment of erectile dysfunction. Bioorg Med Chem Lett 14(20):5089–5093. doi:10.1016/j.bmcl.2004.07.080

    Article  CAS  PubMed  Google Scholar 

  • Boy K, Hewawasam P, Sit SY (2005a) 3-Thia-4-arylquinolin-2-one derivatives. US 20050080105

    Google Scholar 

  • Boy K, Hewawasam P, Sit SY, Xie K (2005b) Administering a therapeutically effective amount of 3-thia-4-(2-oxy/hydroxyphenyl)quinolin-2-one derivative to a patient to treat erectile dysfunction or irritable bowel syndrome. US 20050176763

    Google Scholar 

  • Boyd EA, Fisher MH, Garcia ML, Kaczorowski GJ, Meinke PT, Parsons WH, Price S, Stibbard J (2005) Ophthalmic compositions for treating ocular hypertension. WO 2004087051

    Google Scholar 

  • Brondum E, Kold-Petersen H, Simonsen U, Aalkjaer C (2010) NS309 restores EDHF-type relaxation in mesenteric small arteries from type 2 diabetic ZDF rats. Br J Pharmacol 159(1):154–165. doi:10.1111/j.1476-5381.2009.00525.x

    Article  CAS  PubMed  Google Scholar 

  • Brown PD, Loo DD, Wright EM (1988) Ca2+-activated K+ channels in the apical membrane of Necturus choroid plexus. J Membr Biol 105(3):207–219

    Article  CAS  PubMed  Google Scholar 

  • Bruening-Wright A, Lee WS, Adelman JP, Maylie J (2007) Evidence for a deep pore activation gate in small conductance Ca2+-activated K+ channels. J Gen Physiol 130(6):601–610. doi:10.1085/jgp.200709828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugnara C, de Franceschi L (2006) Clinical trials of new therapeutic pharmacology for sickle cell disease. Sante 16(4):263–268

    PubMed  Google Scholar 

  • Brugnara C, Gee B, Armsby CC, Kurth S, Sakamoto M, Rifai N, Alper SL, Platt OS (1996) Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. J Clin Invest 97(5):1227–1234. doi:10.1172/JCI118537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukiya AN, Liu J, Toro L, Dopico AM (2007) Beta1 (KCNMB1) subunits mediate lithocholate activation of large-conductance Ca2+-activated K+ channels and dilation in small, resistance-size arteries. Mol Pharmacol 72(2):359–369. doi:10.1124/mol.107.034330

    Article  CAS  PubMed  Google Scholar 

  • Bukiya AN, McMillan JE, Fedinec AL, Patil SA, Miller DD, Leffler CW, Parrill AL, Dopico AM (2013) Cerebrovascular dilation via selective targeting of the cholane steroid-recognition site in the BK channel beta1-subunit by a novel nonsteroidal agent. Mol Pharmacol 83(5):1030–1044. doi:10.1124/mol.112.083519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke MJ, Mckibben B, Tschantz MA (2013) Fused thiazin-3-ones as KCa3.1 inhibitors. WO 2013191984

    Google Scholar 

  • Candia S, Garcia ML, Latorre R (1992) Mode of action of iberiotoxin, a potent blocker of the large conductance Ca2+-activated K+ channel. Biophys J 63(2):583–590. doi:10.1016/S0006-3495(92)81630-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Dreixler JC, Roizen JD, Roberts MT, Houamed KM (2001) Modulation of recombinant small-conductance Ca2+-activated K+ channels by the muscle relaxant chlorzoxazone and structurally related compounds. J Pharmacol Exp Ther 296(3):683–689

    CAS  PubMed  Google Scholar 

  • Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322(5901):590–594. doi:10.1126/science.1163518

    Article  CAS  PubMed  Google Scholar 

  • Carrier GO, Fuchs LC, Winecoff AP, Giulumian AD, White RE (1997) Nitrovasodilators relax mesenteric microvessels by cGMP-induced stimulation of Ca-activated K channels. Am J Physiol 273(1 Pt 2):H76–H84

    CAS  PubMed  Google Scholar 

  • Chen MH, Doherty JB, Liu L, Meinke PT, Natarajan R, Parsons WH, Shen DM, Shu M, Stelmach JE, Wisnoski D (2003) Ophthalmic compositions for treating ocular hypertension. WO 2003105847

    Google Scholar 

  • Chen MH, Doherty JB, Liu L, Natarajan SR, Shen DM, Tynebor RM (2004a) Ophthalmic compositions for treating ocular hypertension. WO 2004043354

    Google Scholar 

  • Chen MH, Doherty JB, Liu L, Natarajan SR, Tynebor RM (2004b) Ophthalmic compositions for treating ocular hypertension. WO 2004043933

    Google Scholar 

  • Chen MH, Doherty JB, Liu L, Natarajan S, Tynebor RM (2005a) Ophthalmic compositions for treating ocular hypertension. WO 2005026128

    Google Scholar 

  • Chen MH, Doherty JB, Liu L, Natarajan SR, Shen DM, Shu M (2005b) Ophthalmic compositions for treating ocular hypertension. WO 2005002520

    Google Scholar 

  • Chen X, Yan J, Aldrich RW (2014) BK channel opening involves side-chain reorientation of multiple deep-pore residues. Proc Natl Acad Sci U S A 111(1):E79–E88. doi:10.1073/pnas.1321697111

    Article  CAS  PubMed  Google Scholar 

  • Coiret G, Borowiec AS, Mariot P, Ouadid-Ahidouch H, Matifat F (2007) The antiestrogen tamoxifen activates BK channels and stimulates proliferation of MCF-7 breast cancer cells. Mol Pharmacol 71(3):843–851. doi:10.1124/mol.106.028290

    Article  CAS  PubMed  Google Scholar 

  • Coleman N, Brown BM, Olivan-Viguera A, Singh V, Olmstead MM, Valero MS, Kohler R, Wulff H (2014) New Positive KCa Channel Gating Modulators with Selectivity for KCa3.1. Mol Pharmacol. doi:10.1124/mol.114.093286

    Google Scholar 

  • Cui YM, Yasutomi E, Otani Y, Yoshinaga T, Ido K, Sawada K, Ohwada T (2008) Design, synthesis and characterization of podocarpate derivatives as openers of BK channels. Bioorg Med Chem Lett 18(19):5197–5200. doi:10.1016/j.bmcl.2008.08.081

    Article  CAS  PubMed  Google Scholar 

  • Cui YM, Yasutomi E, Otani Y, Ido K, Yoshinaga T, Sawada K, Ohwada T (2010) Design, synthesis, and characterization of BK channel openers based on oximation of abietane diterpene derivatives. Bioorg Med Chem 18(24):8642–8659. doi:10.1016/j.bmc.2010.09.072

    Article  CAS  PubMed  Google Scholar 

  • Cullinane AB, Leung PS, Ortego J, Coca-Prados M, Harvey BJ (2002) Renin-angiotensin system expression and secretory function in cultured human ciliary body non-pigmented epithelium. Br J Ophthalmol 86(6):676–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuppoletti J, Malinowska DH, Tewari KP, Chakrabarti J, Ueno R (2012) Unoprostone isopropyl and metabolite M1 activate BK channels and prevent ET-1-induced [Ca2+]i increases in human trabecular meshwork and smooth muscle. Invest Ophthalmol Vis Sci 53(9):5178–5189. doi:10.1167/iovs.11-9046

    Article  CAS  PubMed  Google Scholar 

  • Davi H, Tronquet C, Miscoria G, Perrier L, DuPont P, Caix J, Simiand J, Berger Y (2000) Disposition of irbesartan, an angiotensin II AT1-receptor antagonist, in mice, rats, rabbits, and macaques. Drug Metab Dispos 28(1):79–88

    CAS  PubMed  Google Scholar 

  • De Wet H, Allen M, Holmes C, Stobbart M, Lippiat JD, Callaghan R (2006) Modulation of the BK channel by estrogens: examination at single channel level. Mol Membr Biol 23(5):420–429. doi:10.1080/09687860600802803

    Article  CAS  PubMed  Google Scholar 

  • DeFarias FP, Carvalho MF, Lee SH, Kaczorowski GJ, Suarez-Kurtz G (1996) Effects of the K+ channel blockers paspalitrem-C and paxilline on mammalian smooth muscle. Eur J Pharmacol 314(1–2):123–128

    Article  CAS  PubMed  Google Scholar 

  • Dela Pena IC, Yoon SY, Kim SM, Lee GS, Park CS, Kim YC, Cheong JH (2009a) Inhibition of intestinal motility by the putative BK(Ca) channel opener LDD175. Arch Pharm Res 32(3):413–420. doi:10.1007/s12272-009-1315-x

    Article  CAS  PubMed  Google Scholar 

  • Dela Pena IC, Yoon SY, Kim SM, Lee GS, Ryu JH, Park CS, Kim YC, Cheong JH (2009b) Bladder-relaxant properties of the novel benzofuroindole analogue LDD175. Pharmacology 83(6):367–378. doi:10.1159/000218739

