Skip to main content

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

This article focuses on activators and inhibitors of ClC-2. ClC-2 Cl channels from mouse, rabbit, rat, and human have been studied extensively in recombinant form by whole-cell patch-clamp and in single-channel studies. There are similarities in responses of these channels from different species to protons, ATP, lipids, and lubiprostone for the recombinant channels. However, there are differences in channel properties, notably in the activation of human and rabbit (but not rat or mouse) forms by PKA. Two PKA phosphorylation sites of human ClC-2 have been identified by mutagenesis. One is required for lipid and lubiprostone activation. Structural studies suggest that these sites interact with cystathionine-β-synthase (CBS) domains to regulate ClC-2. Single-channel studies have been carried out on recombinant ClC-2, cortical astrocytes, and A6 cells which have both ClC-2 and CFTR in the apical membrane. Methadone and GaTx2 differentially inhibit ClC-2, while DASU-02 differentially inhibits CFTR. CFTRinh172 and glibenclamide inhibit both. Knockdown of ion channels combined with pharmacology is more powerful than using pharmacological agents alone. Studies using human cells and tissues such as intestine and lung have used various activators and inhibitors, and these studies are reviewed in detail. This review indicates that it is essential to verify the specificity of all agents experimentally to correctly interpret experimental results. Some studies provide insight into the possible roles of ClC-2 in physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alioth S, Meyer S, Dutzler R, Pervushin K (2007) The cytoplasmic domain of the chloride channel ClC-0: structural and dynamic characterization of flexible regions. J Mol Biol 369:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Atia F, Zeiske W, van Driessche W (1999) Secretory apical Cl channels in A6 cells: possible control by cell Ca2+ and cAMP. Pflugers Arch 438:344–353

    Article  CAS  PubMed  Google Scholar 

  • Bali M, Lipecka J, Edelman A, Fritsch J (2001) Regulation of ClC-2 chloride channels in T84 cells by TGF-alpha. Am J Physiol Cell Physiol 280:C1588–C1598

    CAS  PubMed  Google Scholar 

  • Bao HF, Liu L, Self J, Duke BJ, Ueno R, Eaton DC (2008) A synthetic prostone activates apical chloride channels in A6 epithelial cells. Am J Physiol Gastrointest Liver Physiol 295:G234–G251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barish CF, Drossman D, Johanson JF, Ueno R (2010) Efficacy and safety of lubiprostone in patients with chronic constipation. Dig Dis Sci 55:1090–1097

    Article  CAS  PubMed  Google Scholar 

  • Bauer CK, Steinmeyer K, Schwarz JR, Jentsch TJ (1991) Completely functional double-barreled chloride channel expressed from a single Torpedo cDNA. Proc Natl Acad Sci U S A 88:11052–11056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bi MM, Hong S, Zhou HY, Wang HW, Wang LN, Zheng YJ (2013) Chloride channelopathies of ClC-2. Int J Mol Sci 15:218–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bijvelds MJ, Bot AG, Escher JC, De Jonge HR (2009) Activation of intestinal Cl secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator. Gastroenterology 137:976–985

    Article  CAS  PubMed  Google Scholar 

  • Blaisdell CJ, Pellettieri JP, Loughlin CE, Chu S, Zeitlin PL (1999) Keratinocyte growth factor stimulates CLC-2 expression in primary fetal rat distal lung epithelial cells. Am J Respir Cell Mol Biol 20:842–847

    Article  CAS  PubMed  Google Scholar 

  • Blaisdell CJ, Edmonds RD, Wang XT, Guggino S, Zeitlin PL (2000) pH-regulated chloride secretion in fetal lung epithelia. Am J Physiol Lung Cell Mol Physiol 278:L1248–L1255

    CAS  PubMed  Google Scholar 

  • Boie Y, Stocco R, Sawyer N, Slipetz DM, Ungrin MD, Neuschäfer-Rube F, Püschel GP, Metters KM, Abramovitz M (1997) Molecular cloning and characterization of the four rat prostaglandin E2 prostanoid receptor subtypes. Eur J Pharmacol 340:227–241

