Skip to main content

Size-Based and Non-Affinity Based Microfluidic Devices for Circulating Tumor Cell Enrichment and Characterization

  • Chapter
  • First Online:
Circulating Tumor Cells

Abstract

Circulating Tumor Cells (CTCs) are tumor cells found in cancer patients’ peripheral blood. Enumeration of CTCs can provide prognosis information for cancer management (Cristofanilli et al., N Engl J Med 351(8):781–791, 2004; Cohen et al., J Clin Oncol 26(19):3213–3221, 2008; de Bono et al., Clin Cancer Res, 14(19):6302–6309, 2008; Poveda et al., Gynecol Oncol, 122(3):567–572, 2011). However, the technical hurdle for studying CTCs is their rare presence in blood, thus, isolating them is a non-trivial task. Two major categories of technologies have been developed in the past to isolate CTCs based on their biological expression of antigens (affinity-based capture) or based on their physical properties (non-affinity based capture). This chapter dedicates itself to the non-affinity based method for CTC capture. CTCs, as tumor cells, are inherently distinct from normal blood components. The chapter touches on the how these differences are reflected in their gene expression profiles, as well as their physical properties. We discuss how researchers utilized the unique biomechanical and electrical properties of CTCs to isolate them from enormous numbers of erythrocytes and leukocytes present in peripheral blood. We begin the chapter with technologies utilizing biomechanical properties (cell density, size, deformability) to isolate CTCs and then move on to discuss the development of dielectrophoresis (DEP) based CTC isolation, based on their distinct electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    Article  CAS  PubMed  Google Scholar 

  2. Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Meropol NJ (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26(19):3213–3221

    Article  PubMed  Google Scholar 

  3. de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, Raghavan D (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14(19):6302–6309

    Article  PubMed  Google Scholar 

  4. Poveda A, Kaye SB, McCormack R, Wang S, Parekh T, Ricci D, Monk BJ (2011) Circulating tumor cells predict progression free survival and overall survival in patients with relapsed/recurrent advanced ovarian cancer. Gynecol Oncol 122(3):567–572

    Article  PubMed  Google Scholar 

  5. Barradas A, Terstappen LW (2013) Towards the biological understanding of CTC capture technologies, definitions and potential to create metastasis. Cancers 5(4):1619–1642

    Article  PubMed Central  PubMed  Google Scholar 

  6. Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, Jeffrey SS (2012) Single cell profiling of circulating tumor cells transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 7(5):e33788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gertler R, Rosenberg R, Fuehrer K, Dahm M, Nekarda H, Siewert JR (2003) Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. In: Allgayer H et al (eds) Molecular staging of cancer. Springer, Berlin, pp 149–155

    Chapter  Google Scholar 

  8. Fleischer RL, Alter HW, Furman SC, Price SB, Walker RM (1972) Particle track etching. Science 178:255–263

    Article  CAS  PubMed  Google Scholar 

  9. Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schütze K, Paterlini-Bréchot P (2000) Isolation by size of epithelial tumor cells a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156(1):57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Pinzani P, Salvadori B, Simi L, Bianchi S, Distante V, Cataliotti L, Orlando C (2006) Isolation by size of epithelial tumor cells in peripheral blood of patients with breast cancer correlation with real-time reverse transcriptase–polymerase chain reaction results and feasibility of molecular analysis by laser microdissection. Hum Pathol 37(6):711–718

    Article  CAS  PubMed  Google Scholar 

  11. Hofman V, Bonnetaud C, Ilie MI, Vielh P, Vignaud JM, Fléjou JF, Hofman P (2011) Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clin Cancer Res 17(4):827–835

    Article  CAS  PubMed  Google Scholar 

  12. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, Dive C (2011) A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer 106(3):508–516

    Article  PubMed Central  PubMed  Google Scholar 

  13. De Giorgi V, Pinzani P, Salvianti F, Panelos J, Paglierani M, Janowska A, Massi D (2010) Application of a filtration- and isolation-by-size technique for the detection of circulating tumor cells in cutaneous melanoma. J Invest Dermatol 130(10):2440–2447

