Skip to main content

Attosecond Extreme Ultraviolet Supercontinuum

  • Chapter
  • First Online:
The Supercontinuum Laser Source
  • 2079 Accesses

Abstract

Isolated attosecond pulses with supercontinuum spectra can be used to study fast electron dynamics in atomic, molecular and condensed matter systems with unprecedented temporal resolution. In this chapter, we present the most recent advances in generation and characterization of the single attosecond pulses at iFAST, including the work demonstrating the world record of a single 67 as pulse. A continuous spectrum supporting 40 as pulses is observed and an MCP filter which can transmit an ultrabroadband supercontinuum covering the entire extreme ultraviolet and soft X-ray spectral range is demonstrated. In addition, a high resolution Magnetic-Bottle Energy Spectrometer is proposed to accurately characterize both the temporal profile and pulse contrast of isolated 25 as pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altucci, C., Starczewski, T., Mevel, E., Wahlström, C.-G., Carré, B., & L’Huillier, A. (1996). Influence of atomic density in high-order harmonic generation. Journal of the Optical Society of America B, 13(1), 148. doi:10.1364/JOSAB.13.000148.

    Article  ADS  Google Scholar 

  • Ammosov, M. V., Delone, N. B., & Krainov, V. P. (1986). Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Soviet Physics JETP, 64, 1191.

    Google Scholar 

  • Baker, S., Robinson, J. S., Haworth, C. a, Teng, H., Smith, R. a, Chirila, C. C., … Marangos, J. P. (2006). Probing proton dynamics in molecules on an attosecond time scale. Science (New York, N.Y.), 312(5772), 424–7. doi:10.1126/science.1123904.

    Google Scholar 

  • Cao, Z., Jin, F., Dong, J., Yang, Z., Zhan, X., Yuan, Z., … Ding, Y. (2013). Soft x-ray low-pass filter with a square-pore microchannel plate. Optics Letters, 38(9), 1509–11.

    Google Scholar 

  • Cavalieri, A L., Müller, N., Uphues, T., Yakovlev, V. S., Baltuska, A, Horvath, B., … Heinzmann, U. (2007). Attosecond spectroscopy in condensed matter. Nature, 449(7165), 1029–32. doi:10.1038/nature06229.

    Google Scholar 

  • Chang, Z. (2004). Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau. Phys. Rev. A, 70, 43802.

    Article  ADS  Google Scholar 

  • Chang, Z. (2005). Chirp of the single attosecond pulse generated by a polarization gating. Physical Review A, 71(2), 023813. doi:10.1103/PhysRevA.71.023813.

    Article  ADS  Google Scholar 

  • Chang, Z. (2007). Controlling attosecond pulse generation with a double optical gating. Phys. Rev. A, 76, 051403(R).

    Google Scholar 

  • Chang, Z., & Corkum, P. (2010). Attosecond photon sources: the first decade and beyond [Invited]. Journal of the Optical Society of America B, 27(11), B9. doi:10.1364/JOSAB.27.0000B9.

    Article  ADS  Google Scholar 

  • Chini, M., Gilbertson, S., Khan, S. D., & Chang, Z. (2010). Characterizing ultrabroadband attosecond lasers. Optics Express, 18(12), 13006–16. doi:10.1364/OE.18.013006.

    Article  ADS  Google Scholar 

  • Chini, M., Mashiko, H., Wang, H., Chen, S., Yun, C., Scott, S., … Chang, Z. (2009a). Delay control in attosecond pump-probe experiments. Opt. Express, 17, 21459.

    Google Scholar 

  • Chini, M., Wang, H., Khan, S. D., Chen, S., & Chang, Z. (2009b). Retrieval of satellite pulses of single isolated attosecond pulses. Applied Physics Letters, 94(16), 161112. doi:10.1063/1.3125247.

    Google Scholar 

  • Chini, M., Zhao, K., & Chang, Z. (2014). The generation, characterization and applications of broadband isolated attosecond pulses. Nature Photonics, 8(3), 178–186. doi:10.1038/nphoton.2013.362.

    Article  ADS  Google Scholar 

  • Corkum, P. (1993). Plasma perspective on strong field multiphoton ionization. Physical Review Letters, 71(13), 1994–1997. doi:10.1103/PhysRevLett.71.1994.

    Article  ADS  Google Scholar 

  • Corkum, P. B., Burnett, N. H., & Ivanov, M. Y. (1994). Subfemtosecond pulses. Optics Letters, 19(22), 1870. doi:10.1364/OL.19.001870.

    Article  ADS  Google Scholar 

  • Delong, K. W., Fittinghoff, D. N., Trebino, R., Kohler, B., & Wilson, K. (1994). Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections. Optics Letters, 19(24), 2152–4.

    Article  ADS  Google Scholar 

  • Falcone, R. W., & Bokor, J. (1983). Dichroic beam splitter for extreme-ultraviolet and visible radiation. Optics Letters, 8(1), 21–3.

    Article  ADS  Google Scholar 

  • Feng, X., Gilbertson, S., Mashiko, H., Wang, H., Khan, S. D., Chini, M., … Chang, Z. (2009). Generation of Isolated Attosecond Pulses with 20 to 28 Femtosecond Lasers. Phys. Rev. Lett., 103, 183901.

    Google Scholar 

  • Ferray, M., L’Huillier, A., Li, X. F., Lompre, L. A., Mainfray, G., & Manus, C. (1988). Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B, 21, 31.

    Article  ADS  Google Scholar 

  • Frassetto, F., Villoresi, P., & Poletto, L. (2008). Beam separator for high-order harmonic radiation in the 3-10 nm spectral region. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 25(5), 1104–14.

    Article  ADS  Google Scholar 

  • Gagnon, J., & Yakovlev, V. S. (2009). The robustness of attosecond streaking measurements. Optics Express, 17(20), 17678–93.

    Article  ADS  Google Scholar 

  • Gilbertson, S., Mashiko, H., Li, C., Khan, S. D., Shakya, M. M., Moon, E., & Chang, Z. (2008). A low-loss, robust setup for double optical gating of high harmonic generation. Appl. Phys. Lett., 92, 71109.

    Article  Google Scholar 

  • Gilbertson, S., Wu, Y., Khan, S. D., Chini, M., Zhao, K., Feng, X., & Chang, Z. (2010). Isolated attosecond pulse generation using multicycle pulses directly from a laser amplifier. Phys. Rev. A, 81, 43810.

    Article  ADS  Google Scholar 

  • Goulielmakis, E., Schultze, M., Hofstetter, M., Yakovlev, V. S., Gagnon, J., Uiberacker, M., … Kleineberg, U. (2008). Single-Cycle Nonlinear Optics. Science, 320, 1614.

    Google Scholar 

  • Henke, B. L., Gullikson, E. M., & Davis, J. C. (1993). X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92. Atomic Data and Nuclear Data Tables, 54(2), 181–342. doi:10.1006/adnd.1993.1013.

    Article  ADS  Google Scholar 

  • Hentschel, M., Kienberger, R., Spielmann, C., Reider, G. A, Milosevic, N., Brabec, T., … Krausz, F. (2001). Attosecond metrology. Nature, 414(6863), 509–13. doi:10.1038/35107000.

    Google Scholar 

  • Huillier, A. L., Lewenstein, M., Salieres, P., & Balcou, P. (1993). High-order harmonic-generation cutoff, 48(5), 69–72.

    Google Scholar 

  • Itatani, J., Quéré, F., Yudin, G. L., Ivanov, M. Y., Krausz, F., & Corkum, P. B. (2002). Attosecond Streak Camera. Phys. Rev. Lett., 88, 173903.

    Article  ADS  Google Scholar 

  • Kennedy, D., & Manson, S. (1972). Photoionization of the Noble Gases: Cross Sections and Angular Distributions. Physical Review A, 5(1), 227–247. doi:10.1103/PhysRevA.5.227.

    Article  ADS  Google Scholar 

  • Kienberger, R., Goulielmakis, E., Uiberacker, M., Baltuska, A., Yakovlev, V., Bammer, F., … Krausz, F. (2004). Atomic transient recorder. Nature, 427, 817.

    Google Scholar 

  • Ko, D. H., Kim, K. T., & Nam, C. H. (2012). Attosecond-chirp compensation with material dispersion to produce near transform-limited attosecond pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 45(7), 074015. doi:10.1088/0953-4075/45/7/074015.

    Google Scholar 

  • Kruit, P., & Read, F. H. (1983). Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier. J. Phys. E, 16, 313.

    Article  ADS  Google Scholar 

  • López-Martens, R., Varjú, K., Johnsson, P., Mauritsson, J., Mairesse, Y., Salières, P., … L’Huillier, A. (2005). Amplitude and Phase Control of Attosecond Light Pulses. Physical Review Letters, 94(3), 033001. doi:10.1103/PhysRevLett.94.033001.

    Google Scholar 

  • Mairesse, Y., & Quéré, F. (2005). Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A, 71, 011401(R).

    Google Scholar 

  • Mashiko, H., Gilbertson, S., Li, C., Khan, S. D., Shakya, M. M., Moon, E., & Chang, Z. (2008). Double Optical Gating of High-Order Harmonic Generation with Carrier-Envelope Phase Stabilized Lasers. Physical Review Letters, 100(10), 103906. doi:10.1103/PhysRevLett.100.103906.

    Article  ADS  Google Scholar 

  • McPherson, A., Gibson, G., Jara, H., Johann, U., Luk, T. S., McIntyre, I. A., … Rhodes, C. K. (1987). Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. Journal of the Optical Society of America B, 4(4), 595. doi:10.1364/JOSAB.4.000595.

    Google Scholar 

  • Paul, P. M., Toma, E. S., Breger, P., Mullot, G., Auge, F., Balcou, P., … Agostini, P. (2001). Observation of a train of attosecond pulses from high harmonic generation. Science (New York, N.Y.), 292(5522), 1689–92. doi:10.1126/science.1059413.

    Google Scholar 

  • Peatross, J., Chaloupka, J. L., & Meyerhofer, D. D. (1994). High-order harmonic generation with an annular laser beam. Optics Letters, 19(13), 942–4. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19844495.

    Google Scholar 

  • Pfeifer, T., Abel, M. J., Nagel, P. M., Jullien, A., Loh, Z.-H., Justine Bell, M., … Leone, S. R. (2008). Time-resolved spectroscopy of attosecond quantum dynamics. Chemical Physics Letters, 463(1-3), 11–24. doi:10.1016/j.cplett.2008.08.059.

    Google Scholar 

  • Platonenko, V. T., & Strelkov, V. V. (1999). Single attosecond soft-x-ray pulse generated with a limited laser beam. Journal of the Optical Society of America B, 16(3), 435. doi:10.1364/JOSAB.16.000435.

    Article  ADS  Google Scholar 

  • Popmintchev, T., Chen, M.-C., Popmintchev, D., Arpin, P., Brown, S., Alisauskas, S., … Kapteyn, H. C. (2012). Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers. Science (New York, N.Y.), 336(6086), 1287–91. doi:10.1126/science.1218497.

    Google Scholar 

  • Porras, M. A., Horvath, Z. L., & Major, B. (2012). On the use of lenses to focus few-cycle pulses with controlled carrier–envelope phase. Applied Physics B, 108(3), 521–531. doi:10.1007/s00340-012-5073-y.

    Article  Google Scholar 

  • Sansone, G., Benedetti, E., Calegari, F., Vozzi, C., Avaldi, L., Flammini, R., Nisoli, M. (2006). Isolated single-cycle attosecond pulses. Science (New York, N.Y.), 314(5798), 443–6. doi:10.1126/science.1132838.

    Google Scholar 

  • Sansone, G., Kelkensberg, F., Pérez-Torres, J. F., Morales, F., Kling, M. F., Siu, W., … Vrakking, M. J. J. (2010). Electron localization following attosecond molecular photoionization. Nature, 465, 763.

    Google Scholar 

  • Seres, J., Seres, E., Verhoef, A. J., Tempea, G., Streli, C., Wobrauschek, P., … Krausz, F. (2005). Laser technology: source of coherent kiloelectronvolt X-rays. Nature, 433(7026), 596. doi:10.1038/433596a.

    Google Scholar 

  • Shan, B., & Chang, Z. (2001). Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Physical Review A, 65(1), 011804. doi:10.1103/PhysRevA.65.011804.

    Article  ADS  Google Scholar 

  • Takahashi, E. J., Hasegawa, H., Nabekawa, Y., & Midorikawa, K. (2004). beam splitter for high-order harmonics in the extreme-ultraviolet region, 29(5), 507–509.

    Google Scholar 

  • Trebino, R., Delong, K. W., Fittinghoff, D. N., Sweetser, J. N., Richman, B. A., Krumbu, M. A., & Kane, D. J. (1997). REVIEW ARTICLE Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating, 68(9), 3277–3295.

    Google Scholar 

  • Tsuboi, T., Xu, E. Y., Bae, Y. K., & Gillen, K. T. (1988). Magnetic bottle electron spectrometer using permanent magnets. Review of Scientific Instruments, 59(8), 1357. doi:10.1063/1.1139722.

    Article  ADS  Google Scholar 

  • Wang, H., Chini, M., Khan, S. D., Chen, S., Gilbertson, S., Feng, X., … Chang, Z. (2009). Practical issues of retrieving isolated attosecond pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 42(13), 134007. doi:10.1088/0953-4075/42/13/134007.

    Google Scholar 

  • Zhao, K., Zhang, Q., Chini, M., Wu, Y., Wang, X., & Chang, Z. (2012). Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Optics Letters, 37(18), 3891. doi:10.1364/OL.37.003891.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions of Michael Chini for the PROOF algorithm development and Yi Wu and Eric Cunningham for maintaining the laser. The work is funded by the National Science Foundation under grant number 1068604, Army Research Office and the DARPA PULSE program by a grant from AMRDEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenghu Chang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, Q., Zhao, K., Chang, Z. (2016). Attosecond Extreme Ultraviolet Supercontinuum. In: The Supercontinuum Laser Source. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3326-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3326-6_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3324-2

  • Online ISBN: 978-1-4939-3326-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics