Skip to main content

Antimicrobial Potential of Wild Edible Herbaceous Species

  • Chapter
  • First Online:
Mediterranean Wild Edible Plants

Abstract

Natural products, either as pure compounds or as standardized extracts, provide unlimited opportunities to control microbial growth, owing to their chemical composition and diversity. Many herb and spice extracts possess antimicrobial activity against a range of bacteria, yeast, and moulds. Because of their antimicrobial properties, they could be very useful, either as food preservatives or as natural biopesticides. In particular, extracts from wild edible herbaceous species are rich in phenolic compounds. A wide variety of phenolics derived from herbs and spices possesses potent biological activities contributing to their effect against spoilage microorganisms. Many studies have pointed out the antimicrobial properties of certain classes of phenolic compounds, such as hydroxybenzoic, coumaric, and caffeic acid derivatives, flavonoids and coumarins, catechin, epicatechin, proanthocyanidins, and tannins. Moreover, some authors studied the relationship between molecular structure and antimicrobial activity of some phenolic compounds. The antimicrobial activity of polyphenols is principally due to inhibition of some important cellular functions (nucleic acid synthesis, cytoplasmatic membrane functionality, etc.) and to disruption of membrane integrity with consequent leakage of cellular contents.

This chapter reviews the most important phenol-rich wild edible herbaceous species known within the Mediterranean area, highlighting the relationship between phenolic composition and antimicrobial activity of their extracts. Moreover, the problem of standardization and safety of plant extracts is analyzed in the light of the latest literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberoumand A, Deokule SS (2008) Comparison of phenolic compounds of some edible plants of Iran and India. Pak J Nutr 7(4):582–585

    Article  CAS  Google Scholar 

  • Adelapo A, Jimoh F, Afolayan A (2011) Comparison of the nutritive value and biological activities of the acetone, methanol, and water extracts of the leaves of Bidens pilosa and Chenopodium album. Acta Pol Pharm 68(1):83–92

    Google Scholar 

  • Aedo C, Medina L, Fernández-Albert M (2013) Species richness and endemicity in the Spanish vascular flora. Nord J Bot 31(4):478–488

    Article  Google Scholar 

  • Akroum S, Satta D, Lalaoui K (2009) Antimicrobial, antioxidant, cytotoxic activities and phytochemical screening of some Algerian plants. Eur J Sci Res 31(2):289–295

    Google Scholar 

  • Aliakbarlu J, Tajik H (2012) Antioxidant and antibacterial activities of various extracts of Borago officinalis flowers. J Food Process Pres 36:539–544

    Article  Google Scholar 

  • Amborabé BE, Fleurat-Lessard P, Chollet J-F, Roblin G (2002) Antifungal effects of salicylic acid and other benzoic acid derivatives towards Eutypa lata: structure–activity relationship. Plant Physiol Biochem 40:1051–1060

    Article  Google Scholar 

  • Antal DS (2010) Medicinal plants with antioxidant properties from Banat region (Romania): a rich pool for the discovery of multi-target phytochemicals active in free-radical related disorders. Analele Universităţii din Oradea—Fascicula Biologie, Tom. XVII/1, 14–22. http://www.bioresearch.ro/revistaen.html

  • Arbos KA, de Freitas RJS, Stertz SC, Dornas MF (2010) Antioxidant activity and phenolic content in organic and conventional vegetables. Food Sci. Technol (Campinas) 30(2):501–506

    Google Scholar 

  • Baidez AG, Gomez P, Del Rio JA, Ortuño A (2007) Dysfunctionality of the xylem in Olea europaea L. plants associated with the infection process by Verticillium dahliae Kleb. Role of phenolic compounds in plant defense mechanism. J Agric Food Chem 55:3373–3377

    Article  CAS  PubMed  Google Scholar 

  • Banerjee C, Mukherjee A (2002) Biological activity of a common weed—Portulaca oleracea L. II. Antifungal activity. Acta Bot Hung 44(3–4):205–208

    Article  Google Scholar 

  • Barros L, Heleno SA, Carvalho AM, Ferreira ICFR (2009) Systematic evaluation of the antioxidant potential of different parts of Foeniculum vulgare Mill. from Portugal. Food Chem Toxicol 47(10):2458–2464

    Article  CAS  PubMed  Google Scholar 

  • Belardi M, Marini D, Finesi R (1986) Caratteristiche chimiche ad attività antibatteriche di alcuni oli essenziali. Erboristeria Domani 4:74–77