    Article  PubMed  Google Scholar 

  14. Mazzini C, Pinzani P, Salvianti F, Scatena C, Paglierani M, Ucci F, Massi D (2014) Circulating tumor cells detection and counting in uveal melanomas by a filtration-based method. Cancers 6(1):323–332

    Article  PubMed Central  PubMed  Google Scholar 

  15. Pailler E, Adam J, Barthélémy A, Oulhen M, Auger N, Valent A, Farace F (2013) Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer. J Clin Oncol 31(18):2273–2281

    Article  PubMed  Google Scholar 

  16. Hou JM, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Dive C (2011) Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol 178(3):989–996

    Article  PubMed Central  PubMed  Google Scholar 

  17. Hou JM, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, Dive C (2012) Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol 30(5):525–532

    Article  PubMed  Google Scholar 

  18. Zheng S, Lin H, Liu JQ, Balic M, Datar R, Cote RJ, Tai YC (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 1162(2):154–161

    Article  CAS  PubMed  Google Scholar 

  19. Lin HK, Zheng S, Williams AJ, Balic M, Groshen S, Scher HI, Cote RJ (2010) Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res 16(20):5011–5018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Birkhahn M, Mitra AP, Williams AJ, Barr NJ, Skinner EC, Stein JP, Cote RJ (2013) A novel precision-engineered microfiltration device for capture and characterisation of bladder cancer cells in urine. Eur J Cancer 49(15):3159–3168

    Article  PubMed Central  PubMed  Google Scholar 

  21. Zheng S, Lin HK, Lu B, Williams A, Datar R, Cote RJ, Tai YC (2011) 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed Microdevices 13(1):203–213

    Article  PubMed  Google Scholar 

  22. Lu B, Xu T, Zheng S, Goldkorn A, Tai YC (2010) Parylene membrane slot filter for the capture, analysis and culture of viable circulating tumor cells. In: Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd international conference, IEEE, pp 935–938

    Google Scholar 

  23. Harouaka RA, Zhou MD, Yeh YT, Khan WJ, Das A, Liu X, Zheng SY (2014) Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells. Clin Chem 60(2):323–333

    Article  CAS  PubMed  Google Scholar 

  24. Gallant JN, Matthew EM, Cheng H, Harouaka R, Lamparella NE, Kunkel M, El-Deiry WS (2013) Predicting therapy response in live tumor cells isolated with the flexible micro spring array device. Cell Cycle 12(13):2132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Coumans FA, van Dalum G, Beck M, Terstappen LW (2013) Filter characteristics influencing circulating tumor cell enrichment from whole blood. PLoS One 8(4):e61770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lim LS, Hu M, Huang MC, Cheong WC, Gan ATL, Looi XL, Li MH (2012) Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells. Lab Chip 12(21):4388–4396

    Article  CAS  PubMed  Google Scholar 

  27. Yusa A, Toneri M, Masuda T, Ito S, Yamamoto S, Okochi M, Nakanishi H (2014) Development of a new rapid isolation device for circulating tumor cells (CTCs) using 3D palladium filter and its application for genetic analysis. PLoS One 9(2):e88821

    Article  PubMed Central  PubMed  Google Scholar 

  28. Tang Y, Shi J, Li S, Wang L, Cayre YE, Chen Y (2014) Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells. Sci Rep 4:6052

    CAS  PubMed  Google Scholar 

  29. Hosokawa M, Hayata T, Fukuda Y, Arakaki A, Yoshino T, Tanaka T, Matsunaga T (2010) Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Anal Chem 82(15):6629–6635

    Article  CAS  PubMed  Google Scholar 

  30. Hosokawa M, Yoshikawa T, Negishi R, Yoshino T, Koh Y, Kenmotsu H, Matsunaga T (2013) Microcavity array system for size-based enrichment of circulating tumor cells from the blood of patients with small-cell lung cancer. Anal Chem 85(12):5692–5698.

    Article  CAS  PubMed  Google Scholar 

  31. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  CAS  PubMed  Google Scholar 

  32. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110

    Article  CAS  PubMed  Google Scholar 

  33. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182

    Article  CAS  PubMed  Google Scholar 

  34. Lim YC, Kouzani AZ, Duan W (2010) Lab-on-a-chip: a component view. Microsyst Technol 16(12):1995–2015

    Article  Google Scholar 

  35. Figeys D, Pinto D (2000) Lab-on-a-chip: a revolution in biological and medical sciences. Anal Chem 72(9):330A–335A

    Article  CAS  PubMed  Google Scholar 

  36. Hansson J, Karlsson JM, Haraldsson T, Brismar H, van der Wijngaart W, Russom A (2012) Inertial microfluidics in parallel channels for high-throughput applications. Lab Chip 12(22):4644–4650

    Article  CAS  PubMed  Google Scholar 

  37. Lenshof A, Laurell T (2011) Emerging clinical applications of microchip-based acoustophoresis”. J Lab Autom 16(6):443–449

    Article  CAS  PubMed  Google Scholar 

  38. Mohamed H, McCurdy LD, Szarowski DH, Duva S, Turner JN, Caggana M (2004) Development of a rare cell fractionation device application for cancer detection. IEEE Trans Nanobioscience 3(4):251–256

    Article  PubMed  Google Scholar 

  39. Tan SJ, Yobas L, Lee GYH, Ong CN, Lim CT (2009) Microdevice for the isolation and enumeration of cancer cells from blood. Biomed Microdevices 11(4):883–892.

    Article  PubMed  Google Scholar 

  40. Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab Chip 14(15):2739–2761

    Article  CAS  PubMed  Google Scholar 

  41. Burke JM, Zubajlo RE, Smela E, White IM (2014) High-throughput particle separation and concentration using spiral inertial filtration”. Biomicrofluidics 8(2):024105

    Article  PubMed Central  PubMed  Google Scholar 

  42. Yang S, Kim JY, Lee SJ, Lee SS, Kim JM (2011) Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip 11(2):266–273

    Article  CAS  PubMed  Google Scholar 

  43. Ciftlik AT, Gijs MAM (2013) Demonstration of inertial focusing in straight microfluidic channels with high Reynolds numbers up to turbulence onset. 17th Int. Conf. on Solid-State Sensors, Actuators, and Microsystems (TRANSDUCERS’13), 2013. pp 1468–1471.

    Google Scholar 

  44. Wang R (2013) Hydrodynamic trapping of particles in an expansion-contraction microfluidic device. Abstr Appl Anal 2013:1–6

    Google Scholar 

  45. Lee MG, Choi S, Kim H-J, Lim HK, Kim J-H, Huh N, Park J-K (2011) Inertial blood plasma separation in a contraction–expansion array microchannel. Appl Phys Lett 98(25):253702

    Article  Google Scholar 

  46. Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9(20):2973–2980

    Article  CAS  PubMed  Google Scholar 

  47. Martel JM, Toner M (2012) Inertial focusing dynamics in spiral microchannels. Phys Fluids 24(3):032001

    Article  Google Scholar 

  48. Afzal A, Kim K-Y (2014) Flow and mixing analysis of non-Newtonian fluids in straight and serpentine microchannels. Chem Eng Sci 116:263–274

    Article  CAS  Google Scholar 

  49. Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DSW, Lim CT (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3:1259.

    PubMed Central  PubMed  Google Scholar 

  50. Lee WC, Bhagat AAS, Huang S, Van Vliet KJ, Han J, Lim CT (2011) High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11(7):1359–1367

    Article  CAS  PubMed  Google Scholar 

  51. Hur SC, Mach AJ, Di Carlo D (2011) High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5(2):022206

    Article  PubMed Central  Google Scholar 

  52. Hur SC, Henderson-MacLennan NK, McCabe ER, Di Carlo D (2011) Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11(5):912–920

    Article  CAS  PubMed  Google Scholar 

  53. Bhagat AAS, Hou HW, Li LD, Lim CT, Han J (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11(11):1870–1878.

    Article  CAS  PubMed  Google Scholar 

  54. Augustsson P, Magnusson C, Nordin M, Lilja H, and Laurell T (2012) “Micro fluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis,” 2012