    Article  CAS  PubMed  Google Scholar 

  • Bösl MR, Stein V, Hübner C, Zdebik AA, Jordt SE, Mukhopadhyay AK, Davidoff MS, Holstein AF, Jentsch TJ (2001) Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl channel disruption. EMBO J 20:1289–1299

    Article  PubMed Central  PubMed  Google Scholar 

  • Carter NJ, Scott LJ (2009) Lubiprostone: in constipation-predominant irritable bowel syndrome. Drugs 69:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Cartwright CA, McRoberts JA, Mandel KG, Dharmsathaphorn K (1985) Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line. J Clin Invest 76:1837–1842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Catalán M, Cornejo I, Figueroa CD, Niemeyer MI, Sepúlveda FV, Cid LP (2002) ClC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization. Am J Physiol Gastrointest Liver Physiol 283:G1004–G1013

    Article  PubMed  Google Scholar 

  • Catalán M, Niemeyer MI, Cid LP, Sepúlveda FV (2004) Basolateral ClC-2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chloride. Gastroenterology 126:1104–1114

    Article  CAS  PubMed  Google Scholar 

  • Catalán MA, Flores CA, González-Begne M, Zhang Y, Sepúlveda FV, Melvin JE (2012) Severe defects in absorptive ion transport in distal colons of mice that lack ClC-2 channels. Gastroenterology 142:346–354

    Article  CAS  PubMed  Google Scholar 

  • Chen TY (2005) Structure and function of ClC channels. Annu Rev Physiol 67:809–839

    Article  CAS  PubMed  Google Scholar 

  • Chey WD, Drossman DA, Johanson JF, Scott C, Panas RM, Ueno R (2012) Safety and patient outcomes with lubiprostone for up to 52 weeks in patients with irritable bowel syndrome with constipation. Aliment Pharmacol Ther 35:587–599

    Article  CAS  PubMed  Google Scholar 

  • Chu S, Blaisdell CJ, Liu MZ, Zeitlin PL (1999) Perinatal regulation of the ClC-2 chloride channel in lung is mediated by Sp1 and Sp3. Am J Physiol 276:L614–L624

    CAS  PubMed  Google Scholar 

  • Cid LP, Montrose-Rafizadeh C, Smith DI, Guggino WB, Cutting GR (1995) Cloning of a putative human voltage-gated chloride channel (CIC-2) cDNA widely expressed in human tissues. Hum Mol Genet 4:407–413

    Article  CAS  PubMed  Google Scholar 

  • Cryer B, Katz S, Vallejo R, Popescu A, Ueno R (2014) A randomized study of lubiprostone for opioid-induced constipation in patients with chronic noncancer pain. Pain Med. doi:10.1111/pme.12437

    Google Scholar 

  • Cuppoletti J, Tewari KP, Sherry AM, Kupert EY, Malinowska DH (2001) ClC-2 Cl channels in human lung epithelia: activation by arachidonic acid, amidation, and acid-activated omeprazole. Am J Physiol Cell Physiol 281:C46–C54

    CAS  PubMed  Google Scholar 

  • Cuppoletti J, Tewari KP, Sherry AM, Ferrante CJ, Malinowska DH (2004a) Sites of protein kinase A activation of the human ClC-2 Cl channel. J Biol Chem 279:21849–21856

    Article  CAS  PubMed  Google Scholar 

  • Cuppoletti J, Malinowska DH, Tewari KP, Li QJ, Sherry AM, Patchen ML, Ueno R (2004b) SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am J Physiol Cell Physiol 287:C1173–C1183

    Article  CAS  PubMed  Google Scholar 

  • Cuppoletti J, Malinowska DH, Tewari K, Chakrabarti J, Mende K, Ueno R (2008a) Lubiprostone activation of Cl currents does not involve Ca2+, cAMP, or PKA. Gastroenterology 134(Suppl 1):A581–A582

    Google Scholar 

  • Cuppoletti J, Malinowska DH, Tewari KP, Chakrabarti J, Ueno R (2008b) ClC-2-targeted siRNA eliminates lubiprostone activation of Cl currents in T84 cells. Gastroenterology 134(Suppl 1):A-582

    Google Scholar 

  • Cuppoletti J, Malinowska DH, Ueno R (2008c) Prostaglandin receptor activation properties of lubiprostone. Am J Gastroenterol 103(Suppl 1):S95–S118

    Google Scholar 

  • Cuppoletti J, Blikslager AT, Chakrabarti J, Nighot PK, Malinowska DH (2012) Contrasting effects of linaclotide and lubiprostone on restitution of epithelial cell barrier properties and cellular homeostasis after exposure to cell stressors. BMC Pharmacol 12:3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuppoletti J, Chakrabarti J, Tewari K, Malinowska DH (2013) Methadone but not morphine inhibits lubiprostone-stimulated Cl currents in T84 intestinal cells and recombinant human ClC-2, but not CFTR Cl currents. Cell Biochem Biophys 66:53–63

    Article  CAS  PubMed  Google Scholar 

  • Cuppoletti J, Danuta Malinowska D, Chakrabarti J, Tewari K, Ueno R (2014a) Amino acids involved in lubiprostone activation of human ClC-2. FASEB J 28(Suppl):896.11

    Google Scholar 

  • Cuppoletti J, Chakrabarti J, Tewari KP, Malinowska DH (2014b) Differentiation between human ClC-2 and CFTR channels with pharmacological agents. Am J Physiol Cell Physiol 307:C479-C492

    Google Scholar 

  • Cuthbert AW (2011) Lubiprostone targets prostanoid EP4 receptors in ovine airways. Br J Pharmacol 162:508–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Denton J, Nehrke K, Yin X, Morrison R, Strange K (2005) GCK-3, a newly identified Ste20 kinase, binds to and regulates the activity of a cell cycle-dependent ClC anion channel. J Gen Physiol 125:113–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhani SV, Kim Chiaw P, Huan LJ, Bear CE (2008) ATP depletion inhibits endocytosis of ClC-2. J Cell Physiol 214:273–280

    Article  CAS  PubMed  Google Scholar 

  • Drossman DA, Chey WD, Johanson JF, Fass R, Scott C, Panas R, Ueno R (2009) Clinical trial: lubiprostone in patients with constipation-associated irritable bowel syndrome–results of two randomized, placebo-controlled studies. Aliment Pharmacol Ther 29:329–341

    Article  CAS  PubMed  Google Scholar 

  • Duan DD (2013) Phenomics of cardiac chloride channels. Compr Physiol 3:667–692

    PubMed Central  PubMed  Google Scholar 

  • Duran C, Thompson CH, Xiao Q, Hartzell HC (2010) Chloride channels: often enigmatic, rarely predictable. Annu Rev Physiol 72:95–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dutzler R (2004a) Structural basis for ion conduction and gating in ClC chloride channels. FEBS Lett 564:229–233

    Article  CAS  PubMed  Google Scholar 

  • Dutzler R (2004b) The structural basis of ClC chloride channel function. Trends Neurosci 27:15–20

    Article  CAS  Google Scholar 

  • Dutzler R (2006) The ClC family of chloride channels and transporters. Curr Opin Struct Biol 16:439–446

    Article  CAS  PubMed  Google Scholar 

  • Dutzler R (2007) A structural perspective on ClC channel and transporter function. FEBS Lett 581:2839–2844

    Article  CAS  PubMed  Google Scholar 

  • Fahlke C (2004) Molecular physiology and pathophysiology of ClC-type chloride channels. Adv Mol Cell Physiol 32:189–217

    Article  CAS  Google Scholar 

  • Fei G, Wang YZ, Liu S, Hu HZ, Wang GD, Qu MH, Wang XY, Xia Y, Sun X, Bohn LM, Cooke HJ, Wood JD (2009) Stimulation of mucosal secretion by lubiprostone (SPI-0211) in guinea pig small intestine and colon. Am J Physiol Gastrointest Liver Physiol 296:G823–G832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fritsch J, Edelman A (1996) Modulation of the hyperpolarization-activated Cl current in human intestinal T84 epithelial cells by phosphorylation. J Physiol 490:115–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furukawa T, Ogura T, Zheng YJ, Tsuchiya H, Nakaya H, Katayama Y, Inagaki N (2002) Phosphorylation and functional regulation of ClC-2 chloride channels expressed in Xenopus oocytes by M cyclin-dependent protein kinase. J Physiol 540:883–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gyömörey K, Yeger H, Ackerley C, Garami E, Bear CE (2000) Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol 279:C1787–C1794

    PubMed  Google Scholar 

  • Hanke W, Miller C (1983) Single chloride channels from Torpedo electroplax. Activation by protons. J Gen Physiol 82:25–45

    Article  CAS  PubMed  Google Scholar 

  • Hinzpeter A, Fritsch J, Borot F, Trudel S, Vieu DL, Brouillard F, Baudouin-Legros M, Clain J, Edelman A, Ollero M (2007) Membrane cholesterol content modulates ClC-2 gating and sensitivity to oxidative stress. J Biol Chem 282:2423–2432

    Article  CAS  PubMed  Google Scholar 

  • Holmes KW, Hales R, Chu S, Maxwell MJ, Mogayzel PJ Jr, Zeitlin PL (2003) Modulation of Sp1 and Sp3 in lung epithelial cells regulates ClC-2 chloride channel expression. Am J Respir Cell Mol Biol 29:499–505

    Article  CAS  PubMed  Google Scholar 

  • Hoque KM, Woodward OM, van Rossum DB, Zachos NC, Chen L, Leung GP, Guggino WB, Guggino SE, Tse CM (2010) Epac1 mediates protein kinase A-independent mechanism of forskolin-activated intestinal chloride secretion. J Gen Physiol 135:43–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jentsch TJ, Poët M, Fuhrmann JC, Zdebik AA (2005) Physiological functions of CLC Cl channels gleaned from human genetic disease and mouse models. Annu Rev Physiol 67:779–807

    Article  CAS  PubMed  Google Scholar 

  • Johanson JF, Morton D, Geenen J, Ueno R (2008a) Multicenter, 4-week, double-blind, randomized, placebo-controlled trial of lubiprostone, a locally-acting type-2 chloride channel activator, in patients with chronic constipation. Am J Gastroenterol 103:170–177

    Article  CAS  PubMed  Google Scholar 

  • Johanson JF, Drossman DA, Panas R, Wahle A, Ueno R (2008b) Clinical trial: phase 2 study of lubiprostone for irritable bowel syndrome with constipation. Aliment Pharmacol Ther 27:685–696

    Article  CAS  PubMed  Google Scholar 

  • Joo NS, Wine JJ, Cuthbert AW (2009) Lubiprostone stimulates secretion from tracheal submucosal glands of sheep, pigs, and humans. Am J Physiol Lung Cell Mol Physiol 296:L811–L824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jordt SE, Jentsch TJ (1997) Molecular dissection of gating in the ClC-2 chloride channel. EMBO J 16:1582–1592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joy AP, Cowley EA (2008) 8-iso-PGE2 stimulates anion efflux from airway epithelial cells via the EP4 prostanoid receptor. Am J Respir Cell Mol Biol 38:143–152

    Article  CAS  PubMed  Google Scholar 

  • Kajita H, Omori K, Matsuda H (2000) The chloride channel ClC-2 contributes to the inwardly rectifying Cl conductance in cultured porcine choroid plexus epithelial cells. J Physiol 523:313–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keeler R, Wong NL (1986) Evidence that prostaglandin E2 stimulates chloride secretion in cultured A6 renal epithelial cells. Am J Physiol 250:F511–F515

    CAS  PubMed  Google Scholar 

  • Kelly M, Trudel S, Brouillard F, Bouillaud F, Colas J, Nguyen-Khoa T, Ollero M, Edelman A, Fritsch J (2010) Cystic fibrosis transmembrane regulator inhibitors CFTRinh-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition. J Pharmacol Exp Ther 333:60–69

    Article  CAS  PubMed  Google Scholar 

  • Lembo AJ, Johanson JF, Parkman HP, Rao SS, Miner PB Jr, Ueno R (2011) Long-term safety and effectiveness of lubiprostone, a chloride channel (ClC-2) activator, in patients with chronic idiopathic constipation. Dig Dis Sci 56:2639–2645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ling BN, Zuckerman JB, Lin C, Harte BJ, McNulty KA, Smith PR, Gomez LM, Worrell RT, Eaton DC, Kleyman TR (1997) Expression of the cystic fibrosis phenotype in a renal amphibian epithelial cell line. J Biol Chem 272:594–600

    Article  CAS  PubMed  Google Scholar 

  • Linsdell P (2014) Cystic fibrosis transmembrane conductance regulator chloride channel blockers: pharmacological, biophysical and physiological relevance. World J Biol Chem 5:26–39

    Article  PubMed Central  PubMed  Google Scholar 

  • Lipecka J, Bali M, Thomas A, Fanen P, Edelman A, Fritsch J (2002) Distribution of ClC-2 chloride channel in rat and human epithelial tissues. Am J Physiol Cell Physiol 282:C805–C816

    Article  CAS  PubMed  Google Scholar 

  • Lochner A, Moolman JA (2006) The many faces of H89: a review. Cardiovasc Drug Rev 24:261–274

    Article  CAS  PubMed  Google Scholar 

  • MacDonald KD, McKenzie KR, Henderson MJ, Hawkins CE, Vij N, Zeitlin PL (2008) Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice. Am J Physiol Lung Cell Mol Physiol 295:L933–L940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • MacVinish LJ, Cope G, Ropenga A, Cuthbert AW (2007) Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR. Br J Pharmacol 150:1055–1065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malinowska DH, Kupert EY, Bahinski A, Sherry AM, Cuppoletti J (1995) Cloning, functional expression, and characterization of a PKA-activated gastric Cl channel. Am J Physiol 268:C191–C200

    CAS  PubMed  Google Scholar 

  • Marunaka Y, Niisato N (2003) H89, an inhibitor of protein kinase A (PKA), stimulates Na+ transport by translocating an epithelial Na+ channel (ENaC) in fetal rat alveolar type II epithelium. Biochem Pharmacol 66:1083–1089

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Savaresi S, Forster IC, Dutzler R (2007) Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5. Nat Struct Mol Biol 14:60–67

    Article  CAS  PubMed  Google Scholar 

  • Miller C (1982) Open-state substructure of single chloride channels from Torpedo electroplax. Philos Trans R Soc Lond B Biol Sci 299:401–411

    Article  CAS  PubMed  Google Scholar 

  • Miller C (2006) ClC chloride channels viewed through a transporter lens. Nature 440:484–489

    Article  CAS  PubMed  Google Scholar 

  • Miller C, White MM (1980) A voltage-dependent chloride conductance channel from Torpedo electroplax membrane. Ann NY Acad Sci 341:534–551

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki H, Yamada T, Parton A, Morrison R, Kim S, Beth AH, Strange K (2012) CLC anion channel regulatory phosphorylation and conserved signal transduction domains. Biophys J 103:1706–1718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moeser AJ, Haskell MM, Shifflett DE, Little D, Schultz BD, Blikslager AT (2004) ClC-2 chloride secretion mediates prostaglandin-induced recovery of barrier function in ischemia-injured porcine ileum. Gastroenterology 127:802–815

    Article  CAS  PubMed  Google Scholar 

  • Moeser AJ, Nighot PK, Engelke KJ, Ueno R, Blikslager AT (2007) Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone. Am J Physiol Gastrointest Liver Physiol 292:G647–G656

    Article  CAS  PubMed  Google Scholar 

  • Mohammad-Panah R, Gyomorey K, Rommens J, Choudhury M, Li C, Wang Y, Bear CE (2001) ClC-2 contributes to native chloride secretion by a human intestinal cell line, Caco-2. J Biol Chem 276:8306–8313

    Article  CAS  PubMed  Google Scholar 

  • Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJ, Verkman AS (2004) Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol 124:125–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murray CB, Morales MM, Flotte TR, McGrath-Morrow SA, Guggino WB, Zeitlin PL (1995) CIC-2: a developmentally dependent chloride channel expressed in the fetal lung and downregulated after birth. Am J Respir Cell Mol Biol 12:597–604

    Article  CAS  PubMed  Google Scholar 

  • Murray CB, Chu S, Zeitlin PL (1996) Gestational and tissue-specific regulation of C1C-2 chloride channel expression. Am J Physiol 271:L829–L837

    CAS  PubMed  Google Scholar 

  • Niemeyer MI, Cid LP, Zúñiga L, Catalán M, Sepúlveda FV (2003) A conserved pore-lining glutamate as a voltage- and chloride-dependent gate in the ClC-2 chloride channel. J Physiol 553:873–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niemeyer MI, Cid LP, Yusef YR, Briones R, Sepúlveda FV (2009) Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons. J Physiol 587:1387–1400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nighot PK, Blikslager AT (2010) ClC-2 regulates mucosal barrier function associated with structural changes to the villus and epithelial tight junction. Am J Physiol Gastrointest Liver Physiol 299:G449–G456

    Article  CAS  PubMed  Google Scholar 

  • Nighot PK, Moeser AJ, Ryan KA, Ghashghaei T, Blikslager AT (2009) ClC-2 is required for rapid restoration of epithelial tight junctions in ischemic-injured murine jejunum. Exp Cell Res 315:110–118

    Article  CAS  PubMed  Google Scholar 

  • Nighot MP, Blikslager A, Nighot PK (2011) The chloride channel ClC-2 is involved in organization of murine gastric glands. Gastroenterology 140(Suppl 1):S93

    Google Scholar 

  • Nighot P, Young K, Nighot M, Rawat M, Sung EJ, Maharshak N, Plevy SE, Ma T, Blikslager A (2013) Chloride channel ClC-2 is a key factor in the development of DSS-induced murine colitis. Inflamm Bowel Dis 13:2867–2877

    Article  Google Scholar 

  • Nighot MP, Nighot PK, Ma TY, Blikslager A (2014) Genetic absence of chloride channel ClC-2 results in disruption of organization and function of murine gastric glands. Gastroenterology 146:S505

    Article  Google Scholar 

  • Niisato N, Ito Y, Marunaka Y (1999) Effects of PKA inhibitors, H-compounds, on epithelial Na+ channels via PKA-independent mechanisms. Life Sci 65:109–114

    Article  Google Scholar 

  • Nobile M, Pusch M, Rapisarda C, Ferroni S (2000) Single-channel analysis of a ClC-2-like chloride conductance in cultured rat cortical astrocytes. FEBS Lett 479:10–14

    Article  CAS  PubMed  Google Scholar 

  • Norimatsu Y, Moran AR, MacDonald KD (2012) Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor EP4. Biochem Biophys Res Commun 426:374–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Brien CE, Anderson PJ, Stowe CD (2011) Lubiprostone for constipation in adults with cystic fibrosis: a pilot study. Ann Pharmacother 45:1061–1066

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell EK, Sedlacek RL, Singh AK, Schultz BD (2000) Inhibition of enterotoxin-induced porcine colonic secretion by diarylsulfonylureas in vitro. Am J Physiol 279:G1104–G1112

    Google Scholar 

  • Park K, Begenisich T, Melvin JE (2001) Protein kinase A activation phosphorylates the rat ClC-2 Cl channel but does not change activity. J Membr Biol 182:31–37

    Article  CAS  PubMed  Google Scholar 

  • Park WS, Son YK, Kim N, Youm JB, Warda M, Ko JH, Ko EA, Kang SH, Kim E, Earm YE, Han J (2007) Direct modulation of Ca2+-activated K+ current by H-89 in rabbit coronary arterial smooth muscle cells. Vascul Pharmacol 46:105–113

    Article  CAS  PubMed  Google Scholar 

  • Păunescu TG, Helman SI (2001) PGE2 activation of apical membrane Cl channels in A6 epithelia: impedance analysis. Biophys J 81:852–866

    Article  PubMed Central  PubMed  Google Scholar 

  • Price MP, Ishihara H, Sheppard DN, Welsh MJ (1996) Function of Xenopus cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels and use of human-Xenopus chimeras to investigate the pore properties of CFTR. J Biol Chem 271:25184–25191

    Article  CAS  PubMed  Google Scholar 

  • Ranker J, Cuppoletti J, Melvin JE, Shull GE, Malinowska DH (2004) ClC-2 knockout mice exhibit reduced stimulated HCl secretion. FASEB J 18:456.2 (Abstract)

    Google Scholar 

  • Rutledge E, Denton J, Strange K (2002) Cell cycle- and swelling-induced activation of a Caenorhabditis elegans ClC channel is mediated by CeGLC-7alpha/beta phosphatases. J Cell Biol 158:435–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schiffhauer ES, Vij N, Kovbasnjuk O, Kang PW, Walker D, Lee S, Zeitlin PL (2013) Dual activation of CFTR and CLCN2 by lubiprostone in murine nasal epithelia. Am J Physiol Lung Cell Mol Physiol 304:L324–L331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schultz BD, Singh AK, Frizzell RA, Bridges RJ (1996) Developing potent modulators of CFTR channel gating. Pediatr Pulmonol 13(Suppl):258

    Google Scholar 

  • Schultz BD, Singh AK, Devor DC, Bridges RJ (1999) Pharmacology of CFTR chloride channel activity. Physiol Rev 79:S109–S144

    CAS  PubMed  Google Scholar 

  • Schwiebert EM, Cid-Soto LP, Stafford D, Carter M, Blaisdell CJ, Zeitlin PL, Guggino WB, Cutting GR (1998) Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells. Proc Natl Acad Sci U S A 95:3879–3884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherry AM, Stroffekova K, Knapp LM, Kupert EY, Cuppoletti J, Malinowska DH (1997) Characterization of the human pH- and PKA-activated ClC-2G(2α) Cl channel. Am J Physiol 273:C384–C393

    CAS  PubMed  Google Scholar 

  • Son YK, Park WS, Kim SJ, Earm YE, Kim N, Youm JB, Warda M, Kim E, Han J (2006) Direct inhibition of a PKA inhibitor, H-89 on Kv channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun 341:931–937

    Article  CAS  PubMed  Google Scholar 

  • Stauber T, Weinert S, Jentsch TJ (2012) Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2:1701–1744

    PubMed  Google Scholar 

  • Stölting G, Teodorescu G, Begemann B, Schubert J, Nabbout R, Toliat MR, Sander T, Nürnberg P, Lerche H, Fahlke C (2013) Regulation of ClC-2 gating by intracellular ATP. Pflugers Arch 465:1423–1437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stölting G, Fischer M, Fahlke C (2014) ClC-1 and ClC-2 form hetero-dimeric channels with novel protopore functions. Pflugers Arch 466(12):2191–2204

    Article  CAS  PubMed  Google Scholar 

  • Stroffekova K, Kupert EY, Malinowska DH, Cuppoletti J (1998) Identification of the pH sensor and activation by chemical modification of the ClC-2G Cl channel. Am J Physiol 275:C1113–C1123

    CAS  PubMed  Google Scholar 

  • Strohmeier GR, Reppert SM, Lencer WI, Madara JL (1995) The A2b adenosine receptor mediates cAMP responses to adenosine receptor agonists in human intestinal epithelia. J Biol Chem 270:2387–2394

    Article  CAS  PubMed  Google Scholar 

  • Sun Park W, Kyoung Son Y, Kim N, Boum Youm J, Joo H, Warda M, Ko JH, Earm YE, Han J (2006) The protein kinase A inhibitor, H-89, directly inhibits KATP and Kir channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun 340:1104–1110

    Article  CAS  PubMed  Google Scholar 

  • Tewari KP, Malinowska DH, Sherry AM, Cuppoletti J (2000) PKA and arachidonic acid activation of human recombinant ClC-2 chloride channels. Am J Physiol Cell Physiol 279:C40–C50

    CAS  PubMed  Google Scholar 

  • Thiemann A, Gründer S, Pusch M, Jentsch TJ (1992) A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356:57–60

    Article  CAS  PubMed  Google Scholar 

  • Thompson CH, Olivetti PR, Fuller MD, Freeman CS, McMaster D, French RJ, Pohl J, Kubanek J, McCarty NA (2009) Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels. J Biol Chem 284:26051–26062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueno R, Osama H, Habe T, Engelke K, Patchen M (2004) Oral SPI-0211 increases intestinal fluid secretion without altering serum electrolyte levels. Gastroenterology 126:A276

    Google Scholar 

  • Uwaifo O, Bamford P, Zeitlin PL, Blaisdell CJ (2006) Acidic pH hyperpolarizes nasal potential difference. Pediatr Pulmonol 41:151–157

    Article  PubMed  Google Scholar 

  • Veilleux S, Holt N, Schultz BD, Dubreuil JD (2008) Escherichia coli EAST1 toxin toxicity of variants 17-2 and O 42. Comp Immunol Microbiol Infect Dis 31:567–578

    Article  PubMed  Google Scholar 

  • Vij N, Zeitlin PL (2006) Regulation of the ClC-2 lung epithelial chloride channel by glycosylation of SP1. Am J Respir Cell Mol Biol 34:754–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weinreb M, Shamir D, Machwate M, Rodan GA, Harada S, Keila S (2006) Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids 75:81–90

    Article  CAS  PubMed  Google Scholar 

  • White MM, Miller C (1979) A voltage-gated anion channel from the electric organ of Torpedo californica. J Biol Chem 254:10161–10166

    CAS  PubMed  Google Scholar 

  • Wong BS, Camilleri M (2011) Lubiprostone for the treatment of opioid-induced bowel dysfunction. Expert Opin Pharmacother 12:983–990

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Bhate MP, Strange K (2013) Regulatory phosphorylation induces extracellular conformational changes in a CLC anion channel. Biophys J 104:1893–1904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zdebik AA, Cuffe JE, Bertog M, Korbmacher C, Jentsch TJ (2004) Additional disruption of the ClC-2 Cl channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J Biol Chem 279:22276–22283

    Article  CAS  PubMed  Google Scholar 

  • Zifarelli G, Pusch M (2007) CLC chloride channels and transporters: a biophysical and physiological perspective. Rev Physiol Biochem Pharmacol 158:23–76

    CAS  PubMed  Google Scholar 

Download references

Disclosure

JC and DHM are supported by a research grant from Sucampo AG, Zug, Switzerland. JC, DHM, and RU have financial interests in Sucampo Pharmaceuticals, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Cuppoletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Cuppoletti, J., Malinowska, D.H., Ueno, R. (2016). ClC-2 Chloride Channels. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_15

Download citation

Publish with us

Policies and ethics