Skip to main content

ADPKD Channels: The Polycystins

  • Chapter
  • First Online:

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

The initial members of the polycystin family were first described and characterized as the proteins mutated in a common genetic disease, autosomal dominant polycystic kidney disease (ADPKD). Over the past few decades, these proteins, polycystins 1 and 2 (PC1, PC2), have been found to have a variety of cellular functions in multiple intracellular locations. In addition, other homologous proteins have been identified and linked to the transient receptor potential family of channels. PC1 and PC2 or homologous family members form mechanosensitive Ca2+ channels in the primary cilia. Elsewhere in the cell, the PCs may form Ca2+ channels that are gated by other stimuli and each of the PCs appears to play a variety of functional roles in multiple cellular pathways. While much is currently known about the polycystins and their roles in ADPKD initiation and progression, the tissue-specific binding partners and the interactions that modulate the normal physiological functions of all the polycystins are still emerging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alessandri-Haber N, Yeh JJ, Boyd AE et al (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39:497–511

    Article  CAS  PubMed  Google Scholar 

  • Anyatonwu GI, Ehrlich BE (2004) Calcium signaling and polycystin 1. Biochem Biophys Res Commun 322:1364–1373

    Article  CAS  PubMed  Google Scholar 

  • Anyatonwu GI, Estrada M, Tian X et al (2007) Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc Natl Acad Sci U S A 104:6454–6459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnould T, Kim E, Tsiokas L et al (1998) The polycystic kidney disease 1 gene product mediates protein kinase C α-dependent and c-Jun N-terminal kinase-dependent activation of the transcription factor AP-1. J Biol Chem 273:6013–6018

    Article  CAS  PubMed  Google Scholar 

  • Audrezet MP, Gall JM, Chen JM et al (2012) Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum Mutat 33:1239–1250

    Article  CAS  PubMed  Google Scholar 

  • Bai C-X, Giamarchi A, Rodat-Despoix L et al (2008) Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9:472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banizs B, Komlosi P, Bevensee MO et al (2007) Altered pH(i) regulation and Na+/HCO3 - transporter activity in choroid plexus of cilia defective Tg737(orpk) mutant mouse. Am J Physiol Cell Physiol 292:C1409–C1416

    Article  CAS  PubMed  Google Scholar 

  • Berbari NF, Lewis JS, Bishop GA et al (2008) Bardet-Biedl syndrome proteins are required for the localization of G-protein coupled receptors to primary cilia. Proc Natl Acad Sci U S A 105:4242–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrout J, Jin M, O’Neil RG (2012) Critical role of TPPP2 and TRPC1 channels in stretch-induced injury of blood-brain barrier endothelial cells. Brain Res 1436:1–12

    Article  CAS  PubMed  Google Scholar 

  • Bhunia AK, Piontek K, Boletta A et al (2002) PKD1 induces p21waf1 and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109:157–168

    Article  CAS  PubMed  Google Scholar 

  • Boletta A, Qian F, Onuchic LF et al (2000) Polycystin-1, the gene product of PKD1, induces resistance to apoptosis and spontaneous tubulogenesis in MDCK cells. Mol Cell 6:1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Boletta A, Qian F, Onuchic LF et al (2001) Biochemical characterization of bona fide polycystin-1 in vitro and in vivo. Am J Kidney Dis 38:1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Boulter C, Mulroy S, Webb S et al (2001) Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc Natl Acad Sci U S A 98:12174–12179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukanov NO, Husson H, Dackowski WR et al (2002) Functional polycystin-1 expression is developmentally regulated during epithelial morphogenesis in vitro: downregulation and loss of membrane localization during cytogenesis. Hum Mol Genet 11:923–936

    Article  CAS  Google Scholar 

  • Bycroft M, Bateman A, Clarke J et al (1999) The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease. EMBO J 18:297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Maeda Y, Cedzick A et al (1999) Identification and characterization of polycystin-1, the PKD2 gene product. J Biol Chem 274:28557–28565

    Article  CAS  PubMed  Google Scholar 

  • Castelli M, Boca M, Chiaravalli M et al (2013) Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis. Nat Commun 4:2658. doi:10.1038/ncomms3658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang MY, Ong AC (2008) Autosomal dominant polycystic kidney disease: recent advances in pathogenesis and treatment. Nephron Physiol 108:1–7

    Article  CAS  Google Scholar 

  • Chang MY, Ong ACM (2012) Mechanism-based therapeutics for autosomal dominant polycystic kidney disease: recent progress and future prospects. Nephron Clin Pract 120:25–35

    Article  Google Scholar 

  • Chapman AB (2008) Approaches to testing new treatments in autosomal dominant polycystic kidney disease: insights from the CRISP and HALT-PKD studies. Clin J Soc Nephrol 3:1197–1204

    Article  CAS  Google Scholar 

  • Chauvet V, Tian X, Husson H et al (2004) Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 114:1433–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XZ, Vassilev PM, Basora N et al (1999) Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 401:383–386

    CAS  PubMed  Google Scholar 

  • Choi Y-H, Suzuki A, Hajarnis S et al (2011) Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein complex that is disrupted in cystic diseases. Proc Natl Acad Sci U S A 108:10679–10684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidow CJ, Maser RL, Rome LA et al (1996) The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int 50:208–218

    Article  CAS  PubMed  Google Scholar 

  • DeCaen PG, Delling M, Vien TN et al (2013) Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504:315–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delling M, DeCaen PG, Doerner JF et al (2013) Primary cilia are specialized calcium signaling organelles. Nature 504:311–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmas P (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pflugers Arch Eur J Physiol 451:264–276

    Article  CAS  Google Scholar 

  • Delmas P, Nauli SM, Li X et al (2004) Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J 18:740–742

    CAS  PubMed  Google Scholar 

  • Dere R, Wilson PD, Sanford RN et al (2010) Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR. PLoS One 5, e9239. doi:10.1371/journal.pone.0009239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Distefano G, Boca M, Rowe I et al (2009) Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through nTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol 29:2359–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Ding M, Sours-Brothers S et al (2008) Mediation of angiotensin II-induced Ca2+ signaling by polycystin 2 in glomerular mesangial cells. Am J Physiol Renal Physiol 294:F909–F918

    Article  CAS  PubMed  Google Scholar 

  • Field S, Riley K-L, Grimes DT et al (2011) Pkd1L1 establishes left-right asymmetry and physically interacts with Pkd2. Development 138:1131–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabow PA (1993) Autosomal dominant polycystic kidney disease. N Engl J Med 329:332–342

    Article  CAS  PubMed  Google Scholar 

  • Gallagher AR, Cedzich A, Gretz N et al (2000) The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci U S A 97:4017–4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattone VH II, Wang X, Harris PC et al (2003) Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9:1323–1326

    Article  CAS  PubMed  Google Scholar 

  • Geng L, Segal Y, Peissel B et al (1996) Identification and localization of polycystin, the PKD1 gene product. J Clin Invest 98(2674–2682):1996

    Google Scholar 

  • Geng L, Segal Y, Pavlova A et al (1997) Distribution and developmentally regulated expression of murine polycystin. Am J Physiol Renal Physiol 272:F451–F459

    CAS  Google Scholar 

  • Geng L, Burrow CR, Li H-P et al (2000) Modification of the composition of polycystin-1 multiprotein complexes by calcium and tyrosine phosphorylation. Biochim Biophys Acta 1533:21–35

    Article  Google Scholar 

  • Geng L, Okuhara D, Yu Z et al (2006) Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 119:1383–1395

    Article  CAS  PubMed  Google Scholar 

  • Giamarchi A, Padilla B, Coste B et al (2006) The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep 7:787–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Perrett S, Kim K, Ibarra I et al (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci U S A 98:1182–1187

    Article  CAS  PubMed  Google Scholar 

  • Gradilone SA, Masyuk TV, Huang BQ et al (2010) Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 139:304–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grantham JJ, Ye M, Gattone VH II et al (1995) In vitro fluid secretion by epithelium from polycystic kidneys. J Clin Invest 95:195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin MD, Torres VE, Grande JP et al (1997) Vascular expression of polycystin. J Am Soc Nephrol 8:616–626

    CAS  PubMed  Google Scholar 

  • Guo L, Schreiber TH, Weremowicz S et al (2000) Identification and characterization of a novel polycystin family member, polycystin-L2, in mouse and human sequence expression, alternative splicing and chromosomal localization. Genomics 64:241–251

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka K, Guggino WB (2000) cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J Am Soc Nephrol 11:1179–1187

    CAS  PubMed  Google Scholar 

  • Hanaoka K, Devuyst O, Schwiebert EM et al (1996) A role for CFTR in human autosomal dominant polycystic kidney disease. Am J Physiol Cell Physiol 270:C389–C399

    CAS  Google Scholar 

  • Hanaoka K, Qian F, Boletta A et al (2000) Co-assembly of polycystin-1 and -2 produces unique cation permeable currents. Nature 408:990–994

    Article  CAS  PubMed  Google Scholar 

  • Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris PC, Torres VE (2014) Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest 124:2315–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hateboer N, Dijk MAV, Bogdanovk N et al (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2. Lancet 353:103–107

    Article  CAS  PubMed  Google Scholar 

  • Hidaka S, Konecke V, Osten L et al (2004) PIGEA-14, a novel coiled coil protein affecting the intracellular distribution of polycystin-1. J Biol Chem 279:35009–35016

    Article  CAS  PubMed  Google Scholar 

  • Himpens B, DeSmedt H, Casteels R (1993) Intracellular Ca2+ signaling induced by vasopressin, ATP, and epidermal growth factor in epithelial LLC-PK1 cells. Am J Physiol Cell Physiol 265:C966–C975

    CAS  Google Scholar 

  • Hogan PG, Rao A (2007) Dissecting ICRAC, a store-operated calcium current. Trends Biochem Sci 32:235–245

    Article  CAS  PubMed  Google Scholar 

  • Hopp K, Ward CJ, Hommerding CJ et al (2012) Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest 122:4257–4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huan Y, van Adelsberg J (1999) Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest 104:1459–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes J, Ward C, Peral B (1995) The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10:151–160

    Article  CAS  PubMed  Google Scholar 

  • Hughes J, Ward CJ, Aspinwall R et al (1999) Identification of a human homologue of the sea urchin receptor for egg jelly: a polycystic kidney disease-like protein. Hum Mol Genet 8:543–549

    Article  CAS  PubMed  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Dackowski WR, Foggensteiner L et al (1997) Polycystin: in vitro synthesis, in vivo tissue expression, and subcellular localization identifies a large membrane-associated protein. Proc Natl Acad Sci U S A 94:6397–6402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Bukanov NO, Donohue LC (2000) Strong hemophilic interactions of the Ig-like domains of polycystin-1, the protein product of an autosomal dominant polycystic kidney disease gene, PKD1. Hum Mol Genet 9:1641–1649

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Mohieldin AM, Muntean BS et al (2013) Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell Mol Life Sci 71:2165–2178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim E, Arnould T, Sellin L et al (1999a) Interaction between RGS7 and polycystin. Proc Natl Acad Sci U S A 96:6371–6376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E, Arnould T, Sellin LK et al (1999b) The polycystic kidney disease I gene product modulates Wnt signaling. J Biol Chem 274:4947–4953

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Drummond I, Ibraghimov-Beskrovnaya O et al (2000) Polycystin 1 is required for the structural integrity of blood vessels. Proc Natl Acad Sci U S A 97:1731–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim I, Li C, Liang D et al (2008) Polycystin-2 expression is regulated by a PC2-binding domain in the intracellular portion of fibrocystin. J Biol Chem 283:31559–31566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kip SN, Hunter LLW, Ren Q et al (2005) [Ca2+]i reduction increases cellular proliferation and apoptosis in vascular smooth muscle cells: relevance to the ADPKD phenotype. Circ Res 96:873–880

    Article  CAS  PubMed  Google Scholar 

  • Kleymenova E, Ibraghimov-Beskrovnaya O, Kugoh H et al (2001) Tuberin-dependent membrane localization of polycystin-1: a functional link between polycystic kidney disease and the TSC2 tumor suppressor gene. Mol Cell 7:823–832

    Article  CAS  PubMed  Google Scholar 

  • Kobori T, Smith GD, Sanford R et al (2009) The transient receptor potential (TRP) channels TRPP2 and TRPC1 form a heterotetramer with a 2:2 stoichiometry and an alternating subunit arrangement. J Biol Chem 284:33507–35513

    Article  CAS  Google Scholar 

  • Kottgen M, Benzing T, Simmen T et al (2005) Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 24:705–716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kottgen M, Buchholz B, Garcia-Gonzalez MA et al (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koulen P, Cai Y, Geng L et al (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4:191–197

    Article  CAS  PubMed  Google Scholar 

  • Kurbegovic A, Kim H, Xu H et al (2014) Novel functional complexity of polycystin-1 by GPS cleavage in vivo: role in polycystic kidney disease. Mol Cell Biol 34:3341–3353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lal M, Song X, Pluznick JL et al (2008) Polycystin-1 C-terminal tail associates with β-catenin and inhibits canonical Wnt signaling. Hum Mol Genet 17:3105–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster MA, Gleeson JG (2010) Cystic kidney disease: the role of Wnt signaling. Trends Mol Med 6:349–360

    Article  CAS  Google Scholar 

  • Lantinga-van Leeuwen IS, Leonhard WN, van der Wal A et al (2007) Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult animals. Hum Mol Genet 16:3188–31964

    Article  CAS  PubMed  Google Scholar 

  • Le NH, van der Bent P, Huls G et al (2004) Aberrant polycystin-1 expression results in modifications of activator protein-1 activity, whereas Wnt signaling remains unaffected. J Biol Chem 279:27472–27481

    Article  CAS  PubMed  Google Scholar 

  • Le NH, van der Wal A, van der Bent P et al (2005) Increased activity of activator protein-1 transcription factor components ATF2, cJun, and cFos in human and mouse autosomal dominant polycystic kidney disease. J Am Soc Nephrol 16:2724–2731

    Article  CAS  PubMed  Google Scholar 

  • Lehtonen S, Ora A, Olkkonen VM et al (2000) In vivo interaction of the adapter protein CD2-associated protein with the type 2 polycystic kidney disease protein, polycystin-2. J. Biol Chem 275:32888–32893

    Article  CAS  Google Scholar 

  • Lentine KL, Xiao H, Machnicki G et al (2010) Renal function and healthcare costs in patients with polycystic kidney disease. Clin J Am Soc Nephrol 5:1471–1479

    Article  PubMed  PubMed Central  Google Scholar 

  • Li A, Tian X, Sung SW et al (2003a) Identification of two novel polycystic kidney disease-1-like genes in human and mouse genomes. Genomics 81:596–608

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Dai Y, Guo L et al (2003b) Polycystin-2 associates with tropomyosin-1, an actin microfilament component. J Mol Biol 325:949–962

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wright JM, Qian F et al (2005) Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem 280:41298–41306

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Montalbetti N, Wu Y et al (2006) Polycystin-2 cation channel function is under the control of microtubular structures in primary cilia of renal epithelial cells. J Biol Chem 281:37566–37575

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Santoso NG, Yu S et al (2009) Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J Biol Chem 284:36431–36441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci U S A 100:13698–13703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Hiesberger T, Cordes K et al (2003) Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal cystogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A 100:5286–5291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low SH, Vasanth S, Larson CH et al (2006) Polycystin-1, STAT6 and P100 function in a pathway that transduces ciliar mechanosensation and is activated in polycystic kidney disease. Dev Cell 10:57–68

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Vassilev PM, Li X et al (2003) Native polycystin 2 functions as a plasma membrane Ca2+-permeable cation channel in renal epithelia. Mol Cell Biol 23:2600–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma R, Li W-P, Rundle D et al (2005) PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol Cell Biol 25:8285–8298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhaus AN, Abuknsha RA, Price RG (2002) Interaction of the leucine-rich repeats of polycystin-1 with extracellular matrix proteins: possible role in cell proliferation. J Am Soc Nephrol 13:19–26

    Google Scholar 

  • Markoff A, Bogdanova N, Knope M et al (2007) Annexin A5 interacts with polycystin-1 and interferes with the polycystin-1 stimulated recruitment of E-cadherin into adherens junctions. J Mol Biol 369:954–966

    Article  CAS  PubMed  Google Scholar 

  • Masyuk TV, Masyuk AI, Torres VE et al (2007) Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology 132:1104–1116

    Article  CAS  PubMed  Google Scholar 

  • McGrath J, Somlo S, Makova S et al (2003) Two populations of mode monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73

    Article  CAS  PubMed  Google Scholar 

  • Mekahli D, Sammels E, Luyten T et al (2012) Polycystin-1 and polycystin-2 are both required to amplify inositol-trisphosphate-induced Ca2+ release. Cell Calcium 51:452–458

    Article  CAS  PubMed  Google Scholar 

  • Mekahli D, Parys JB, Bultynck G et al (2013) Polycystins and cellular Ca2+ signaling. Cell Mol Life Sci 70:2697–2712

    Article  CAS  PubMed  Google Scholar 

  • Merrick D, Chapin H, Baggs JE et al (2012) The γ-secretase cleavage product of polycystin-1 regulates TCF and CHOP-mediated transcriptional activation through a p300-dependent mechanism. Dev Cell 22:197–210

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki T, Wu G, Hayashi T et al (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    Article  CAS  PubMed  Google Scholar 

  • Muchatuta M, Gattone V, Witzmann F et al (2009) Structural and functional analysis of liver cysts from the BALB/c-cpk mouse model of PKD. Exp Biol Med 234:17–27

    Article  CAS  Google Scholar 

  • Narayanan D, Bulley S, Leo MD et al (2013) Smooth muscle cell transient receptor potential polycystin (TRPP2) channels contribute to the myogenic response in cerebral arteries. J Physiol 591:50131–55046

    Article  CAS  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  CAS  PubMed  Google Scholar 

  • Nauli SM, Kawanabe Y, Kaminiski JJ et al (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newby LJ, Streets AJ, Zhao Y (2002) Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J Biol Chem 277:20763–20773

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura H, Turco AE, Pei Y et al (1998) Identification of PKDL, a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects. J Biol Chem 273:25967–25973

    Article  CAS  PubMed  Google Scholar 

  • Olsan EE, Mukherjee S, Wulkersdorfer B et al (2011) Signal transducer and activator of transcription-6 (STAT6) inhibition suppresses renal cyst growth in polycystic kidney disease. Proc Natl Acad Sci U S A 108:18067–18072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parnell SC, Magenheimer BS, Maser RL et al (1998) The polycystic kidney disease-1 protein, polycystin-1, binds and activates heterotrimeric G-proteins in vitro. Biochem Biophys Res Commun 251:625–631

    Article  CAS  PubMed  Google Scholar 

  • Pazour GJ, San Augustin FF, Follit JA et al (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12:R378–R380

    Article  CAS  PubMed  Google Scholar 

  • Pei Y (2010) Of mice and men: therapeutic mTOR inhibition in polycystic kidney disease. J Am Soc Nephrol 21:383–394

    Article  CAS  Google Scholar 

  • Peyronnet R, Sharif-Naeini R, Folgering JHA et al (2012) Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K2P channels. Cell Rep 1:241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyronnet R, Martins JR, Duprat F (2013) Piezol-dependent stretch-activated channels are inhibited by polycystin-2 in renal tubular epithelial cells. EMBO Rep 14:1143–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piontek K, Menezes LF, Garcia-Gonzalez MA et al (2007) A critical developmental switch defines the kinetic of kidney cyst formation after loss of Pkd1. Nat Med 13:1490–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praetorius HA, Leipziger J (2009) Released nucleotides amplify the cilium-dependent flow-induced [Ca2+]i response in MDCK cells. Acta Physiol 197:241–251

    Article  CAS  Google Scholar 

  • Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  CAS  PubMed  Google Scholar 

  • Prakriya M, Feske S, Gwack Y et al (2006) Orai is an essential pore subunit of the CRAC channel. Nature 443:230–233

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Germino FJ, Cai Y et al (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Boletta A, Bhunia AK et al (2002) Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Natl Acad Sci U S A 99:16981–16986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Q, Hunter LW, Li M et al (2003a) Pkd2 haploinsufficiency alters intracellular calcium regulation in vascular smooth cells. Hum Mol Genet 12:1875–1880

    Article  CAS  PubMed  Google Scholar 

  • Qian Q, Li M, Cai Y et al (2003b) Analysis of the polycystins in aortic vascular smooth muscle cells. J Am Soc Nephrol 14:2280–2287

    Article  CAS  PubMed  Google Scholar 

  • Rees S, Kittikulsuth W, Roos K et al (2014) Adenylyl cyclase 6 deficiency ameliorates polycystic kidney disease. J Am Soc Nephrol 25:232–237

    Article  CAS  PubMed  Google Scholar 

  • Reif GA, Yamaguchi T, Nivens E et al (2011) Tolvaptan inhibits ERK-dependent cell proliferation, Cl- secretion, and in vitro cyst growth of human ADPKD cell stimulated by vasopressin. J Physiol Renal Physiol 301:F1005–F1013

    Article  CAS  Google Scholar 

  • Retailleau K, Duprat F (2014) Polycystins and partners: proposed role in mechanosensitivity. J Physiol 592:2453–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossetti S, Consugar MB, Chapman AB et al (2007) Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18:2143–2160

    Article  CAS  PubMed  Google Scholar 

  • Rundle DR, Gorbsky G, Tsiokas L (2004) PKD2 interacts and co-localizes with mDia1 to mitotic spindles of dividing cells: role of nDia1 in PKD2 localization to mitotic spindles. J Biol Chem 279:29728–29739

    Article  CAS  PubMed  Google Scholar 

  • Russo RJ, Husson H, Joly D et al (2005) Impaired formation of desmosomal junctions in ADPKD epithelia. Histochem Cell Biol 124:487–497

    Article  CAS  PubMed  Google Scholar 

  • Sanford R, Sgotto B, Aparicio S et al (1997) Comparative analysis of the polycystic kidney disease 1 (PKD1) gene reveals an integral membrane glycoprotein with multiple evolutionary conserved domains. Hum Mol Genet 9:1483–1489

    Article  Google Scholar 

  • Santoso NG, Cabotaru L, Guggino WB (2011) Polycystin-1, 2 and STIM1 interact with IP3R to modulate ER Ca2+ release through the PI3K/Akt pathway. Cell Physiol Biochem 27:715–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffers MS, van der Bent P, Prins F et al (2000) Polycystin-1, the product of the polycystic kidney disease 1 gene, co-localizes with desmosomes in MDCK cells. Hum Mol Genet 9:2743–2750

    Article  CAS  PubMed  Google Scholar 

  • Schievink WI, Torres VE, Piepgras DG et al (1992) Saccular intracranial aneurysms in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 3:88–95

    CAS  PubMed  Google Scholar 

  • Serra AL, Poster D, Kistler AD et al (2010) Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363:820–829

    Article  CAS  PubMed  Google Scholar 

  • Sharif-Naeini R, Folgering JH, Bichet D et al (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139:587–596

    Article  CAS  PubMed  Google Scholar 

  • Sharif-Naeini R, Folgering JH, Bichet D et al (2010) Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels. J Mol Cell Cardiol 48:83–89

    Article  CAS  PubMed  Google Scholar 

  • Shillingford JM, Murcia NS, Larson CH et al (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103:5466–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silberberg M, Charron AJ, Bacallao R et al (2005) Mispolarization of desmosomal proteins and altered intercellular adhesion in autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 288:F1153–F1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LA, Bukanaov NO, Husson H et al (2006) Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities and common features with human disease. J Am Soc Nephrol 17:2821–2831

    Article  CAS  PubMed  Google Scholar 

  • Somlo S, Ehrlich B (2001) Human disease: calcium signaling in polycystic kidney disease. Curr Biol 11:R356–R360

    Article  CAS  PubMed  Google Scholar 

  • Starremans PG, Li X, Finnerty PE (2008) A mouse model for polycystic disease through a somatic in-frame deletion in the 5′ end of Pkd1. Kidney Int 73:1394–1405

    Article  CAS  PubMed  Google Scholar 

  • Stewart AP, Smith GD, Sandford RN et al (2010) Atomic force microscopy reveals the alternating submit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J 99:790–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streets AJ, Newby LJ, O’Hare MJ et al (2003) Functional analysis of PKD1 transgenic lines reveals a direct role for polycystin-1 in mediating cell-cell adhesion. J Am Soc Nephrol 14:1804–1815

    Article  CAS  PubMed  Google Scholar 

  • Streets AJ, Moon DJ, Kane ME et al (2006) Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. Hum Mol Genet 15:1465–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streets AJ, Wagner BE, Harris PC et al (2009) Homophilic and heterophilic polycystin 1 interactions regulate E-cadherin recruitment and junction assembly in MDCK cells. J Cell Sci 122:1410–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Driscoll K, Yao G et al (2014) Bardet-Biedl syndrome proteins 1 and 3 regulate the ciliary trafficking of polycystic kidney disease 1 protein. Hum Mol Genet 23:5441–5451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot JJ, Shillingford JM, Vasanth S et al (2011) Polycystin-1 regulates STAT activity by a dual mechanism. Proc Natl Acad Sci U S A 108:7985–7990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Kin J, Schrier RW et al (2005) Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 16:46–51

    Article  CAS  PubMed  Google Scholar 

  • The American PKD1 consortium (1995) Analysis of the genomic sequence for the autosomal dominant polycystic kidney disease (PKD1) predicts the presence of a leucine rich repeat. Hum Mol Genet 4:575–582

    Article  Google Scholar 

  • The European Polycystic Kidney Disease Consortium (1994) The polycystic kidney disease gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77:881–894

    Article  Google Scholar 

  • The International Polycystic Kidney Disease Consortium (1995) Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell 81:289–298

    Article  Google Scholar 

  • Torres VE, Harris PC (2014) Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol 25:18–32

    Article  CAS  PubMed  Google Scholar 

  • Torres VE, Chapman AB, Devuyst O et al (2012) Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 367:2407–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiokas L, Kim E, Arnould T et al (1997) Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci U S A 94:6965–6970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiokas L, Arnould T, Zhu C et al (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci U S A 96:3934–3939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veldhuisen B, Spruit L, Dauwerse HG et al (1999) Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). Eur J Hum Genet 7:860–872

    Article  CAS  PubMed  Google Scholar 

  • Vogel P, Read R, Hansen GM et al (2010) Situs inversus in Dpcd/Poll-/-, Nme7-/-. And Pkd1l1-/- mice. Vet Pathol 47:120–131

    Article  CAS  PubMed  Google Scholar 

  • Volk T, Schwoerer AP, Thiessen S et al (2003) A polycystin-2-like large conductance cation channel in rat left ventricular myocytes. Cardiovasc Res 58:76–88

    Article  CAS  PubMed  Google Scholar 

  • Walz G, Budde K, Mannaa M et al (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363:830–840

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang J, Nauli SM et al (2007) Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol 27:3241–3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ward CJ, Harris PC et al (2010) Cyclic nucleotide signaling in polycystic kidney disease. Kidney Int 77:129–140

    Article  CAS  PubMed  Google Scholar 

  • Ward C, Turley H, Ong AC et al (1996) Polycystin, the polycystic kidney-disease-1 protein, is expressed by epithelial cells in fetal, adult and polycystic kidney. Proc Natl Acad Sci U S A 93:1524–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watnick T, Germino GG (2010) mTOR inhibitors in polycystic kidney disease. N Engl J Med 363:879–881

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Hackmann K, Xu H et al (2007) Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J Biol Chem 282:21729–21737

    Article  CAS  PubMed  Google Scholar 

  • Weston BS, Bagneris C, Price RG et al (2001) The polycystin-1 C type lectin domain binds carbohydrate in a calcium-dependent manner, and interacts with extracellular matrix proteins in vitro. Biochim Biophys Acta 1536:161–176

    Article  CAS  PubMed  Google Scholar 

  • Wilson PD, Geng L, Li X et al (1999) The PKD1 gene product, “polycystin-1” is a tyrosine-phosphorylated protein that colocalizes with alpha2beta1-integrin in focal clusters in adherent renal epithelia. Lab Invest 79:1311–1323

    CAS  PubMed  Google Scholar 

  • Woodward OM, Li Y, Yu S et al (2010) Identification of a polycystin-1 cleavage product, P100r, that regulates store operated Ca2+ entry through interactions with STIM1. PLoS One 5, e12305. doi:10.1371/journal.pone.0012305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G, Markowitz GS, Li L et al (2000) Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24:75–78

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Dai X-Q, Li Q et al (2006) Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin. Hum Mol Genet 15:3280–3292

    Article  CAS  PubMed  Google Scholar 

  • Xu GM, Sikaneta T, Sullivan BM (2001) Polycystin-1 interacts with intermediate filaments. J Biol Chem 276:46544–46552

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Rossetti S, Jiang L et al (2007) Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am J Physiol Renal Physiol 292:F930–F945

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Nagao S, Kasahara M et al (1997) Renal accumulation and excretion of cyclic adenosine monophosphate in a murine model of slowly progressive polycystic kidney disease. Am J Kidney Dis 30:703–709

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Pelling JC, Ramaswamy NT et al (2000) cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int 57:1460–1471

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Nagao S, Wallace DP (2003) cAMP activates B-raf and ERK in cyst epithelial cells from autosomal dominant polycystic kidneys. Kidney Int 63:1983–1994

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Wallace DP, Magenheimer BS et al (2004) Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem 279:40419–40430

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Hempson SJ, Reif GA et al (2006) Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J Am Soc Nephrol 17:178–187

    Article  CAS  PubMed  Google Scholar 

  • Yao G, Su X, Nguyen V et al (2014) Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-pacsin 2-N-Wasp complex. Hum Mol 23:2769–2779

    Article  CAS  Google Scholar 

  • Ye M, Grantham JJ (1993) The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med 329:310–313

    Article  CAS  PubMed  Google Scholar 

  • Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Hackmann K, Gao J et al (2007) Essential role of cleavage of polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. Proc Natl Acad Sci U S A 104:18688–18693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuasa T, Venugopal B, Weremowicz S et al (2002) The sequence, expression and chromosomal localization of a novel polycystic kidney disease 1-like gene, PKD1L1, in human. Genomics 79:376–386

    Article  CAS  PubMed  Google Scholar 

  • Yuasa T, Takakura A, Denker BM et al (2004) Polycystin-1L2 is a novel G-protein-binding protein. Genomics 84:126–138

    Article  CAS  PubMed  Google Scholar 

  • Zaika O, Mamenko M, Berrout J et al (2013) TRPV4 dysfunction promotes renal cystogenesis in autosomal recessive polycystic kidney disease. J Am Soc Nephrol 24:604–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Luo Y, Chasan B et al (2009) The multimeric structure of polycystin-2 (TRPP2): structural-functional correlates of homo- and hetero-multimers with TRPC1. Hum Mol Genet 18:1238–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie L. Blazer-Yost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Blazer-Yost, B.L. (2016). ADPKD Channels: The Polycystins. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_23

Download citation

Publish with us

Policies and ethics