    Google Scholar 

  55. Moradi K, El-zahab B (2014) Silicon based lab-on-chip device for acoustic focusing applications. Proceedings of the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels ICNMM2014, Aug 3–7, 2014, Chicago, Illinois, USA, Vol. 1. pp 1–4

    Google Scholar 

  56. Hyun KA, Kwon K, Han H, Kim SI, Jung HI (2013) Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients. Biosens Bioelectron 40(1):206–212

    Article  CAS  PubMed  Google Scholar 

  57. Chen W, Weng S, Zhang F, Allen S, Li X, Bao L, Fu J (2012) Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano 7(1):566–575

    Article  PubMed Central  PubMed  Google Scholar 

  58. Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22(7):869–871

    Article  CAS  Google Scholar 

  59. Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PR (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A 92(3):860–864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Cheng J, Sheldon EL, Wu L, Heller MJ, O’Connell JP (1998) Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip. Anal Chem 70(11):2321–2326

    Article  CAS  PubMed  Google Scholar 

  61. An J, Lee J, Lee SH, Park J, Kim B (2009) Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (DACS). Anal Bioanal Chem 394(3):801–809

    Article  CAS  PubMed  Google Scholar 

  62. Park J, Kim B, Choi SK, Hong S, Lee SH, Lee KI (2005) An efficient cell separation system using 3D-asymmetric microelectrodes. Lab Chip 5(11):1264–1270

    Article  CAS  PubMed  Google Scholar 

  63. Jen CP, Chang HH (2011) A handheld preconcentrator for the rapid collection of cancerous cells using dielectrophoresis generated by circular microelectrodes in stepping electric fields. Biomicrofluidics 5(3):034101

    Article  PubMed Central  Google Scholar 

  64. Alazzam A, Stiharu I, Bhat R, Meguerditchian AN (2011) Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis. Electrophoresis 32(11):1327–1336

    Google Scholar 

  65. Wang XB, Yang J, Huang Y, Vykoukal J, Becker FF, Gascoyne PR (2000) Cell separation by dielectrophoretic field-flow-fractionation. Anal Chem 72(4):832–839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Moon HS, Kwon K, Kim SI, Han H, Sohn J, Lee S, Jung HI (2011) Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11(6):1118–1125

    Article  CAS  PubMed  Google Scholar 

  67. Varadhachary G, Abbruzzese J, Shroff R, Melnikova V, Gupta V, Neal C, Davis D (2013) ApoStream, a new dielectrophoretic device for antibody-independent isolation and recovery of circulating tumor cells from blood of patients with metastatic pancreatic adenocarcinoma. Cancer Res 73

    Google Scholar 

  68. Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, Marchetti D (2013) The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med 5(180):180ra48

    Article  PubMed  Google Scholar 

  69. Gleghorn JP, Pratt ED, Denning D, Liu H, Bander NH, Tagawa ST, Kirby BJ (2010) Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip 10(1):27–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E, Toner M (2013) Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 5(179):179ra47

    Article  PubMed Central  PubMed  Google Scholar 

  71. Coumans FA, Doggen CJ, Attard G, De Bono JS, Terstappen LW (2010) All circulating EpCAM+ CK+ CD45− objects predict overall survival in castration-resistant prostate cancer. Ann Oncol 21(9):1851–1857

    Article  CAS  PubMed  Google Scholar 

  72. Chen CL, Mahalingam D, Osmulski P, Jadhav RR, Wang CM, Leach RJ, Huang THM (2013) Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate 73(8):813–826

    Google Scholar 

  73. Han A, Yang L, Frazier AB (2007) Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Clin Cancer Res 13(1):139–143

    Article  PubMed  Google Scholar 

  74. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Haber DA (2014) Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345(6193):216–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram H. Datar M.Phil., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ao, Z., Moradi, K., Cote, R.J., Datar, R.H. (2016). Size-Based and Non-Affinity Based Microfluidic Devices for Circulating Tumor Cell Enrichment and Characterization. In: Cote, R., Datar, R. (eds) Circulating Tumor Cells. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3363-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3363-1_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3361-7

  • Online ISBN: 978-1-4939-3363-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics