Skip to main content

Fatty Acid Profiles of Mediterranean Wild Edible Plants

  • Chapter
  • First Online:
Mediterranean Wild Edible Plants

Abstract

The current diet in Western societies contains large amounts of linoleic acid instead of α-linolenic acid, which clearly differs from the previous diets developed by Paleolithic people. Accordingly, in Western diets, the omega-6/omega-3 ratio ranges between 15/1 and 16.7/1, instead of the traditional safe range of 1−2:1. To improve this ratio, Mediterranean edible wild plants constitute a wide reservoir of useful plants that can be consumed as salads, seeds, fruits, and spices. Depending on the consumed organ, edible wild plants provide different fatty acids; usually leaves, fruits, and stems constitute a valuable source of α-linolenic acid, while the seeds typically contain linoleic acid. This chapter discusses about the fatty acid content of different organs of Mediterranean wild edible plants, which can contribute to fulfill the daily need of essential fatty acids for human beings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid, 20:4n-6

ALA:

α-linolenic acid, 18:3n:3

DHGLA:

Dihomo-γ-linolenic, 20:3n-6

DHA:

Docosahexaenoic acid, 22:6n-3

EFA:

Essential fatty acid

EA:

Erucic acid, 22:1n-9

EPA:

Eicosapentaenoic acid, 20:5n-3

FA:

Fatty acid

GLA:

γ-linolenic, 18:3n-6

LA:

Linoleic acid, 18:2n-6

MUFA:

Monounsaturated fatty acid

OA:

Oleic acid, 18:1n-9

PA:

Palmitic acid, 16:0

PUFA:

Polyunsaturated fatty acid

SA:

Stearic acid, 18:0

SDA:

Stearidonic acid, 18:4n-3

TAG:

Triacylglycerol

References

  • Alarcón R, Ortiz LT, García P (2006) Nutrient and fatty acid composition of wild edible bladder campion populations [Silene vulgaris (Moench.) Garcke]. Int J Food Sci Technol 41:1239–1242

    Article  Google Scholar 

  • Alonso DL, Maroto FG (2000) Plants as ‘chemical factories’ for the production of polyunsaturated fatty acids. Biotechnol Adv 18:481–497

    Article  CAS  PubMed  Google Scholar 

  • Asif M (2011) Health effects of omega-3, 6, 9 fatty acids: Perilla frutescens is a good example of plant oils. Orient Pharm Exp Med 11:51–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Barros L, Carvalho AM, Morais JS, Ferreira ICFR (2010) Strawberry-tree, blackthorn and rose fruits: detailed characterization in nutrients and phytochemicals with antioxidant properties. Food Chem 120:247–254

    Article  CAS  Google Scholar 

  • Barros L, Dueñas M, Ferreira ICFR (2011) Use of HPLC–DAD–ESI/MS to profile phenolic compounds in edible wild greens from Portugal. Food Chem 127:169–173

    Article  CAS  Google Scholar 

  • Bates PD, Browse J (2012) The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci 3:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Berti M, Johnson BL, Dash S, Fischer S, Wilckens R, Hevia F (2007) Echium: a source of stearidonic acid adapted to the Northern Great Plainsthe US. In: Janick J, Whipkey A (eds) Issues in new crops and new uses. ASHS Press, Alexandria, pp 120–125

    Google Scholar 

  • Burdge GC, Calder PC (2006) Dietary α-linolenic acid and health-related outcomes: a metabolic perspective. Nutr Res Rev 19:26–52

    Article  CAS  PubMed  Google Scholar 

  • Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 42:592–599

    Article  Google Scholar 

  • Celik F, Ercisli S (2009) Lipid and fatty acid composition of wild and cultivated red raspberry fruits (Rubus idaeus L.). J Med Plants Res 3:583–585

    CAS  Google Scholar 

  • Das UN (2006) Essential fatty acids: a review. Curr Pharm Biotechnol 7:467–482

    Article  CAS  PubMed  Google Scholar 

  • Daun JK, Tkachuk R (1976) Fatty acid composition of oils extracted from Canadian weed seeds. J Amer Oil Chem Soc 53:661–662

    Article  CAS  Google Scholar 

  • De Lorgeril MS, Renaud N, Mamelle E, Salen JL, Martin I, Monjaud J et al (1994) Mediterranean alpha-linolenic acid- rich diet in secondary prevention of coronary heart disease. Lancet 343:1454–1459

    Article  PubMed  Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700-707.

    Google Scholar 

  • European Food Safety Authority (2009) Scientific opinion: labelling reference intake values for n-3 and n-6 polyunsaturated fatty acids. EFSA J 1176:1–11

    Google Scholar 

  • Givianrad MH, Saber-Tehrani M, Jafari Mohammadi SA (2013) Chemical composition of oils from wild almond (Prunus scoparia) and wild pistachio (Pistacia atlantica). Grasas y aceites 64:77–84

    Article  CAS  Google Scholar 

  • Guil JL, Torija ME, Gimenez JJ, Rodríguez I (1996) Identification of fatty acids in edible wild plants by gas chromatography. J Chromat A 719:229-235.

    Google Scholar 

  • Guil JL, Rodríguez-García I, Torija E (1997) Nutritional and toxic factors in selected wild edible plants. Plant Foods Human Nutr 51:99–07

    Article  CAS  Google Scholar 

  • Guil-Guerrero JL (2007) Stearidonic acid (18:4n-3): metabolism, nutritional importance, medical uses and natural sources. Eur J Lipid Sci Technol 109:1226–1236

    Article  CAS  Google Scholar 

  • Guil-Guerrero JL, Rodríguez-García I (1999) Lipids classes, fatty acids and carotenes of the leaves of six edible wild plants. Eur Food Res Technol 209:313–316

    Article  CAS  Google Scholar 

  • Guil-Guerrero JL, Giménez-Giménez A, Rodríguez-García I, Torija-Isasa ME (1998) Nutritional composition of Sonchus species (S. asper L., S. oleraceus L. and S. tenerrimus L.). J Sci Food Agric 76:628–632

    Article  CAS  Google Scholar 

  • Guil-Guerrero JL, Giménez-Martínez JJ, Torija-Isasa ME (1999) Nutritional composition of wild edible crucifer species. J Food Biochem 23:283–294

    Article  CAS  Google Scholar 

  • Guil-Guerrero JL, Rebolloso-Fuentes MM, Torija-Isasa ME (2003) Fatty acids and carotenoids from Stinging Nettle (Urtica dioica L.). J Food Compos Anal 16:111–119

    Article  CAS  Google Scholar 

  • Guil-Guerrero JL, Díaz Delgado A, Matallana González MC, Torija Isasa ME (2004) Fatty acids and carotenes in some Ber (Ziziphus jujuba Mill) varieties. Plant Foods Hum Nutr 59:23–27

    Article  CAS  PubMed  Google Scholar 

  • Guil-Guerrero JL, Rincón-Cervera MA, G-omez-Mercado F, Ramos-Bueno RP, Venegas-Venegas E (2013) New seed oils of Boraginaceae rich in stearidonic and gamma-linolenic acids from the Maghreb region. J Food Compos Anal 31:20–23

    Article  CAS  Google Scholar 

  • Gutla PVK, Boccaccio A, De Angeli A, Gambale F, Carpaneto A (2012) Modulation of plant TPC channels by polyunsaturated fatty acids. J Exp Bot 3:6187–6197

    Article  Google Scholar 

  • Hainer V, Kunesova M, Stich V, Zak A, Parizkova J (1994) The role of oils containing triacylglycerols and medium-chain fatty acids in the dietary treatment of obesity. The effect on resting energy expenditure and serum lipids. Cas Lek Cesk 133:373–375

    CAS  PubMed  Google Scholar 

  • Horrobin DF (1992) Nutritional and medical importance of gamma-linolenic acid. Prog Lipid Res 31:163–194

    Article  CAS  PubMed  Google Scholar 

  • Imamura F, Lemaitre RN, King IB, Song X, Steffen LM, Folsom AR, Siscovick DS, Mozaffarian D (2013) Long-chain monounsaturated fatty acids and incidence of congestive heart failure in 2 prospective cohorts. Circulation 127:1512–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kris-Etherton PM, Shaffer Taylor D, Yu-Poth S, Huth P, Moriarty K, Fishell V et al (2000) Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 71:179–188

    Google Scholar 

  • Leonti M, Nebel S, Rivera D, Heinrich M (2006) Wild gathered food plants in the European Mediterranean: a comparative analysis. Econ Bot 60:130–142

    Article  Google Scholar 

  • Liu L, Howe P, Zhou YF, Xu ZQ, Hocart C, Zhang R (2000) Fatty acids and β-carotene in Australian purslane Portulaca oleracea varieties. J Chromatogr A 893:207–213

    Article  CAS  PubMed  Google Scholar 

  • Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1394:3–15

    Article  CAS  PubMed  Google Scholar 

  • Matthäus B, Özcan MM (2006) Quantization of fatty acids, sterols, and tocopherols in turpentine (Pistacia terebinthus chia) growing wild in Turkey. J Agric Food Chem 54:7667–7671

    Article  PubMed  Google Scholar 

  • Morales P, Ferreira IC, Carvalho AM, Sánchez-Mata MC, Cámara M , Tardío J (2012) Fatty acids profiles of some Spanish wild vegetables. Food Sci Technol Int 18:281–290

    Article  CAS  PubMed  Google Scholar 

  • Nergiz C, Dönmez İ (2004) Chemical composition and nutritive value of Pinus pinea L. seeds. Food Chem 86:365–368

    Article  CAS  Google Scholar 

  • Opute FI (1979) Seed lipids of the grain amaranths. J Exp Bot 30:601–606

    Article  CAS  Google Scholar 

  • Palaniswamy UR, McAvoy RJ, Bible BB (2001) Stage of harvest and polyunsaturated essential fatty acid concentrations in purslane (Portulaca oleraceae) leaves. J Agric Food Chem 49:3490–3493

    Article  CAS  PubMed  Google Scholar 

  • Pereira C, Barros L, Carvalho AM, Ferreira ICFR (2011) Nutritional composition and bioactive properties of commonly consumed wild greens: potential sources for new trends in modern diets. Food Res Int 44:2634–2640

    Article  CAS  Google Scholar 

  • Serce S, Ercisli S, Sengul M, Gunduz K, Orhan E (2010) Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits. Pharmacogn Mag 6:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688

    Article  CAS  Google Scholar 

  • Simopoulos AP, Salem N Jr (1986) Purslane: a terrestrial source of omega-3 fatty acids. N Engl J Med 315:833

    CAS  PubMed  Google Scholar 

  • Simopoulos AP, Norman HA, Gillaspy JE, Duke JA (1992) Common purslane: a source of omega-3 fatty acids and antioxidants. J Am Coll Nutr 11:374–382

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP, Norman HA, Gillaspy JE (1995) Purslane in human nutrition and its potential for world agriculture. World Rev Nutr Diet 77:47

    Article  CAS  PubMed  Google Scholar 

  • Tonguç M, Erbaş S (2012) Evaluation of fatty acid compositions and some seed characters of common wild plant species of Turkey. Turk J Agric For 36:673–679

    Google Scholar 

  • Vardavas CI, Majchrzak D, Wagner KH, Elmadfa I, Kafatos A (2006) Lipid concentrations of wild edible greens in Crete. Food Chem 99:822–834

    Article  CAS  Google Scholar 

  • Vaskovsky V, Khotimchenko S (1992) Chemotaxonomic approach protects against mistakes in polyunsaturated fatty acid analyses in plants. J Amer Oil Chem Soc 69:1

    Article  Google Scholar 

  • Wall R, Ross RP, Fitzgerald GF, Stanton C (2010) Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 68:280–289

    Article  PubMed  Google Scholar 

  • Whelan J (2009) Dietary stearidonic acid is a long chain (n-3) Polyunsaturated fatty acid with potential health benefits. J Nutr 39:5–10

    Google Scholar 

  • White MD, Papamandjaris AA, Jones PJ (1999) Enhanced postprandial energy expenditure with medium-chain fatty acid feeding is attenuated after 14 d in premenopausal women. Am J Clin Nutr 69:883–889

    CAS  PubMed  Google Scholar 

  • Wolff RL, Christie WW, Pédrono F, Marpeau AM (1999) Arachidonic, eicosapentaenoic, and biosynthetically related fatty acids in the seed lipids from a primitive gymnosperm, Agathis robusta. Lipids 34:1083–1097

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Guil-Guerrero PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guil-Guerrero, J., Torija-Isasa, M. (2016). Fatty Acid Profiles of Mediterranean Wild Edible Plants. In: Sánchez-Mata, M., Tardío, J. (eds) Mediterranean Wild Edible Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3329-7_8

Download citation

Publish with us

Policies and ethics