    Google Scholar 

  • Bianco VV (1969) Vegetable crops in Mediterranean countries. Lecture delivered to the Course 150, Vegetable as World Food Crops, 13 p, Dept. Veg. Crops Univ. California, Davis, CA (USA)

    Google Scholar 

  • Bianco VV (1989) Wild plants utilizable as vegetables and condiment herbs in Italy. Proc Int Symp Hort Germplasm cultivated and wild, 1989 Beijing (China), Int. Acad. Publishers, Beijing (China) 2, 55–64

    Google Scholar 

  • Bianco VV, Machacova M (2002) Specie spontanee della flora italiana utilizzabili come ortaggi e piante da condimento. VI Giornate Scientifiche SOI, 2002 Spoleto, PG (Italy) 2, 435–436

    Google Scholar 

  • Bianco VV, Lopedota O, Pace B (2007) Acido ascorbico in specie spontanee commestibili. Atti 2° Convegno Nazionale “Valorizzazione delle risorse e sviluppo sostenibile”, 2004 Agrigento, 565–573

    Google Scholar 

  • Bishoff TA, Kelley CJ, Karchesy Y, Laurantos M, Nguyen-Dinh P, Arefi AG (2004) Antimalarial activity of lactucin and lactucopicrin: sesquiterpene lactones isolated from Cichorium intybus L. J Ethnopharmacol 95:455–457

    Article  CAS  Google Scholar 

  • Bisogno F, Mascoti L, Sanchez C, Garibotto F, Giannini F, Kurina-Sanz M, Enriz R (2007) Structure-antifungal activity relationship of cinnamic acid derivatives. J Agric Food Chem 55:10635–10640

    Article  CAS  PubMed  Google Scholar 

  • Borchardt JR, Wyse DL, Sheaffer CC, Kauppi KL, Fulcher RG, Ehlke NJ, Biesboer DD, Bey RF (2008) Antimicrobial activity of native and naturalized plants of Minnesota and Wisconsin. J Med Plants Res 2(5):98–110

    Google Scholar 

  • Borneo R, Léon AE, Aguirre A, Ribotta P, Cantero JJ (2009) Antioxidant capacity of medicinal plants from the Province of Córdoba (Argentina) and their in vitro testing in a model food system. Food Chem 112:664–670

    Article  CAS  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism and nutritional significance. Nutr Rev 56:317–333

    Article  CAS  PubMed  Google Scholar 

  • Cai YZ, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  CAS  PubMed  Google Scholar 

  • Cai YZ, Sun M, Xing J, Luo Q, Corke H (2006) Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci 78:2872–2888

    Article  CAS  PubMed  Google Scholar 

  • Cartea ME, Francisco M, Soengas P, Velasco P (2011) Phenolic compounds in Brassica vegetables. Molecules 16:251–280

    Article  CAS  Google Scholar 

  • Chao PY, Lin SY, Lin KH, Liu YF, HsuJI, Yang CM, Lai JY (2014) Antioxidant activity in extracts of 27 indigenous Taiwanese vegetables. Nutrients 6:2115–2130

    Google Scholar 

  • Charles DJ (2013) Natural antioxidants (Chap. 3, pp 39–64) In: Charles DJ Antioxidant properties of spices, herbs and other sources. Springer, New York, p 610

    Chapter  Google Scholar 

  • Conti F, Abbate G, Alesandrini A, Blasi C (2005) An annotated checklist of the Italian vascular flora. Palombi Editori, Rome, p 420

    Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:64–582

    Google Scholar 

  • Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356

    Article  CAS  PubMed  Google Scholar 

  • Dadalioğlu I, Evrendilek GA (2004) Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. J Agric Food Chem 52:8255–8260

    Article  PubMed  CAS  Google Scholar 

  • Di Venere D, Linsalata V, Ippolito A, Nigro F, Arcuti P, Lattanzio V (1998) Endogenous phenolics, ripening and susceptibility of strawberry fruits (Fragaria x ananassa Duch.) to post-harvest diseases. In: Charbonnier F, Delacotte JM, Rolando C (eds) Polyphenols Communications 98. Groupe Polyphenols, Bordeaux, pp 459–460

    Google Scholar 

  • Di Venere D, Calabrese N, Linsalata V, Cardinali A, Bianco VV (2000) Influence of sowing time on phenolic composition of rocket. Acta Hortic 533:343–349

    Article  Google Scholar 

  • Di Venere D, Linsalata V, Sergio L, Cardinali A, Pieralice M, Bianco VV (2004) Composizione fenolica ed attività antiossidante di alcune specie spontanee eduli della Macchia Mediterranea. Italus Hortus 11(4):128–131

    Google Scholar 

  • Di Venere D, Sergio L, Linsalata V, Pieralice M, Cardinali A, Cascarano N, Bianco VV (2009) Antioxidant properties of wild edible species. It J Agron 4(4):635–640

    Google Scholar 

  • Díaz Dellavalle P, Cabrera A, Alem D, Larrañaga P, Ferreira F, Dalla Rizza M (2011) Antifungal activity of medicinal plant extracts against phytopatogenic fungus Alternaria spp. Chilean J Agric Res 71(2):231–239

    Article  Google Scholar 

  • Dulger B, Gonuz A (2004) Antimicrobial activity of certain plants used in Turkish traditional medicine. Asian J Plant Sci 3(1):104–107

    Article  Google Scholar 

  • El-Abyad MS, Morsi NM, Zaki DA, Shaaban MT (1990) Preliminary screening of some Egyptian weeds for antimicrobial activity. Microbios 62(250):47–57

    CAS  PubMed  Google Scholar 

  • Elkhayat ES, Ibrahim SRM, Aziz MA (2008) Portulene, a new diterpene from Portulaca oleracea L. J Asian Nat Prod Res 10(11):1039–1043

    Article  CAS  PubMed  Google Scholar 

  • Engels C, Knödler M, Zhao YY, Carle R, Gänzle MG, Schieber A (2009) Antimicrobial activity of gallotannins isolated from mango (Mangifera indica L.) kernels. J Agric Food Chem 57:7712–7718

    Article  CAS  PubMed  Google Scholar 

  • Feliziani E, Santini M, Landi L, Romanazzi G (2013) Pre- and postharvest treatments with alternative to synthetic fungicides to control postharvest decay of sweet cherry. Postharv Biol Technol 78:133–138

    Article  CAS  Google Scholar 

  • Fitzgerald DJ, Stratford M, Gasson MJ, Ueckert J, Bos A, Narbad A (2004) Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol 97:104–113

    Article  CAS  PubMed  Google Scholar 

  • Fresco P, Borges F, Diniz C, Marques MPM (2006) New insights on the anticancer properties of dietary polyphenols. Med Res Rev 26:747–766

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Herrera P (2014) Plantas silvestres de consumo tradicional en España. caracterización de su valor nutricional y estimación de su actividad antifúngica. Doctoral Thesis, Universidad Complutense de Madrid, Facultad de Farmacia, Madrid 2014, p 220

    Google Scholar 

  • Gatto MA, Ippolito A, Linsalata V, Cascarano NA, Nigro F, Vanadia S, Di Venere D (2011) Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharv Biol Technol 61(1):72–82

    Article  Google Scholar 

  • Gatto MA, Sanzani SM, Tardia P, Linsalata V, Pieralice M, Sergio L, Di Venere D (2013) Antifungal activity of total and fractionated phenolic extracts from two wild edible herbs. Nat Sci 5(8):895–902

    Google Scholar 

  • Grosso C, Vinholes J, Silva LR, Guedes de Pinho P, Gonçalves RF, Valentão P, Jäger AK, Andrade PB (2011) Chemical composition and biological screening of Capsella bursa-pastoris. Rev Bras Farmacogn 21(4):635–644

    Article  CAS  Google Scholar 

  • Gülçin I, ÖI, Oktay M, Büyükokuroğlu ME (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215

    Google Scholar 

  • Gulfraz M, Sadiq A, Tariq H, Imran M, Qureshi R, Zeenat A (2011) Phytochemical analysis and antibacterial activity of Eruca sativa seed. Pak J Bot 43(2):1351–1359

    CAS  Google Scholar 

  • Han XZ, Shen T, Lou HX (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8:950–988

    Article  CAS  PubMed Central  Google Scholar 

  • Hasan RN, Ali MR, Shakier SM, Khudhair AM, Hussin MS, Kadum YA, Mohammed AI, Abbas AA (2013) Antibacterial activity of aqueous and alcoholic extracts of Capsella Bursa against selected pathogenic bacteria. Am J BioSci 1(1):6–10

    Article  Google Scholar 

  • Hashimoto T, Kumazawa S, Nanjo F, Hara Y, Nakayama T (1999) Interaction of tea catechins with lipid bilayers investigated with liposome systems. Biosci Biotechnol Biochem 63:2252–2255

    Article  CAS  PubMed  Google Scholar 

  • Heatley NG (1944) An antibiotic from Crepis taraxacifolia (Thuill.). Brit J Exp Path 25:208–211

    CAS  PubMed Central  Google Scholar 

  • Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Env Microbiol 57:1213–1217

    CAS  Google Scholar 

  • Hinneburg I, Dorman HD, Hiltunen R (2006) Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem 97:122–129

    Article  CAS  Google Scholar 

  • Huang WY, Cai YZ, Zhang Y (2010) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62(1):1–20

    Article  PubMed  CAS  Google Scholar 

  • Hussain Z, Mohammad P, Sadozai SK, Khan KM, Nawaz Y, Perveen S (2011) Extraction of anti-pneumonia fractions from the leaves of sugar beets Beta vulgaris. J Pharm Res 4(12):4783

    Google Scholar 

  • Ikigai H, Nakae T, Hara Y, Shimamura T (1993) Bactericidal catechins damage the lipid bilayer. Biochem Biophys Acta 1147:132–136

    Article  CAS  PubMed  Google Scholar 

  • Ionescu D, Predan G, Rizea GD, Mihele D, Dune A, Ivopol G, Ionită C (2013) Antimicrobial activity of some hydroalcoholic extracts of artichoke (Cynara scolymus), burdock (Arctium lappa) and dandelion (Taraxacum officinale). Bull Transilvania Univ Braşov, Ser II, 6:113–120

    Google Scholar 

  • Ippolito A, Nigro F (2003) Natural antimicrobials in postharvest storage of fresh fruits and vegetables. In: Roller S (ed) Natural antimicrobials for the minimal processing of foods. Woodhead, Cambridge, pp 201–234, 306

    Chapter  Google Scholar 

  • Iqbal MJ, Hanif S, Mahmood Z, Anwar F, Jamil A (2012) Antioxidant and antimicrobial activities of Chowlai (Amaranthus viridis L.) leaf and seed extracts. J Med Plants Res 6(27):4450–4455

    CAS  Google Scholar 

  • Iseri ÖD, Körpe DA, Sahin FI, HM (2014) Screening of Nasturtium officinale extracts for biological activities: implications for plant pathogens. J Biol Act Prod Nat 4(1):18–28

    Google Scholar 

  • Jimoh FO, Adelapo AA, Afolayan AJ (2011) Comparison of the nutritive value, antioxidant and antibacterial activities of Sonchus asper and Sonchus oleraceus. Rec Nat Prod 5(1):29–42

    CAS  Google Scholar 

  • Katalinic V, Milos M, Kulisic T, Jukic M (2006) Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 94(4):550–557

    Article  CAS  Google Scholar 

  • Kenny O, Smyth TJ, Walsh D, Kelleher CT, Hewage CM, Brunton NP (2014) Investigating the potential of under-utilised plants from the Asteraceae family as a source of natural antimicrobial and antioxidant extracts. Food Chem 161:79–86

    Article  CAS  PubMed  Google Scholar 

  • Keweloh H, Weyrauch G, Rehm HN (1990) Phenol-induced membrane changes in free and immobilized Escherichia coli. Appl Microbiol Biotechnol 33:66–71

    Article  CAS  PubMed  Google Scholar 

  • Khoobchandani M, Ojeswi BK, Ganesh N, Srivastava MM, Gabbanini S, Matera R, Iori R, Valgimigli L (2010) Antimicrobial properties and analytical profile of traditional Eruca sativa seed oil: comparison with various aerial and root plant extracts. Food Chem 120:217–224

    Article  CAS  Google Scholar 

  • Kokoska L, Polesny Z, Rada V, Nepovim A, Vanek T (2002) Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol 82:51–53

    Article  CAS  PubMed  Google Scholar 

  • Kokoskova B, Pouvova D, Pavela R (2011) Effectiveness of plant essential oils against Erwinia amylovora, Pseudomonas syringae pv. syringae and associated saprophytic bacteria on/in host plants. J Plant Pathol 93(1):133–139

    CAS  Google Scholar 

  • Korukluoglu M, Sahan Y, Yigit A (2008) Antifungal properties of olive leaf extracts and their phenolic compounds. J Food Saf 28:76–87

    Article  CAS  Google Scholar 

  • Kosikowska U, Wegiera M, Smolarz HD, Malm A (2011) Screening of antifungal activity of Rumex L. species. Annales Universitatis Mariae Curie-Slodowska Lublin-Polonia Vol XXIV, 4(10):99–104

    Google Scholar 

  • Kostic DA, Mitic SS, Mitic MN, Zarubica A R, Velickovic JM, Dordevic AS Randelovic SS (2010) Phenolic contents, antioxidant and antimicrobial activity of Papaver rhoeas L. extracts from Southeast Serbia. J Med Plants Res 4(17):1727–1732

    CAS  Google Scholar 

  • Kurekci C, Bishop-Hurley SL, Vercoe PE, Durmic Z, Al Jassim RAM, McSweeney CS (2012) Screening of Australian plants for antimicrobial activity against Campylobacter jejuni. Phytother Res 26:186–190

    Article  PubMed  Google Scholar 

  • Lattanzio V (2003) Bioactive polyphenols: their role in quality and storability of fruit and vegetables. J Appl Bot 77:128–146

    CAS  Google Scholar 

  • Lattanzio V, De Cicco V, Di Venere D, Lima G, Salerno M (1994) Antifungal activity of phenolics against fungi commonly encountered during storage. Ital J Food Sci 6:23–30

    CAS  Google Scholar 

  • Lattanzio V, Di Venere D, Linsalata V, Lima G, Ippolito A, Salerno M (1996) Antifungal activity of 2,5-dimethoxybenzoic acid on postharvest pathogens of strawberry fruits. Postharv Biol Technol 3:325–334

    Article  Google Scholar 

  • Lee J, Koo N, Min DB (2004) Reactive oxygen species aging and antioxidative nutraceuticals. Compr Rev Food Sci Food Saf 3:1–33

    Article  Google Scholar 

  • Lin KH, Yeh H, Lin SY, Yang CM, Tsai HJ, Tsai JJ, Chao PY (2014) Antioxidant activities of methanol extracts from selected Taiwanese herbaceous plants. J Food Nutr Res 2(8):435–442

    Article  Google Scholar 

  • Lo Cantore P, Iacobellis NS, De Marco A, Capasso F, Senatore F (2004) Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller var. vulgare (Miller) essential oils. J Agric Food Chem 52:7862–7866

    Article  CAS  PubMed  Google Scholar 

  • Lotfipour F, Nazemiyeh H, Fathi-Azad F, Garaei N, Arami S, Talat S, Sadegpour F, Hasanpour R (2008) Evaluation of antibacterial activities of some medicinal plants from North-West Iran. Iranian J Basic Med Sci 11(2):80–85

    Google Scholar 

  • Magro A, Carolino M, Bastos M, Mexia A (2006) Efficacy of plant extracts against stored products fungi. Rev Iberoam Micol 23(3):176–178

    Article  PubMed  Google Scholar 

  • Maiyo ZC, Ngure RM, Matasyoh JC, Chepkorir R (2010) Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. Afr J Biotechnol 9(21):3178–3182

    Google Scholar 

  • Mehrabani M, Shams-Ardakani M, Ghannadi A, Dehkordi NG, Jazi SES (2005) Production of rosmarinic acid in Echium amoenum Fisch. and C.A. Mey. cell cultures. Iranian J Pharm Res 2:111–115

    Google Scholar 

  • Miccadei S, Di Venere D, Cardinali A, Romano F, Durazzo A, Foddai MS, Fraioli R, Mobarhan S, Maiani G (2008) Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells. Nutr Cancer 60(2):276–283

    Article  CAS  PubMed  Google Scholar 

  • Miceli A, Aleo A, Corona O, Sardina MT, Mammina C, Settanni L (2014) Antibacterial activity of Borago officinalis and Brassica juncea aqueous extracts evaluated in vitro and in situ using different food model systems. Food Control 40:157–164

    Article  Google Scholar 

  • Mileo AM, Di Venere D, Linsalata V, Fraioli R, Miccadei S (2012) Artichoke polyphenols induce apoptosis and decrease the invasive potential of the human breast cancer line MDA-MB231. J Cell Physiol 227:3301–3309

    Article  CAS  PubMed  Google Scholar 

  • Modarresi-Chahardehi A, Ibrahim D, Fariza-Sulaiman S, Mousavi L (2012) Screening antimicrobial activity of various extracts of Urtica dioica. Rev Biol Trop 60(4):1567–1576

    PubMed  Google Scholar 

  • Morales P, Carvalho AM, Sanchez-Mata MC, Camara M, Molina M, Ferreira ICFR (2012) Tocopherol composition and antioxidant activity of Spanish wild vegetables. Gen Res Crop Evol 59:851–863

    Article  CAS  Google Scholar 

  • Morales P, Ferreira ICFR, Carvalho AM, Sánchez-Mata MC, Cámara M, Fernández-Ruiz V, Pardo-de-Santayana M, Tardío J (2014) Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT-Food Sci Technol 55:389–396

    Article  CAS  Google Scholar 

  • Moreno S, Scheyer T, Romano CS, Vojnov AA (2006) Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Rad Res 40(2):223–231

    Article  CAS  Google Scholar 

  • Mukarram Shah SM, Khan FA, Hassan Shah SM, Chishti KA, Saifur Shah Pirzada SM, Asif Khan M, Farid A (2011) Evaluation of phytochemicals and antimicrobial activity of white and blue capitulum and whole plant of Silybum marianum. World Appl Sci J 12(8):139–1144

    Google Scholar 

  • Negi PS (2012) Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol 156:7–17

    Article  PubMed  Google Scholar 

  • Oh KB, Chang IM, Hwang KJ, Mar W (2000) Detection of antifungal activity in Portulaca oleracea by a single-cell bioassay system. Phytother Res 14:329–332

    Article  CAS  PubMed  Google Scholar 

  • Ojala T, Remes S, Haansuu P, Vuorela H, Hiltunen R, Haahtela K, Vuorela P (2000) Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J Ethnopharmacol 73:299–305

    Article  CAS  PubMed  Google Scholar 

  • Ono H, Tesaki S, Tanabe S, Watanabe M (1998) 6-Methylsulfinylhexil isothiocyanate and its homologues as food-originated compounds with antibacterial activity against Escherichia coli and Staphylococcus aureus. Biosci Biotechnol Biochem 62(2):363–365

    Article  CAS  PubMed  Google Scholar 

  • Ortuño A, Báidez A, Gómez P, Arcas MC, Porras I, García-Lidón A, Del Río JA (2006) Citrus paradisi and Citrus sinensis flavonoids: their influence in the defence mechanism against Penicillium digitatum. Food Chem 98:351–358

    Article  CAS  Google Scholar 

  • Özcan MM, Chalchat JC, Arslan D, Ateş A, Ünver A (2006) Comparative essential oil composition and antifungal effect of bitter fennel (Foeniculum vulgare ssp. piperitum) fruit oils obtained during different vegetation. J Med Food 9(4):552–561

    Article  PubMed  Google Scholar 

  • Parashar A, Gupta C, Gupta SK, Kumar A (2009) Antimicrobial ellagitannin from pomegranate (Punica granatum) fruits. Int J Fruit Sci 9:226–231

    Article  Google Scholar 

  • Penecilla GL, Magno CP (2011) Antibacterial activity of extracts of twelve common medicinal plants from the Philippines. J Med Plants Res 5(16):3975–3981

    CAS  Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  CAS  PubMed  Google Scholar 

  • Petrovic J, Stanojcovic A, Comic Lj, Curcic S (2004) Antibacterial activity of Cichorium intybus. Fitoterapia 75:737–739

    Article  CAS  PubMed  Google Scholar 

  • Proestos C, Chorianopoulos N, Nychas GJE, Komaitis M (2005) RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. J Agric Food Chem 53:1190–1195

    Article  CAS  PubMed  Google Scholar 

  • Quave CL, Plano LRW, Pantuso T, Bennett BC (2008) Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 118:418–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raybaudi-Massilia RM, Mosqueda-Melgar J, Soliva-Fortuny R, Martin-Belloso O (2009) Control of pathogenic and spoilage microorganisms in fresh cut fruits and fruit juices by traditional and alternative natural antimicrobials. Compr Rev Food Sci Food Saf 8:157–180

    Article  CAS  Google Scholar 

  • Ríos JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84

    Article  PubMed  CAS  Google Scholar 

  • Romanazzi G, Feliziani E, Santini M, Landi L (2013) Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharv Biol Technol 75:24–27

    Article  CAS  Google Scholar 

  • Sanzani SM, De Girolamo A, Schena L, Solfrizzo M, Ippolito A, Visconti A (2009a) Control of Penicillium expansum and patulin accumulation on apples by quercetin and umbelliferone. Eur Food Res Technol 228:81–389

    Article  CAS  Google Scholar 

  • Sanzani S M, Schena L, Nigro F, De Girolamo A, Ippolito A (2009b) Effect of quercetin and umbelliferone on the transcript level of genes involved in patulin biosynthesis. Eur J Plant Pathol 125:223–233

    Article  CAS  Google Scholar 

  • Sanzani SM, Schena L, De Girolamo A, Ippolito A, González-Candelas L (2010) Characterization of genes associated to induced resistance against Penicillium expansum in apple fruit treated with quercetin. Postharv Biol Technol 56:1–11

    Article  CAS  Google Scholar 

  • Sanzani SM, Schena L, Ippolito A (2014) Effectiveness of phenolic compounds against citrus green mould. Molecules 19:12500–12508

    Article  CAS  PubMed  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    Article  CAS  Google Scholar 

  • Schaffer S, Schmitt-Schillig S, Müller WE, Eckert GP (2005) Antioxidant properties of Mediterranean food plant extracts: geographical differences. J Phys Pharmacol 56(1):115–124

    Google Scholar 

  • Schena L, Nigro F, Ippolito A (2007) Natural antimicrobials to improve storage and shelf-life of fresh fruit, vegetables and cut flowers. In: Ray RC, Ward OP (eds) Microbial biotechnology in horticulture, vol 2. Science Publisher, Enfield, pp 259–303

    Google Scholar 

  • Schreiner RP, Koide RT (1993) Antifungal compounds from the roots of mycotrophic non-mycotrophic plant species. New Phytol 123:99–105

    Article  CAS  Google Scholar 

  • Shan B, Cai YZ, Sun M, Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53:7749–7759

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP (2004) Omega-3 fatty acids and antioxidants in edible wild plants. Biol Res 37:263–277

    Article  PubMed  Google Scholar 

  • Soleimanpour S, Sedighinia FS, Afshar AS, Zarif R, Asili J, Ghazvini K (2013) Synergistic antibacterial activity od Capsella bursa-pastoris and Glycirrhiza glabra against oral pathogens. Jundishapur J Microbiol 6(8):e7262

    Article  Google Scholar 

  • Speijers G, Bottex B, Dusemund B, Lugasi A, Toth J, Amberg-Muller J, Galli CL, Silano V, Rietjens IMCM (2010) Safety assessment of botanicals and botanical preparations used as ingredients in food supplements: testing an European Food Safety Authority-tiered Approach. Molec Nutr Food Res 54:175–185

    Article  CAS  Google Scholar 

  • Stefanović O, Radojević I, Vasić S, Čomić L (2012) Antibacterial activity of naturally occurring compounds from selected plants. In: Bobbarala V (ed) Biochemistry, Genetics and Molecular Biology—“Antimicrobial Agents” (Chap. 1). Rijeka, InTech Publ—www.intechopen.com, pp 1–24

    Google Scholar 

  • Surveswaran S, Cai Y-Z, Corke H, Sun M (2007) Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 102(3):938–953

    Article  CAS  Google Scholar 

  • Tajkarimi MM, Ibrahim SA, Cliver DO (2010) Antimicrobial herb and spice compounds in food. Food Control 21:1199–1218

    Article  CAS  Google Scholar 

  • Terao J, Piskula M, Yao Q (1994) Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers. Arch Biochem Biophys 308:78–284

    Article  Google Scholar 

  • Terry LA, Joyce DC, Adikaram NKB, Khabay BPS (2004) Preformed antifungal compounds in strawberry fruit and flower tissues. Postharv Biol Technol 31:201–212

    Article  CAS  Google Scholar 

  • Trichopoulou A, Vasilopoulou E (2000) Mediterranean diet and longevity. Br J Nutr 84(2):S205–S209

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Dubey NK (2004) Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharv Biol Technol 32:235–245

    Article  Google Scholar 

  • Ünsal Ç, Özbek B, Saniar G, Mat A (2009) Antimicrobial activity of four annual Papaver species growing in Turkey. Pharm Biol 47(1):4–6

    Article  Google Scholar 

  • USDA (2011) National Nutrient Database for Standard Reference, Release 27, Vegetables and Vegetable Products

    Google Scholar 

  • Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • van den Berg SJPL, Serra-Majem L, Coppens P, Rietjens IMCM (2011) Safety assessment of plant food supplements (PFS). Food Funct 2:760–768

    Article  PubMed  CAS  Google Scholar 

  • Vanzani P, Rossetto M, De Marco V, Sacchetti LE, Paoletti MG, Rigo A (2011) Wild Mediterranean plants as traditional food: a valuable source of antioxidants. J Food Sci 76(1):C46–C51

    Article  CAS  PubMed  Google Scholar 

  • Vardavas CI, Majchrizak D, Wagner KH, Elmadfa I, Kafatos A (2006) The antioxidant and phylloquinone content of wildly grown greens in Crete. Food Chem 99:813–821

    Article  CAS  Google Scholar 

  • Veeriah S, Kautenburger T, Habermann N, Sauer J, Dietrich H (2006) Apple flavonoids inhibit growth of HT29 human colon cancer cells and modulate expression of genes involved in the biotransformation of xenobiotics. Mol Carcinog 45:164–174

    Article  CAS  PubMed  Google Scholar 

  • Velićanski AS, Cvetković DD, Markov SL, Vulić J, Djilas SM (2011) Antibacterial activity of Beta vulgaris L. pomace extract. APTEFF 42:263–269

    Article  CAS  Google Scholar 

  • Veloz-García R, Marín-Martínez R, Veloz-Rodríguez R, Rodríguez-Guerra R, Torres-Pacheco I, González-Chavira MM, Anaya-López JL, Guevara-Olvera L, Feregrino-Pérez AA, Loarca-Pĩna G, Guevara-González RG (2010) Antimicrobial activities of cascalote (Caesalpinia cacalaco) phenolics-containing extract against fungus Colletotrichum lindemuthianum. Ind Crops Prod 31:134–138

    Article  CAS  Google Scholar 

  • Verma R, Rawat A, Ganie SA, Agnihotri RK, Sharma R, Mahajan S, Gupta A (2013) In vitro antibacterial activity of Cichorium intybus against some pathogenic bacteria. Brit J Pharm Res 3(4):767–775

    Article  Google Scholar 

  • Walker R (2004) Criteria for risk assessment of botanical food supplements. Toxicol Lett 149:187–195

    Article  CAS  PubMed  Google Scholar 

  • Wettasinghe M, Shahidi F, Amarowicz R, Abou-Zaid MM (2001) Phenolic acids in defatted seeds of borage (Borago officinalis L.). Food Chem 75:49–56

    Article  CAS  Google Scholar 

  • Widmer TL, Laurent N (2006) Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao. Eur J Plant Pathol 115:377–388

    Article  CAS  Google Scholar 

  • Wojdyło A, Oszmianski J, Czemerys R (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 105(3):940–949

    Article  CAS  Google Scholar 

  • Wong-Leung YL (1988) Antibacterial activity of some Hong-Kong plants used in Chinese medicine. Fitoterapia 59:11–16

    Google Scholar 

  • Xia DZ, Yu XF, Zhu ZY, Zou ZD (2011) Antioxidant and antibacterial activity of six edible wild plants (Sonchus spp.) in China. Nat Prod Res 25(20):1893–1901

    Article  CAS  PubMed  Google Scholar 

  • Yang RY, Lin S, Kuo G (2008) Content and distribution of flavonoids among 91 edible plants species. Asia Pac J Clin Nutr 17:275–279

    CAS  PubMed  Google Scholar 

  • Yildirim A, Mavi A, Kara AA (2001) Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem 49(8):4083–4089

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Hatano T, Ito H, Okuda T (2009) Structural diversity and antimicrobial activities of ellagitannins. In: Quideau S (ed) Chemistry and biology of ellagitannins: an underestimated class of bioactive polyphenols. World Scientific Publishing Co. Pte Ltd, Hackensack, pp 55–93

    Chapter  Google Scholar 

  • Zellagui A, Gherraf N, Elkhateeb A, Hegazy MEF, Mohamed TA, Touil A, Shaat AA, Rhouati S (2011) Chemical constituent from Algerian Foeniculim vulgare aerial parts and evaluation of antimicrobial activity. J Chil Chem Soc 56(3):759–763

    Article  CAS  Google Scholar 

  • Zhu X, Zhang H, Lo R (2004) Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities. J Agric Food Chem 52:7272–7278

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Di Venere MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Di Venere, D., Gatto, M., Ippolito, A., Bianco, V. (2016). Antimicrobial Potential of Wild Edible Herbaceous Species. In: Sánchez-Mata, M., Tardío, J. (eds) Mediterranean Wild Edible Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3329-7_11

Download citation

Publish with us

Policies and ethics