    Article  CAS  PubMed  Google Scholar 

  • Demnitz J, Jorgensen S (2014) Novel tetrazole derivatives and their use as potassium channel modulators. WO 2014001363

    Google Scholar 

  • Demnitz J, Gouliaev AH, Sloek FA, Teuber L (2003) Potassium channel modulators. WO 2003059873

    Google Scholar 

  • Demnitz J, Madsen LS, Olesen SP, Stroebaek D (2005) Diarylmethyl derivatives as potassium channel modulators. WO 2005003094

    Google Scholar 

  • Denda M, Tsutsumi M, Inoue K, Crumrine D, Feingold KR, Elias PM (2007) Potassium channel openers accelerate epidermal barrier recovery. Br J Dermatol 157(5):888–893. doi:10.1111/j.1365-2133.2007.08198.x

    Article  CAS  PubMed  Google Scholar 

  • Denson DD, Eaton DC (1994) Ketamine inhibition of large conductance Ca2+-activated K+ channels is modulated by intracellular Ca2+. Am J Physiol 267(5 Pt 1):C1452–C1458

    CAS  PubMed  Google Scholar 

  • Denson DD, Duchatelle P, Eaton DC (1994) The effect of racemic ketamine on the large conductance Ca2+-activated potassium (BK) channels in GH3 cells. Brain Res 638(1–2):61–68

    Article  CAS  PubMed  Google Scholar 

  • Devor DC, Singh AK, Frizzell RA, Bridges RJ (1996) Modulation of Cl- secretion by benzimidazolones. I. Direct activation of a Ca2+-dependent K+ channel. Am J Physiol 271(5 Pt 1):L775–L784

    CAS  PubMed  Google Scholar 

  • Dick GM, Sanders KM (2001) (Xeno)estrogen sensitivity of smooth muscle BK channels conferred by the regulatory beta1 subunit: a study of beta1 knockout mice. J Biol Chem 276(48):44835–44840. doi:10.1074/jbc.M106851200

    Article  CAS  PubMed  Google Scholar 

  • Dick GM, Rossow CF, Smirnov S, Horowitz B, Sanders KM (2001) Tamoxifen activates smooth muscle BK channels through the regulatory beta 1 subunit. J Biol Chem 276(37):34594–34599. doi:10.1074/jbc.M104689200

    Article  CAS  PubMed  Google Scholar 

  • Dick GM, Hunter AC, Sanders KM (2002) Ethylbromide tamoxifen, a membrane-impermeant antiestrogen, activates smooth muscle calcium-activated large-conductance potassium channels from the extracellular side. Mol Pharmacol 61(5):1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Doherty JB, Shen DM (2005) Ophthalmic compositions for treating ocular hypertension. WO 2005020917

    Google Scholar 

  • Doherty JB, Shen DM (2006) Ophthalmic compositions for treating ocular hypertension. WO 2006020003

    Google Scholar 

  • Doherty J, Chen MH, Liu L, Natarajan S, Tynebor R (2004a) Ophthalmic compositions for treating ocular hypertension. US 20040097575

    Google Scholar 

  • Doherty JB, Chen MH, Liu L, Natarajan SR, Tynebor RM (2004b) Ophthalmic compositions for treating ocular hypertension. WO 2004043932

    Google Scholar 

  • Doherty JB, Dong-Ming S, Min S, Fengqi Z (2007) Ophthalmic compositions for treating ocular hypertension. WO 2007108968

    Google Scholar 

  • Doherty JB, Dong-Ming S, Min S (2008a) Ophthalmic compositions for treating ocular hypertension. WO 2008030390

    Google Scholar 

  • Doherty JB, Natarajan SR, Shen DM, Zhang F (2008b) Ophthalmic compositions for treating ocular hypertension. WO 2007146136

    Google Scholar 

  • Duerson K, White RE, Jiang F, Schonbrunn A, Armstrong DL (1996) Somatostatin stimulates BKCa channels in rat pituitary tumor cells through lipoxygenase metabolites of arachidonic acid. Neuropharmacology 35(7):949–961

    Article  CAS  PubMed  Google Scholar 

  • Dutta AK, Khimji AK, Sathe M, Kresge C, Parameswara V, Esser V, Rockey DC, Feranchak AP (2009) Identification and functional characterization of the intermediate-conductance Ca2+-activated K+ channel (IK-1) in biliary epithelium. Am J Physiol Gastrointest Liver Physiol 297(5):G1009–G1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dworetzky SI, Trojnacki JT, Gribkoff VK (1994) Cloning and expression of a human large-conductance calcium-activated potassium channel. Brain Res Mol Brain Res 27(1):189–193

    Article  CAS  PubMed  Google Scholar 

  • Ellory JC, Culliford SJ, Smith PA, Wolowyk MW, Knaus EE (1994) Specific inhibition of Ca-activated K channels in red cells by selected dihydropyridine derivatives. Br J Pharmacol 111(3):903–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falck JR, Reddy LM, Reddy YK, Bondlela M, Krishna UM, Ji Y, Sun J, Liao JK (2003) 11,12-Epoxyeicosatrienoic acid (11,12-EET): structural determinants for inhibition of TNF-alpha-induced VCAM-1 expression. Bioorg Med Chem Lett 13(22):4011–4014

    Article  CAS  PubMed  Google Scholar 

  • Falck JR, Wallukat G, Puli N, Goli M, Arnold C, Konkel A, Rothe M, Fischer R, Muller DN, Schunck WH (2011) 17(R),18(S)-epoxyeicosatetraenoic acid, a potent eicosapentaenoic acid (EPA) derived regulator of cardiomyocyte contraction: structure-activity relationships and stable analogues. J Med Chem 54(12):4109–4118. doi:10.1021/jm200132q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao M, Mason HS, Kenyon JL, Horowitz B, Keef KD (2001) Regulation of BK(Ca) channels expressed in human embryonic kidney 293 cells by epoxyeicosatrienoic acid. Mol Pharmacol 59(1):16–23

    CAS  PubMed  Google Scholar 

  • Galvez A, Gimenez-Gallego G, Reuben JP, Roy-Contancin L, Feigenbaum P, Kaczorowski GJ, Garcia ML (1990) Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J Biol Chem 265(19):11083–11090

    CAS  PubMed  Google Scholar 

  • Gao YD, Shen DM (2006) Ophthalmic compositions for treating ocular hypertension. WO 2006044232

    Google Scholar 

  • Garcia M, Kaczorowski G, McManus O (2001) Method for treating ocular hypertension. US 20010047025

    Google Scholar 

  • Garcia-Valdes J, Zamudio FZ, Toro L, Possani LD (2001) Slotoxin, alphaKTx1.11, a new scorpion peptide blocker of MaxiK channels that differentiates between alpha and alpha+beta (beta1 or beta4) complexes. FEBS Lett 505(3):369–373

    Article  CAS  PubMed  Google Scholar 

  • Garduno J, Galvan E, Fernandez de Sevilla D, Buno W (2005) 1-Ethyl-2-benzimidazolinone (EBIO) suppresses epileptiform activity in in vitro hippocampus. Neuropharmacology 49(3):376–388. doi:10.1016/j.neuropharm.2005.03.021

    Article  CAS  PubMed  Google Scholar 

  • Garneau L, Klein H, Lavoie MF, Brochiero E, Parent L, Sauve R (2014) Aromatic-aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process. J Gen Physiol 143(2):289–307. doi:10.1085/jgp.201311097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gessner G, Cui YM, Otani Y, Ohwada T, Soom M, Hoshi T, Heinemann SH (2012) Molecular mechanism of pharmacological activation of BK channels. Proc Natl Acad Sci U S A 109(9):3552–3557. doi:10.1073/pnas.1114321109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillman K, Bocchino D (2004) Useful in therapy of disorders which are responsive to the opening of potassium channels such as ischemia, stroke, convulsions, asthma, epilepsy, irritable bowel syndrome, migraine, traumatic brain injury, spinal cord injury, sexual dysfunction. US 20040152646

    Google Scholar 

  • Gillman KW, Hewawasam P, Schmitz WD, Lopez OD, Starrett JE, Provencal DP (2003) Phosphate prodrugs of fluorooxindoles. WO 2003080047

    Google Scholar 

  • Goetz MA, Kaczorowski GJ (2004) Compositions and methods for treating glaucoma and ocular hypertension. WO 2003077845

    Google Scholar 

  • Goetz MA, Kaczorowski GJ, Monaghan RL, Strohl WR, Tkacz JS (2003) Novel maxi-k channel blockers, methods of use and process for making the same. WO 2003105868

    Google Scholar 

  • Gore VK, Ma VV, Yin R, Ligutti J, Immke D, Doherty EM, Norman MH (2010) Structure-activity relationship (SAR) investigations of tetrahydroquinolines as BKCa agonists. Bioorg Med Chem Lett 20(12):3573–3578. doi:10.1016/j.bmcl.2010.04.125

    Article  CAS  PubMed  Google Scholar 

  • Gormemis AE, Ha TS, Im I, Jung KY, Lee JY, Park CS, Kim YC (2005) Benzofuroindole analogues as potent BK(Ca) channel openers. ChemBioChem 6(10):1745–1748. doi:10.1002/cbic.200400448

    Article  CAS  PubMed  Google Scholar 

  • Gragasin FS, Michelakis ED, Hogan A, Moudgil R, Hashimoto K, Wu X, Bonnet S, Haromy A, Archer SL (2004) The neurovascular mechanism of clitoral erection: nitric oxide and cGMP-stimulated activation of BKCa channels. FASEB J 18(12):1382–1391. doi:10.1096/fj.04-1978com

    Article  CAS  PubMed  Google Scholar 

  • Gribkoff VK, Lum-Ragan JT, Boissard CG, Post-Munson DJ, Meanwell NA, Starrett JE Jr, Kozlowski ES, Romine JL, Trojnacki JT, McKay MC, Zhong J, Dworetzky SI (1996) Effects of channel modulators on cloned large-conductance calcium-activated potassium channels. Mol Pharmacol 50(1):206–217

    CAS  PubMed  Google Scholar 

  • Gribkoff VK, Starrett JE Jr, Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR, Huston K, Johnson G, Krishnan BS, Kinney GG, Lombardo LA, Meanwell NA, Molinoff PB, Myers RA, Moon SL, Ortiz A, Pajor L, Pieschl RL, Post-Munson DJ, Signor LJ, Srinivas N, Taber MT, Thalody G, Trojnacki JT, Wiener H, Yeleswaram K, Yeola SW (2001) Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat Med 7(4):471–477. doi:10.1038/86546

    Article  CAS  PubMed  Google Scholar 

  • Grunnet M, Jespersen T, Angelo K, Frokjaer-Jensen C, Klaerke DA, Olesen SP, Jensen BS (2001) Pharmacological modulation of SK3 channels. Neuropharmacology 40(7):879–887

    Article  CAS  PubMed  Google Scholar 

  • Haburcak M, Wei L, Viana F, Prenen J, Droogmans G, Nilius B (1997) Calcium-activated potassium channels in cultured human endothelial cells are not directly modulated by nitric oxide. Cell Calcium 21(4):291–300

    Article  CAS  PubMed  Google Scholar 

  • Haghdoost-Yazdi H, Janahmadi M, Behzadi G (2008) Iberiotoxin-sensitive large conductance Ca2+ -dependent K+ (BK) channels regulate the spike configuration in the burst firing of cerebellar Purkinje neurons. Brain Res 1212:1–8. doi:10.1016/j.brainres.2008.03.030

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Watanuki S, Takuwa T, Kawaguchi K, Okazaki T, Hirano Y, Saitoh C (2003) Medicine comprising dicyanopyridine derivative. US 20030232860

    Google Scholar 

  • Harper AA, Catacuzzeno L, Trequattrini C, Petris A, Franciolini F (2001) Verapamil block of large-conductance Ca-activated K channels in rat aortic myocytes. J Membr Biol 179(2):103–111

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Kawaji K, Sun L, Zhang X, Koyano K, Yokoyama T, Kohsaka S, Inoue K, Nakanishi H (2011) Microglial Ca2+-activated K+ channels are possible molecular targets for the analgesic effects of S-ketamine on neuropathic pain. J Neurosci 31(48):17370–17382. doi:10.1523/JNEUROSCI.4152-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Heinz A, Passow H (1980) Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts. J Membr Biol 57(2):119–131

    Article  CAS  PubMed  Google Scholar 

  • Hercule HC, Salanova B, Essin K, Honeck H, Falck JR, Sausbier M, Ruth P, Schunck WH, Luft FC, Gollasch M (2007) The vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BK alpha channel subunit in rodents. Exp Physiol 92(6):1067–1076. doi:10.1113/expphysiol.2007.038166

    Article  CAS  PubMed  Google Scholar 

  • Hewawasam P, Meanwell NA, Gribkoff VK (1997) Useful in reducing neuronal damage during ischemic stroke. US 5602169

    Google Scholar 

  • Hewawasam P, Fan W, Ding M, Flint K, Cook D, Goggins GD, Myers RA, Gribkoff VK, Boissard CG, Dworetzky SI, Starrett JE Jr, Lodge NJ (2003) 4-Aryl-3-(hydroxyalkyl)quinolin-2-ones: novel maxi-K channel opening relaxants of corporal smooth muscle targeted for erectile dysfunction. J Med Chem 46(14):2819–2822. doi:10.1021/jm030005h

    Article  CAS  PubMed  Google Scholar 

  • Hewawasam P, Fan W, Cook DA, Newberry KS, Boissard CG, Gribkoff VK, Starrett J, Lodge NJ (2004) 4-Aryl-3-(mercapto)quinolin-2-ones: novel maxi-K channel opening relaxants of corporal smooth muscle. Bioorg Med Chem Lett 14(17):4479–4482. doi:10.1016/j.bmcl.2004.06.051

    Article  CAS  PubMed  Google Scholar 

  • Hewawasam P, Sit SY, Starrett J (2005) Potassium channel modulators. US 20050080082

    Google Scholar 

  • Hoffman JF, Joiner W, Nehrke K, Potapova O, Foye K, Wickrema A (2003) The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells. Proc Natl Acad Sci U S A 100(12):7366–7371. doi:10.1073/pnas.1232342100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollywood MA, Mchale N, Roy S, Sergeant GP, Thornbury K (2012a) Anthraquinone compounds and their uses. WO 2012035122

    Google Scholar 

  • Hollywood MA, Thornbury K, Sergeant GP, Mchale N, Roy S (2012b) Anthraquinone compounds and their uses. EP 2439200

    Google Scholar 

  • Hougaard C, Fraser MO, Chien C, Bookout A, Katofiasc M, Jensen BS, Rode F, Bitsch-Norhave J, Teuber L, Thor KB, Strobaek D, Burgard EC, Ronn LC (2009) A positive modulator of KCa2 and KCa3 channels, 4,5-dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one (NS4591), inhibits bladder afferent firing in vitro and bladder overactivity in vivo. J Pharmacol Exp Ther 328(1):28–39. doi:10.1124/jpet.108.143123

    Article  CAS  PubMed  Google Scholar 

  • Hougaard C, Hammami S, Eriksen BL, Sorensen US, Jensen ML, Strobaek D, Christophersen P (2012) Evidence for a common pharmacological interaction site on KCa2 channels providing both selective activation and selective inhibition of the human KCa2.1 subtype. Mol Pharmacol 81(2):210–219. doi:10.1124/mol.111.074252

    Article  CAS  PubMed  Google Scholar 

  • Huang CW, Huang CC, Wu SN (2007) Activation by zonisamide, a newer antiepileptic drug, of large-conductance calcium-activated potassium channel in differentiated hippocampal neuron-derived H19-7 cells. J Pharmacol Exp Ther 321(1):98–106. doi:10.1124/jpet.106.116954

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi Y, Ohwada T (2002) Potassium channel opener. WO 2002087559

    Google Scholar 

  • Imaizumi Y, Sakamoto K, Yamada A, Hotta A, Ohya S, Muraki K, Uchiyama M, Ohwada T (2002) Molecular basis of pimarane compounds as novel activators of large-conductance Ca2+-activated K+ channel alpha-subunit. Mol Pharmacol 62(4):836–846

    Article  CAS  PubMed  Google Scholar 

  • Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci U S A 94(21):11651–11656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaravine VA, Nolde DE, Reibarkh MJ, Korolkova YV, Kozlov SA, Pluzhnikov KA, Grishin EV, Arseniev AS (1997) Three-dimensional structure of toxin OSK1 from Orthochirus scrobiculosus scorpion venom. Biochemistry 36(6):1223–1232. doi:10.1021/bi9614390

    Article  CAS  PubMed  Google Scholar 

  • Javaherian AD, Yusifov T, Pantazis A, Franklin S, Gandhi CS, Olcese R (2011) Metal-driven operation of the human large-conductance voltage- and Ca2+-dependent potassium channel (BK) gating ring apparatus. J Biol Chem 286(23):20701–20709. doi:10.1074/jbc.M111.235234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins DP, Strobaek D, Hougaard C, Jensen ML, Hummel R, Sorensen US, Christophersen P, Wulff H (2011) Negative gating modulation by (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) depends on residues in the inner pore vestibule: pharmacological evidence of deep-pore gating of K(Ca)2 channels. Mol Pharmacol 79(6):899–909. doi:10.1124/mol.110.069807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins DP, Yu W, Brown BM, Lojkner LD, Wulff H (2013) Development of a QPatch automated electrophysiology assay for identifying KCa3.1 inhibitors and activators. Assay Drug Dev Technol 11(9–10):551–560. doi:10.1089/adt.2013.543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen BS (2002) BMS-204352: a potassium channel opener developed for the treatment of stroke. CNS Drug Rev 8(4):353–360

    Article  CAS  PubMed  Google Scholar 

  • Jensen BS, Strobaek D, Christophersen P, Jorgensen TD, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol 275(3 Pt 1):C848–C856

    CAS  PubMed  Google Scholar 

  • Jensen BS, Odum N, Jorgensen NK, Christophersen P, Olesen SP (1999) Inhibition of T cell proliferation by selective block of Ca2+-activated K+ channels. Proc Natl Acad Sci U S A 96(19):10917–10921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji YH, Wang WX, Ye JG, He LL, Li YJ, Yan YP, Zhou Z (2003) Martentoxin, a novel K+-channel-blocking peptide: purification, cDNA and genomic cloning, and electrophysiological and pharmacological characterization. J Neurochem 84(2):325–335

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen S, Dyhring T, Brown DT, Strobaek D, Christophersen P, Demnitz J (2013) A high-throughput screening campaign for detection of Ca2+-activated K+ channel activators and inhibitors using a fluorometric imaging plate reader-based Tl+-influx assay. Assay Drug Dev Technol 11(3):163–172. doi:10.1089/adt.2012.479

    Article  CAS  PubMed  Google Scholar 

  • Kaji DM (1990) Nifedipine inhibits calcium-activated K transport in human erythrocytes. Am J Physiol 259(2 Pt 1):C332–C339

    CAS  PubMed  Google Scholar 

  • Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, Strobaek D, Liang X, Egorova P, Vorontsova D, Christophersen P, Ronn LC, Bezprozvanny I (2012) Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol 19(10):1340–1353. doi:10.1016/j.chembiol.2012.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehl SJ (1996) Block of BK (maxi K) channels of rat pituitary melanotrophs by Na+ and other alkali metal ions. Pflugers Archiv 432(4):623–629

    Article  CAS  PubMed  Google Scholar 

  • King JT, Lovell PV, Rishniw M, Kotlikoff MI, Zeeman ML, McCobb DP (2006) Beta2 and beta4 subunits of BK channels confer differential sensitivity to acute modulation by steroid hormones. J Neurophysiol 95(5):2878–2888. doi:10.1152/jn.01352.2005

    Article  CAS  PubMed  Google Scholar 

  • Kiraly I, Pataricza J, Bajory Z, Simonsen U, Varro A, Papp JG, Pajor L, Kun A (2013) Involvement of large-conductance Ca2+ -activated K+ channels in both nitric oxide and endothelium-derived hyperpolarization-type relaxation in human penile small arteries. Basic Clin Pharmacol Toxicol 113(1):19–24. doi:10.1111/bcpt.12059

    Article  CAS  PubMed  Google Scholar 

  • Klockgether-Radke AP, Huneck S, Meyberg S, Neumann P, Hellige G (2005) Ketamine enantiomers differentially relax isolated coronary artery rings. Eur J Anaesthesiol 22(3):215–221

    Article  CAS  PubMed  Google Scholar 

  • Knaus HG, McManus OB, Lee SH, Schmalhofer WA, Garcia-Calvo M, Helms LM, Sanchez M, Giangiacomo K, Reuben JP, Smith AB III et al (1994) Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels. Biochemistry 33(19):5819–5828

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Nishizawa Y, Sawada K, Ogura H, Miyabe M (2008) K+-channel openers suppress epileptiform activities induced by 4-aminopyridine in cultured rat hippocampal neurons. J Pharmacol Sci 108(4):517–528

    Article  CAS  PubMed  Google Scholar 

  • Koegel H, Alzheimer C (2001) Expression and biological significance of Ca2+-activated ion channels in human keratinocytes. FASEB J 15(1):145–154. doi:10.1096/fj.00-0055com

    Article  CAS  PubMed  Google Scholar 

  • Koegel H, Kaesler S, Burgstahler R, Werner S, Alzheimer C (2003) Unexpected down-regulation of the hIK1 Ca2+-activated K+ channel by its opener 1-ethyl-2-benzimidazolinone in HaCaT keratinocytes. Inverse effects on cell growth and proliferation. J Biol Chem 278(5):3323–3330. doi:10.1074/jbc.M208914200

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski ES, Johnson G, Dischino DD, Dworetzky SI, Boissard CG, Gribkoff VK (1996) Synthesis and biological evaluation of an iodinated iberiotoxin analogue, [mono-iodo-Tyr5, Phe36]-iberiotoxin. Int J Pept Protein Res 48(2):194–199

    Article  CAS  PubMed  Google Scholar 

  • Krishna R, Palme H, Zeng J, Srinivas N (2002a) Effect of dose and input rate on the brain penetration of BMS-204352 following intravenous administration to rats. Biopharm Drug Dispos 23(6):227–231. doi:10.1002/bdd.317

    Article  CAS  PubMed  Google Scholar 

  • Krishna R, Shah VR, Mantha S, Vachharajani NN, Srinivas N (2002b) Pharmacokinetics and dose proportionality of BMS-204352 after intravenous administration to dogs. Biopharm Drug Dispos 23(2):83–86

    Article  CAS  PubMed  Google Scholar 

  • Krishna R, Shah VR, Srinivas N (2002c) Pharmacokinetics and dose proportionality of BMS-204352 after intraarterial administration to rats. Biopharm Drug Dispos 23(6):233–237. doi:10.1002/bdd.318

    Article  CAS  PubMed  Google Scholar 

  • Kroigaard C, Dalsgaard T, Nielsen G, Laursen BE, Pilegaard H, Kohler R, Simonsen U (2012) Activation of endothelial and epithelial KCa2.3 calcium-activated potassium channels by NS309 relaxes human small pulmonary arteries and bronchioles. Br J Pharmacol 167(1):37–47. doi:10.1111/j.1476-5381.2012.01986.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kun A, Matchkov VV, Stankevicius E, Nardi A, Hughes AD, Kirkeby HJ, Demnitz J, Simonsen U (2009) NS11021, a novel opener of large-conductance Ca2+-activated K+ channels, enhances erectile responses in rats. Br J Pharmacol 158(6):1465–1476. doi:10.1111/j.1476-5381.2009.00404.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunze WA, Bornstein JC, Furness JB, Hendriks R, Stephenson DS (1994) Charybdotoxin and iberiotoxin but not apamin abolish the slow after-hyperpolarization in myenteric plexus neurons. Pflugers Archiv 428(3–4):300–306

    Article  CAS  PubMed  Google Scholar 

  • La Fuente JM, Fernandez A, Cuevas P, Gonzalez-Corrochano R, Chen M, Angulo J (2014) Stimulation of large-conductance calcium-activated potassium channels inhibits neurogenic contraction of human bladder from patients with urinary symptoms and reverses acetic acid-induced bladder hyperactivity in rats. Eur J Pharmacol. doi:10.1016/j.ejphar.2014.03.060

    Google Scholar 

  • Laeis P, Puchler K, Kirch W (2001) The pharmacokinetic and metabolic profile of olmesartan medoxomil limits the risk of clinically relevant drug interaction. J Hypertens Suppl 19(1):S21–S32

    Article  CAS  PubMed  Google Scholar 

  • Lang DG, Ritchie AK (1990) Tetraethylammonium blockade of apamin-sensitive and insensitive Ca2+-activated K+ channels in a pituitary cell line. J Physiol 425:117–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latorre R, Vergara C, Hidalgo C (1982) Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. Proc Natl Acad Sci U S A 79(3):805–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauterbach B, Barbosa-Sicard E, Wang MH, Honeck H, Kargel E, Theuer J, Schwartzman ML, Haller H, Luft FC, Gollasch M, Schunck WH (2002) Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators. Hypertension 39(2 Pt 2):609–613

    Article  CAS  PubMed  Google Scholar 

  • Layne JJ, Nausch B, Olesen SP, Nelson MT (2010) BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle. Am J Physiol Regul Integr Comp Physiol 298(2):R378–R384. doi:10.1152/ajpregu.00458.2009

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Kwak J, Suh CK, Shin JH (2006) Dual effects of nitric oxide on the large conductance calcium-activated potassium channels of rat brain. J Biochem Mol Biol 39(1):91–96

    CAS  PubMed  Google Scholar 

  • Lee BC, Lim HH, Kim S, Youn HS, Lee Y, Kim YC, Eom SH, Lee KW, Park CS (2012) Localization of a site of action for benzofuroindole-induced potentiation of BKCa channels. Mol Pharmacol 82(2):143–155. doi:10.1124/mol.112.078097

    Article  CAS  PubMed  Google Scholar 

  • Lew VL, Ferreira HG (1976) Variable Ca sensitivity of a K-selective channel in intact red-cell membranes. Nature 263(5575):336–338

    Article  CAS  PubMed  Google Scholar 

  • Li C, Grillo MP, Benet LZ (2003a) In vitro studies on the chemical reactivity of 2,4-dichlorophenoxyacetyl-S-acyl-CoA thioester. Toxicol Appl Pharmacol 187(2):101–109

    Article  CAS  PubMed  Google Scholar 

  • Li C, Olurinde MO, Hodges LM, Grillo MP, Benet LZ (2003b) Covalent binding of 2-phenylpropionyl-S-acyl-CoA thioester to tissue proteins in vitro. Drug Metab Dispos 31(6):727–730

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Johnson G, Romine JL, Meanwell NA, Martin SW, Dworetzky SI, Boissard CG, Gribkoff VK, Starrett JE Jr (2003c) Novel openers of Ca2+-dependent large-conductance potassium channels: symmetrical pharmacophore and electrophysiological evaluation of bisphenols. Bioorg Med Chem Lett 13(8):1437–1439

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Xin T, He W, Li F, Su ZQ (2014) Myelinated Ah-type trigeminal ganglion neurons in female rats: neuroexcitability, chemosensitivity to histamine, and potential clinical impact. Neurosci Lett 567:74–79. doi:10.1016/j.neulet.2014.03.039

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Katakam PV, VanRollins M, Weintraub NL, Spector AA, Lee HC (2001) Dihydroxyeicosatrienoic acids are potent activators of Ca2+-activated K+ channels in isolated rat coronary arterial myocytes. J Physiol 534(Pt 3):651–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas D, Goulitquer S, Marienhagen J, Fer M, Dreano Y, Schwaneberg U, Amet Y, Corcos L (2010) Stereoselective epoxidation of the last double bond of polyunsaturated fatty acids by human cytochromes P450. J Lipid Res 51(5):1125–1133. doi:10.1194/jlr.M003061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay KB (2001) BMS-204352 (Bristol Myers Squibb). Curr Opin Investig Drugs 2(6):820–823

    CAS  PubMed  Google Scholar 

  • Maillard MP, Rossat J, Brunner HR, Burnier M (2000) Tasosartan, enoltasosartan, and angiotensin II receptor blockade: the confounding role of protein binding. J Pharmacol Exp Ther 295(2):649–654

    CAS  PubMed  Google Scholar 

  • Makovec F, Peris W, Rovati AL (1990) Derivatives of n-phenylbenzamide with anti-ulcer and anti-allergy activity and a method for their preparation. WO 1990009989

    Google Scholar 

  • Makovec F, Peris W, Revel L, Giovanetti R, Redaelli D, Rovati LC (1992) Antiallergic and cytoprotective activity of new N-phenylbenzamido acid derivatives. J Med Chem 35(20):3633–3640

    Article  CAS  PubMed  Google Scholar 

  • Malerba M, Mennuni L, Piepoli T, Caselli G, Makovec F, Rovati LC, D’ Amato M, Ferrari F (2009) Andolast acts at different cellular levels to inhibit immunoglobulin E synthesis. Int J Immunopathol Pharmacol 22(1):85–94

    Article  CAS  PubMed  Google Scholar 

  • Mall M, Gonska T, Thomas J, Schreiber R, Seydewitz HH, Kuehr J, Brandis M, Kunzelmann K (2003) Modulation of Ca2+-activated Cl secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia. Pediatr Res 53(4):608–618. doi:10.1203/01.PDR.0000057204.51420.DC

    Article  CAS  PubMed  Google Scholar 

  • Malysz J, Buckner SA, Daza AV, Milicic I, Perez-Medrano A, Gopalakrishnan M (2004) Functional characterization of large conductance calcium-activated K+ channel openers in bladder and vascular smooth muscle. Naunyn Schmiedebergs Arch Pharmacol 369(5):481–489. doi:10.1007/s00210-004-0920-y

    Article  CAS  PubMed  Google Scholar 

  • Manaves V, Qin W, Bauer AL, Rossie S, Kobayashi M, Rane SG (2004) Calcium and Vitamin D increase mRNA levels for the growth control hIK1 channel in human epidermal keratinocytes but functional channels are not observed. BMC Dermatol 4:7. doi:10.1186/1471-5945-4-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzanares D, Gonzalez C, Ivonnet P, Chen RS, Valencia-Gattas M, Conner GE, Larsson HP, Salathe M (2011) Functional apical large conductance, Ca2+-activated, and voltage-dependent K+ channels are required for maintenance of airway surface liquid volume. J Biol Chem 286(22):19830–19839. doi:10.1074/jbc.M110.185074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matos JE, Sausbier M, Beranek G, Sausbier U, Ruth P, Leipziger J (2007) Role of cholinergic-activated KCa1.1 (BK), KCa3.1 (SK4) and KV7.1 (KCNQ1) channels in mouse colonic Cl secretion. Acta Physiol 189(3):251–258. doi:10.1111/j.1748-1716.2006.01646.x

    Article  CAS  Google Scholar 

  • McCobb DP, Fowler NL, Featherstone T, Lingle CJ, Saito M, Krause JE, Salkoff L (1995) A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am J Physiol 269(3 Pt 2):H767–H777

    CAS  PubMed  Google Scholar 

  • McManus OB, Harris GH, Giangiacomo KM, Feigenbaum P, Reuben JP, Addy ME, Burka JF, Kaczorowski GJ, Garcia ML (1993) An activator of calcium-dependent potassium channels isolated from a medicinal herb. Biochemistry 32(24):6128–6133

    Article  CAS  PubMed  Google Scholar 

  • McNaughton-Smith GA, Burns JF, Stocker JW, Rigdon GC, Creech C, Arrington S, Shelton T, de Franceschi L (2008) Novel inhibitors of the Gardos channel for the treatment of sickle cell disease. J Med Chem 51(4):976–982. doi:10.1021/jm070663s

    Article  CAS  PubMed  Google Scholar 

  • Miller C (1987) Trapping single ions inside single ion channels. Biophys J 52(1):123–126. doi:10.1016/S0006-3495(87)83196-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller O, Yu R (2008) Topical ophthalmic formulations. WO 2008027341

    Google Scholar 

  • Miller C, Moczydlowski E, Latorre R, Phillips M (1985) Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 313(6000):316–318

    Article  CAS  PubMed  Google Scholar 

  • Mishra RC, Wulff H, Cole WC, Braun AP (2014) A pharmacologic activator of endothelial KCa channels enhances coronary flow in the hearts of type 2 diabetic rats. J Mol Cell Cardiol 72:364–373. doi:10.1016/j.yjmcc.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  • Morin C, Sirois M, Echave V, Gomes MM, Rousseau E (2007) Functional effects of 20-HETE on human bronchi: hyperpolarization and relaxation due to BKCa channel activation. Am J Physiol Lung Cell Mol Physiol 293(4):L1037–L1044. doi:10.1152/ajplung.00145.2007

    Article  CAS  PubMed  Google Scholar 

  • Mouhat S, Visan V, Ananthakrishnan S, Wulff H, Andreotti N, Grissmer S, Darbon H, De Waard M, Sabatier JM (2005) K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. Biochem J 385(Pt 1):95–104. doi:10.1042/BJ20041379

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Tanaka M, Tsuda M (1996) Pyrrole derivatives and medicinal composition. WO 1996040634

    Google Scholar 

  • Nakamura A, Tanaka M, Tsuda M (1999) Potassium channel activators. WO 1999036068

    Google Scholar 

  • Nardi A, Olesen SP (2008) BK channel modulators: a comprehensive overview. Curr Med Chem 15(11):1126–1146

    Article  CAS  PubMed  Google Scholar 

  • Nardi A, Calderone V, Chericoni S, Morelli I (2003) Natural modulators of large-conductance calcium-activated potassium channels. Planta Med 69(10):885–892. doi:10.1055/s-2003-45095

    Article  CAS  PubMed  Google Scholar 

  • Nardi A, Demnitz D, Garcia ML, Polosa R (2008) Potassium channels as drug targets for therapeutic intervention in respiratory diseases. Expert Opin Ther Pat 18(12):1361–1384

    Article  CAS  Google Scholar 

  • Narenjkar J, el Assem SK, Ganellin CR (2004) Inhibition of the antigen-induced activation of RBL-2H3 cells by cetiedil and some of its analogues. Eur J Pharmacol 483(2–3):107–116

    Article  CAS  PubMed  Google Scholar 

  • Nausch B, Rode F, Jorgensen S, Nardi A, Korsgaard MP, Hougaard C, Brown WD, Bonev AD, Dyhring T, Strobaek D, Olesen SP, Christophersen P, Grunnet M, Nelson MT, Ronn LC (2014) NS19504: a novel BK channel activator with relaxing effect on bladder smooth muscle spontaneous phasic contractions. J Pharmacol Exp Therap. doi:10.1124/jpet.113.212662

    Google Scholar 

  • Neyton J, Miller C (1988) Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel. J Gen Physiol 92(5):569–586

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HM, Wulff H, Varov-Varovoy V (2015) Validation of KCa3.1 channel nifedipine interaction site predicted by Rosetta modeling method. Biophysical J 108(2):582a–583a

    Article  Google Scholar 

  • Niu X, Liu G, Wu RS, Chudasama N, Zakharov SI, Karlin A, Marx SO (2013) Orientations and proximities of the extracellular ends of transmembrane helices S0 and S4 in open and closed BK potassium channels. PLoS One 8(3), e58335. doi:10.1371/journal.pone.0058335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohwada T, Nonomura T, Maki K, Sakamoto K, Ohya S, Muraki K, Imaizumi Y (2003) Dehydroabietic acid derivatives as a novel scaffold for large-conductance calcium-activated K+ channel openers. Bioorg Med Chem Lett 13(22):3971–3974

    Article  CAS  PubMed  Google Scholar 

  • Ohwada T, Sakamaki Y, Kabasawa Y, Yasutomi E (2009) Potassium channel opener. WO 2009110468

    Google Scholar 

  • Olesen SP, Munch E, Moldt P, Drejer J (1994) Selective activation of Ca2+-dependent K+ channels by novel benzimidazolone. Eur J Pharmacol 251(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Owada T, Tajima T, Chokai Y, Akaha S (2007) Potassium channel opening agent. JP 2007186480

    Google Scholar 

  • Pantazis A, Gudzenko V, Savalli N, Sigg D, Olcese R (2010a) Operation of the voltage sensor of a human voltage- and Ca2+-activated K+ channel. Proc Natl Acad Sci U S A 107(9):4459–4464. doi:10.1073/pnas.0911959107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantazis A, Kohanteb AP, Olcese R (2010b) Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BK(Ca) channel. J Gen Physiol 136(6):645–657. doi:10.1085/jgp.201010503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parajuli SP, Hristov KL, Soder RP, Kellett WF, Petkov GV (2013) NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels. Br J Pharmacol 168(7):1611–1625. doi:10.1111/bph.12049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parihar AS, Groebe DR, Scott VE, Feng J, Zhang XF, Warrior U, Gopalakrishnan M, Shieh CC (2003) Functional analysis of large conductance Ca2+-activated K+ channels: ion flux studies by atomic absorption spectrometry. Assay Drug Dev Technol 1(5):647–654. doi:10.1089/154065803770381002

    Article  CAS  PubMed  Google Scholar 

  • Pedarzani P, Mosbacher J, Rivard A, Cingolani LA, Oliver D, Stocker M, Adelman JP, Fakler B (2001) Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J Biol Chem 276(13):9762–9769. doi:10.1074/jbc.M010001200

    Article  CAS  PubMed  Google Scholar 

  • Pinter T, Jana S, Courtemanche RJ, Hof F (2011) Recognition properties of carboxylic acid bioisosteres: anion binding by tetrazoles, aryl sulfonamides, and acyl sulfonamides on a calix[4]arene scaffold. J Org Chem 76(10):3733–3741. doi:10.1021/jo200031u

    Article  CAS  PubMed  Google Scholar 

  • Ponte CG, McManus OB, Schmalhofer WA, Shen DM, Dai G, Stevenson A, Sur S, Shah T, Kiss L, Shu M, Doherty JB, Nargund R, Kaczorowski GJ, Suarez-Kurtz G, Garcia ML (2012) Selective, direct activation of high-conductance, calcium-activated potassium channels causes smooth muscle relaxation. Mol Pharmacol 81(4):567–577. doi:10.1124/mol.111.075853

    Article  CAS  PubMed  Google Scholar 

  • Power EC, Ganellin CR, Benton DC (2006) Partial structures of ketoconazole as modulators of the large conductance calcium-activated potassium channel (BK(Ca)). Bioorg Med Chem Lett 16(4):887–890. doi:10.1016/j.bmcl.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  • Radtke J, Schmidt K, Wulff H, Kohler R, de Wit C (2013) Activation of KCa3.1 by SKA-31 induces arteriolar dilatation and lowers blood pressure in normo- and hypertensive connexin40-deficient mice. Br J Pharmacol 170(2):293–303. doi:10.1111/bph.12267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rae JL, Dewey J, Rae JS, Cooper K (1990) A maxi calcium-activated potassium channel from chick lens epithelium. Curr Eye Res 9(9):847–861

    Article  CAS  PubMed  Google Scholar 

  • Rittenhouse AR, Parker C, Brugnara C, Morgan KG, Alper SL (1997) Inhibition of maxi-K currents in ferret portal vein smooth muscle cells by the antifungal clotrimazole. Am J Physiol 273(1 Pt 1):C45–C56

    CAS  PubMed  Google Scholar 

  • Roth EK, Hirtz S, Duerr J, Wenning D, Eichler I, Seydewitz HH, Amaral MD, Mall MA (2011) The K+ channel opener 1-EBIO potentiates residual function of mutant CFTR in rectal biopsies from cystic fibrosis patients. PLoS One 6(8), e24445. doi:10.1371/journal.pone.0024445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rovati LC, Giordani A, Caselli G (2012) N-phenylbenzamide derivatives as drugs for the treatment of copd. CA 2514373

    Google Scholar 

  • Roxburgh CJ, Ganellin CR, Athmani S, Bisi A, Quaglia W, Benton DC, Shiner MA, Malik-Hall M, Haylett DG, Jenkinson DH (2001) Synthesis and structure-activity relationships of cetiedil analogues as blockers of the Ca2+-activated K+ permeability of erythrocytes. J Med Chem 44(20):3244–3253

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Morayo Akande A, Large RJ, Webb TI, Camarasu C, Sergeant GP, McHale NG, Thornbury KD, Hollywood MA (2012) Structure-activity relationships of a novel group of large-conductance Ca2+-activated K+ (BK) channel modulators: the GoSlo-SR family. ChemMedChem 7(10):1763–1769. doi:10.1002/cmdc.201200321

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Large RJ, Akande AM, Kshatri A, Webb TI, Domene C, Sergeant GP, McHale NG, Thornbury KD, Hollywood MA (2014) Development of GoSlo-SR-5-69, a potent activator of large conductance Ca2+-activated K+ (BK) channels. Eur J Med Chem 75:426–437. doi:10.1016/j.ejmech.2014.01.035

    Article  CAS  PubMed  Google Scholar 

  • Rufo PA, Merlin D, Riegler M, Ferguson-Maltzman MH, Dickinson BL, Brugnara C, Alper SL, Lencer WI (1997) The antifungal antibiotic, clotrimazole, inhibits chloride secretion by human intestinal T84 cells via blockade of distinct basolateral K+ conductances. Demonstration of efficacy in intact rabbit colon and in an in vivo mouse model of cholera. J Clin Invest 100(12):3111–3120. doi:10.1172/JCI119866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan JS, Tao QP, Kelly ME (1998) Adrenergic regulation of calcium-activated potassium current in cultured rabbit pigmented ciliary epithelial cells. J Physiol 511(Pt 1):145–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito M, Nelson C, Salkoff L, Lingle CJ (1997) A cysteine-rich domain defined by a novel exon in a slo variant in rat adrenal chromaffin cells and PC12 cells. J Biol Chem 272(18):11710–11717

    Article  CAS  PubMed  Google Scholar 

  • Sallustio BC, Sabordo L, Evans AM, Nation RL (2000) Hepatic disposition of electrophilic acyl glucuronide conjugates. Curr Drug Metab 1(2):163–180

    Article  CAS  PubMed  Google Scholar 

  • Sanchez M, McManus OB (1996) Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel. Neuropharmacology 35(7):963–968

    Article  CAS  PubMed  Google Scholar 

  • Sankaranarayanan A, Raman G, Busch C, Schultz T, Zimin PI, Hoyer J, Kohler R, Wulff H (2009) Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol Pharmacol 75(2):281–295. doi:10.1124/mol.108.051425

    Article  CAS  PubMed  Google Scholar 

  • Schreiber M, Salkoff L (1997) A novel calcium-sensing domain in the BK channel. Biophys J 73(3):1355–1363. doi:10.1016/S0006-3495(97)78168-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroder RL, Jensen BS, Strobaek D, Olesen SP, Christophersen P (2000) Activation of the human, intermediate-conductance, Ca2+-activated K+ channel by methylxanthines. Pflugers Archiv 440(6):809–818

    Article  CAS  PubMed  Google Scholar 

  • Schroder RL, Jespersen T, Christophersen P, Strobaek D, Jensen BS, Olesen SP (2001) KCNQ4 channel activation by BMS-204352 and retigabine. Neuropharmacology 40(7):888–898

    Article  CAS  PubMed  Google Scholar 

  • Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134(6):1019–1029. doi:10.1016/j.cell.2008.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schunck WH, Wallukat G, Fischer R, Schmidt C, Müller DN, Puli N, Falck JR (2010) Novel eicosanoid derivatives. WO 2010081683

    Google Scholar 

  • Schwarz W, Keim H, Fehlau R, Fuhrmann GF (1989) Modulation of the Ca2+- or Pb2+-activated K+-selective channels in human red cells. I. Effects of propranolol. Biochim Biophys Acta 978(1):32–36

    Article  CAS  PubMed  Google Scholar 

  • Seto SW, Au AL, Lam TY, Chim SS, Lee SM, Wan S, Tjiu DC, Shigemura N, Yim AP, Chan SW, Tsui SK, Leung GP, Kwan YW (2007) Modulation by simvastatin of iberiotoxin-sensitive, Ca2+-activated K+ channels of porcine coronary artery smooth muscle cells. Br J Pharmacol 151(7):987–997. doi:10.1038/sj.bjp.0707327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sha Y, Tashima T, Mochizuki Y, Toriumi Y, Adachi-Akahane S, Nonomura T, Cheng M, Ohwada T (2005) Compounds structurally related to tamoxifen as openers of large-conductance calcium-activated K+ channel. Chem Pharm Bull 53(10):1372–1373

    Article  CAS  PubMed  Google Scholar 

  • Sheu SJ, Bee YS, Chen CH (2008) Resveratrol and large-conductance calcium-activated potassium channels in the protection of human retinal pigment epithelial cells. J Ocul Pharmacol Ther 24(6):551–555. doi:10.1089/jop.2008.0013

    Article  CAS  PubMed  Google Scholar 

  • Shi J, He HQ, Zhao R, Duan YH, Chen J, Chen Y, Yang J, Zhang JW, Shu XQ, Zheng P, Ji YH (2008) Inhibition of martentoxin on neuronal BK channel subtype (alpha+beta4): implications for a novel interaction model. Biophys J 94(9):3706–3713. doi:10.1529/biophysj.107.122150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shieh CC, Turner SC, Zhang XF, Milicic I, Parihar A, Jinkerson T, Wilkins J, Buckner SA, Gopalakrishnan M (2007) A-272651, a nonpeptidic blocker of large-conductance Ca2+-activated K+ channels, modulates bladder smooth muscle contractility and neuronal action potentials. Br J Pharmacol 151(6):798–806. doi:10.1038/sj.bjp.0707278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Devor DC, Gerlach AC, Gondor M, Pilewski JM, Bridges RJ (2000) Stimulation of Cl secretion by chlorzoxazone. J Pharmacol Exp Ther 292(2):778–787

    CAS  PubMed  Google Scholar 

  • Singh S, Syme CA, Singh AK, Devor DC, Bridges RJ (2001) Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J Pharmacol Exp Ther 296(2):600–611

    CAS  PubMed  Google Scholar 

  • Sivarao DV, Newberry K, Langdon S, Lee AV, Hewawasam P, Plym MJ, Signor L, Myers R, Lodge NJ (2005) Effect of 4-(5-chloro-2-hydroxyphenyl)-3-(2-hydroxyethyl)-6-(trifluoromethyl)-quinolin-2(1H )-one (BMS-223131), a novel opener of large conductance Ca2+-activated K+ (maxi-K) channels on normal and stress-aggravated colonic motility and visceral nociception. J Pharmacol Exp Ther 313(2):840–847. doi:10.1124/jpet.104.079285

    Article  CAS  PubMed  Google Scholar 

  • Song WH, Liu MM, Zhong DW, Zhu YL, Bosscher M, Zhou L, Ye DY, Yuan ZH (2013) Tetrazole and triazole as bioisosteres of carboxylic acid: discovery of diketo tetrazoles and diketo triazoles as anti-HCV agents. Bioorg Med Chem Lett 23(16):4528–4531. doi:10.1016/j.bmcl.2013.06.045

    Article  CAS  PubMed  Google Scholar 

  • Sorensen MV, Matos JE, Sausbier M, Sausbier U, Ruth P, Praetorius HA, Leipziger J (2008) Aldosterone increases KCa1.1 (BK) channel-mediated colonic K+ secretion. J Physiol 586(Pt 17):4251–4264. doi:10.1113/jphysiol.2008.156968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen MV, Sausbier M, Ruth P, Seidler U, Riederer B, Praetorius HA, Leipziger J (2010) Adrenaline-induced colonic K+ secretion is mediated by KCa1.1 (BK) channels. J Physiol 588(Pt 10):1763–1777. doi:10.1113/jphysiol.2009.181933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starrett JEJG, Gillmsan KW, Bocchino DM et al (2004) Maxi-K openers as neuroprotective agents. 227th ACS Nattional Meet, Anaheim, March 28–April 1

    Google Scholar 

  • Starrett J, Lopez O, Hewawasam P, Ding M (2005) N-substituted prodrugs of fluorooxindoles. US 20050203089

    Google Scholar 

  • Stocker JW, De Franceschi L, McNaughton-Smith GA, Corrocher R, Beuzard Y, Brugnara C (2003) ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood 101(6):2412–2418. doi:10.1182/blood-2002-05-1433

    Article  CAS  PubMed  Google Scholar 

  • Strobaek D, Christophersen P, Holm NR, Moldt P, Ahring PK, Johansen TE, Olesen SP (1996) Modulation of the Ca2+-dependent K+ channel, hslo, by the substituted diphenylurea NS 1608, paxilline and internal Ca2+. Neuropharmacology 35(7):903–914

    Article  CAS  PubMed  Google Scholar 

  • Strobaek D, Teuber L, Jorgensen TD, Ahring PK, Kjaer K, Hansen RS, Olesen SP, Christophersen P, Skaaning-Jensen B (2004) Activation of human IK and SK Ca2+-activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim Biophys Acta 1665(1–2):1–5. doi:10.1016/j.bbamem.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  • Strobaek D, Brown DT, Jenkins DP, Chen YJ, Coleman N, Ando Y, Chiu P, Jorgensen S, Demnitz J, Wulff H, Christophersen P (2013) NS6180, a new KCa3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease. Br J Pharmacol 168(2):432–444. doi:10.1111/j.1476-5381.2012.02143.x

    Article  CAS  PubMed  Google Scholar 

  • Sun XH, Ding JP, Li H, Pan N, Gan L, Yang XL, Xu HB (2007) Activation of large-conductance calcium-activated potassium channels by puerarin: the underlying mechanism of puerarin-mediated vasodilation. J Pharmacol Exp Ther 323(1):391–397. doi:10.1124/jpet.107.125567

    Article  CAS  PubMed  Google Scholar 

  • Syme CA, Gerlach AC, Singh AK, Devor DC (2000) Pharmacological activation of cloned intermediate- and small-conductance Ca2+-activated K+ channels. Am J Physiol Cell Physiol 278(3):C570–C581

    CAS  PubMed  Google Scholar 

  • Tanaka M, Sasaki Y, Kimura Y, Fukui T, Hamada K, Ukai Y (2003) A novel pyrrole derivative, NS-8, suppresses the rat micturition reflex by inhibiting afferent pelvic nerve activity. BJU Int 92(9):1031–1036

    Article  CAS  PubMed  Google Scholar 

  • Tang QY, Zhang Z, Xia XM, Lingle CJ (2010) Block of mouse Slo1 and Slo3 K+ channels by CTX, IbTX, TEA, 4-AP and quinidine. Channels 4(1):22–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao J, Shi J, Liu ZR, Ji YH (2012) Martentoxin: a unique ligand of BK channels. Sheng li xue bao [Acta physiologica Sinica] 64(4):355–364

    CAS  Google Scholar 

  • Tashima T, Toriumi Y, Mochizuki Y, Nonomura T, Nagaoka S, Furukawa K, Tsuru H, Adachi-Akahane S, Ohwada T (2006) Design, synthesis, and BK channel-opening activity of hexahydrodibenzazepinone derivatives. Bioorg Med Chem 14(23):8014–8031. doi:10.1016/j.bmc.2006.07.042

    Article  CAS  PubMed  Google Scholar 

  • Thompson-Vest N, Shimizu Y, Hunne B, Furness JB (2006) The distribution of intermediate-conductance, calcium-activated, potassium (IK) channels in epithelial cells. J Anat 208(2):219–229. doi:10.1111/j.1469-7580.2006.00515.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treiber A, Van Giersbergen PL, Dingemanse J (2003) In vivo and in vitro disposition profile of tezosentan, an intravenous dual endothelin receptor antagonist, in humans. Xenobiotica 33(4):399–414. doi:10.1080/0049825021000061624

    Article  CAS  PubMed  Google Scholar 

  • Tricarico D, Barbieri M, Mele A, Carbonara G, Camerino DC (2004) Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+-deficient rats. FASEB J 18(6):760–761. doi:10.1096/fj.03-0722fje

    CAS  PubMed  Google Scholar 

  • Tsuzuki Y, Hirai M (2009) Dérivés de pyrimidine, pyridine et triazine en tant qu’ouvreurs de canaux maxi-k. WO 2009125870

    Google Scholar 

  • Turner SC, Carroll WA, White TK, Gopalakrishnan M, Coghlan MJ, Shieh CC, Zhang XF, Parihar AS, Buckner SA, Milicic I, Sullivan JP (2003) The discovery of a new class of large-conductance Ca2+-activated K+ channel opener targeted for overactive bladder: synthesis and structure-activity relationships of 2-amino-4-azaindoles. Bioorg Med Chem Lett 13(12):2003–2007

    Article  CAS  PubMed  Google Scholar 

  • Turner S, White T, Carroll W (2004) Pyrrolopyridine potassium channel openers. US 20040192697

    Google Scholar 

  • Unemoto T, Matsushita M, Tamura K, Tanaka Y, Koike K, Kogo H (2007) Role of BK channels in testosterone-induced relaxation of the aorta in spontaneously hypertensive rats. Biol Pharm Bull 30(8):1477–1480

    Article  CAS  PubMed  Google Scholar 

  • Urbahns K, Horvath E, Stasch JP, Mauler F (2003) 4-Phenyl-4H-pyrans as IK(Ca) channel blockers. Bioorg Med Chem Lett 13(16):2637–2639

    Article  CAS  PubMed  Google Scholar 

  • Vaali K, Li L, Paakkari I, Vapaatalo H (1998) Relaxing effects of NO donors on guinea pig trachea in vitro are mediated by calcium-sensitive potassium channels. J Pharmacol Exp Ther 286(1):110–114

    CAS  PubMed  Google Scholar 

  • Valverde MA, Rojas P, Amigo J, Cosmelli D, Orio P, Bahamonde MI, Mann GE, Vergara C, Latorre R (1999) Acute activation of Maxi-K channels (hSlo) by estradiol binding to the beta subunit. Science 285(5435):1929–1931

    Article  CAS  PubMed  Google Scholar 

  • Van Der Velden J, Sum G, Barker D, Koumoundouros E, Barcham G, Wulff H, Castle N, Bradding P, Snibson K (2013) KCa3.1 channel-blockade attenuates airway pathophysiology in a sheep model of chronic asthma. PLoS One 8(6), e66886. doi:10.1371/journal.pone.0066886

    Article  CAS  Google Scholar 

  • Venglovecz V, Hegyi P, Rakonczay Z Jr, Tiszlavicz L, Nardi A, Grunnet M, Gray MA (2011) Pathophysiological relevance of apical large-conductance Ca2+-activated potassium channels in pancreatic duct epithelial cells. Gut 60(3):361–369. doi:10.1136/gut.2010.214213

    Article  CAS  PubMed  Google Scholar 

  • Vestergaard-Bogind B, Stampe P, Christophersen P (1985) Single-file diffusion through the Ca2+-activated K+ channel of human red cells. J Membr Biol 88(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Vrudhula VM, Dasgupta B, Boissard CG, Gribkoff VK, Santone KS, Dalterio RA, Lodge NJ, Starrett JE Jr (2005) Analogs of a potent maxi-K potassium channel opener with an improved inhibitory profile toward cytochrome P450 isozymes. Bioorg Med Chem Lett 15(19):4286–4290. doi:10.1016/j.bmcl.2005.06.056

    Article  CAS  PubMed  Google Scholar 

  • Wallner M, Meera P, Toro L (1996) Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: an additional transmembrane region at the N terminus. Proc Natl Acad Sci U S A 93(25):14922–14927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Rothberg BS, Brenner R (2006) Mechanism of beta4 subunit modulation of BK channels. J Gen Physiol 127(4):449–465. doi:10.1085/jgp.200509436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YJ, Lin MW, Wu SN, Sung RJ (2007) The activation by estrogen receptor agonists of the BK(Ca)-channel in human cardiac fibroblasts. Biochem Pharmacol 73(9):1347–1357. doi:10.1016/j.bcp.2006.12.029

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Lin MW, Lin AA, Wu SN (2008) Riluzole-induced block of voltage-gated Na+ current and activation of BKCa channels in cultured differentiated human skeletal muscle cells. Life Sci 82(1–2):11–20. doi:10.1016/j.lfs.2007.10.015

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Qian W, Zhu Q, Chen J, Huan F, Gao R, Xiao H (2013) Martentoxin, a large-conductance Ca2+-activated K+ channel inhibitor, attenuated TNF-alpha-induced nitric oxide release by human umbilical vein endothelial cells. J Biomed Res 27(5):386–393. doi:10.7555/JBR.27.20120080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warach S, Hacke W, Hsu C, Luby M, Sullivan M, Noonan T, Lin CY, Fernandes L, Brunell R, Bozik M (2002) Effect of MaxiPost on ischemic lesions in patients with acute stroke: the POST-010 MRI substudy. Stroke 33(1):383.

    Google Scholar 

  • Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005) International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57(4):463–472. doi:10.1124/pr.57.4.9

    Article  CAS  PubMed  Google Scholar 

  • Weyler S, Baqi Y, Hillmann P, Kaulich M, Hunder AM, Muller IA, Muller CE (2008) Combinatorial synthesis of anilinoanthraquinone derivatives and evaluation as non-nucleotide-derived P2Y2 receptor antagonists. Bioorg Med Chem Lett 18(1):223–227. doi:10.1016/j.bmcl.2007.10.082

    Article  CAS  PubMed  Google Scholar 

  • Wojtovich AP, Nadtochiy SM, Urciuoli WR, Smith CO, Grunnet M, Nehrke K, Brookes PS (2013) A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel. Peer J 1, e48. doi:10.7717/peerj.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SN (2003) Large-conductance Ca2+-activated K+ channels: physiological role and pharmacology. Curr Med Chem 10(8):649–661

    Article  CAS  PubMed  Google Scholar 

  • Wu SN, Li HF, Jan CR, Shen AY (1999) Inhibition of Ca2+-activated K+ current by clotrimazole in rat anterior pituitary GH3 cells. Neuropharmacology 38(7):979–989

    Article  CAS  PubMed  Google Scholar 

  • Wu SN, Li HF, Chiang HT (2001) Vinpocetine-induced stimulation of calcium-activated potassium currents in rat pituitary GH3 cells. Biochem Pharmacol 61(7):877–892

    Article  CAS  PubMed  Google Scholar 

  • Wu SN, Liu SI, Huang MH (2004) Cilostazol, an inhibitor of type 3 phosphodiesterase, stimulates large-conductance, calcium-activated potassium channels in pituitary GH3 cells and pheochromocytoma PC12 cells. Endocrinology 145(3):1175–1184. doi:10.1210/en.2003-1430

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Yang Y, Ye S, Jiang Y (2010) Structure of the gating ring from the human large-conductance Ca2+-gated K+ channel. Nature 466(7304):393–397. doi:10.1038/nature09252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff H, Castle NA (2010) Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 3(3):385–396. doi:10.1586/ecp.10.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A 97(14):8151–8156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff H, Gutman GA, Cahalan MD, Chandy KG (2001) Delineation of the clotrimazole/TRAM-34 binding site on the intermediate conductance calcium-activated potassium channel, IKCa1. J Biol Chem 276(34):32040–32045. doi:10.1074/jbc.M105231200

    Article  CAS  PubMed  Google Scholar 

  • Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V (2007) Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14(13):1437–1457

    Article  CAS  PubMed  Google Scholar 

  • Wulf-Johansson H, Amrutkar DV, Hay-Schmidt A, Poulsen AN, Klaerke DA, Olesen J, Jansen-Olesen I (2010) Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway. Neuroscience 167(4):1091–1102. doi:10.1016/j.neuroscience.2010.02.063

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Holmes BB, Gopal VR, Kishore RV, Sangras B, Yi XY, Falck JR, Campbell WB (2007) Characterization of 14,15-epoxyeicosatrienoyl-sulfonamides as 14,15-epoxyeicosatrienoic acid agonists: use for studies of metabolism and ligand binding. J Pharmacol Exp Ther 321(3):1023–1031. doi:10.1124/jpet.107.119651

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Chen X, Li H, Zhou Y, Yao L, Wu G, Chen X, Zhang N, Zhou Z, Xu T, Wu H, Ding J (2005) BmP09, a “long chain” scorpion peptide blocker of BK channels. J Biol Chem 280(15):14819–14828. doi:10.1074/jbc.M412735200

    Article  CAS  PubMed  Google Scholar 

  • Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R (2010) Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution. Science 329(5988):182–186. doi:10.1126/science.1190414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakharov SI, Morrow JP, Liu G, Yang L, Marx SO (2005) Activation of the BK (SLO1) potassium channel by mallotoxin. J Biol Chem 280(35):30882–30887. doi:10.1074/jbc.M505302200

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Gordon E, Lin Z, Lozinskaya IM, Willette RN, Xu X (2008) 1-[1-Hexyl-6-(methyloxy)-1H-indazol-3-yl]-2-methyl-1-propanone, a potent and highly selective small molecule blocker of the large-conductance voltage-gated and calcium-dependent K+ channel. J Pharmacol Exp Ther 327(1):168–177. doi:10.1124/jpet.108.139733

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Krishna R, Wang L, Zeng J, Mitroka J, Dai R, Narasimhan N, Reeves RA, Srinivas NR, Klunk LJ (2005) Metabolism, pharmacokinetics, and protein covalent binding of radiolabeled MaxiPost (BMS-204352) in humans. Drug Metab Dispos 33(1):83–93. doi:10.1124/dmd.104.001412

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Pascal JM, Schumann M, Armen RS, Zhang JF (2012) Identification of the functional binding pocket for compounds targeting small-conductance Ca2+-activated potassium channels. Nat Commun 3:1021. doi:10.1038/ncomms2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Pascal JM, Zhang JF (2013) Unstructured to structured transition of an intrinsically disordered protein peptide in coupling Ca2+-sensing and SK channel activation. Proc Natl Acad Sci U S A 110(12):4828–4833. doi:10.1073/pnas.1220253110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Nardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Nardi, A., Olesen, SP., Christophersen, P. (2016). Recent Developments in the Pharmacology of Epithelial Ca2+-Activated K+ Channels. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_26

Download citation

Publish with us

Policies and ethics