Skip to main content

Apoptosis in Thyroid Cancer

  • Chapter
  • First Online:
  • 192 Accesses

Abstract

Apoptosis has been demonstrated as an important process in both thyroid carcinogenesis and therapy. Alterations in an increasing number of apoptotic molecules have been associated with thyroid cancer. Advances in understanding apoptosis have provided not only the new concept of how the tumor develops but also novel strategies in management of this malignancy. This chapter summarizes recent publications on apoptosis in thyroid cancer. Three main aspects of this topic are discussed: apoptotic pathways in cancer, how apoptosis is linked to the development of thyroid cancer, and the possible therapeutic implications of the molecular regulation of apoptosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer. 1988;83:2638–48.

    Article  Google Scholar 

  2. Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, Schneider AB, Tucker MA, Boice Jr JD. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res. 1995;141:259–77.

    Article  CAS  PubMed  Google Scholar 

  3. Laurberg P, Cerqueira C, Ovesen L, Rasmussen LB, Perrild H, Andersen S, Pedersen IB, Carlé A. Iodine intake as a determinant of thyroid disorders in populations. Best Pract Res Clin Endocrinol Metab. 2010;24:13–27.

    Article  CAS  PubMed  Google Scholar 

  4. Liu XH, Chen GG, Vlantis AC, van Hasselt CA. Iodine mediated mechanisms and thyroid carcinoma. Crit Rev Clin Lab Sci. 2009;46:302–18.

    Article  CAS  PubMed  Google Scholar 

  5. Dal Maso L, Bosetti C, La Vecchia C, Franceschi S. Risk factors for thyroid cancer: an epidemiological review focused on nutritional factors. Cancer Causes Control. 2009;20:75–86.

    Article  PubMed  Google Scholar 

  6. Chen GG, Vlantis AC, Zeng Q, van Hasselt CA. Regulation of cell growth by estrogen signaling and potential targets in thyroid cancer. Curr Cancer Drug Targets. 2008;8:367–77.

    Article  CAS  PubMed  Google Scholar 

  7. Rahbari R, Zhang L, Kebebew E. Thyroid cancer gender disparity. Future Oncol. 2010;6:1771–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ron E, Kleinerman RA, Boice JD, et al. A population-based case-control study of thyroid cancer. J Natl Cancer Inst. 1987;79:1–12.

    CAS  PubMed  Google Scholar 

  9. Nosé V. Familial thyroid cancer: a review. Mod Pathol. 2011;24 Suppl 2:S19–33.

    Article  PubMed  Google Scholar 

  10. Plail RO, Bussey HJ, Glazer G, Thomson JP. Adenomatous polyposis: an association with carcinoma of the thyroid. Br J Surg. 1987;74:377–80.

    Article  CAS  PubMed  Google Scholar 

  11. Del Terra E, Francesconi A, Meli A, Ambesi-Impiombato FS. Radiation-dependent apoptosis on cultured thyroid cells. Phys Med. 2001;17 Suppl 1:261–3.

    PubMed  Google Scholar 

  12. Weihrauch M, Bader M, Lehnert G, Wittekind C, Tannapfel A, Wrbitzky R. Carcinogen-specific mutation pattern in the p53 tumour suppressor gene in UV radiation-induced basal cell carcinoma. Int Arch Occup Environ Health. 2002;75:272–6.

    Article  CAS  PubMed  Google Scholar 

  13. Feldkamp J, Pascher E, Perniok A, Scherbaum WA. Fas-Mediated apoptosis is inhibited by TSH and iodine in moderate concentrations in primary human thyrocytes in vitro. Hormon Metab Res. 1999;31:355–8.

    Article  CAS  Google Scholar 

  14. Chen GG, Liu ZM, Vlantis AC, Tse GM, Leung BC, van Hasselt CA. Heme oxygenase-1 protects against apoptosis induced by tumor necrosis factor-alpha and cycloheximide in papillary thyroid carcinoma cells. J Cell Biochem. 2004;92:1246–56.

    Article  CAS  PubMed  Google Scholar 

  15. Liu XH, Chen GG, Vlantis AC, Tse GM, van Hasselt CA. Iodine induces apoptosis via regulating MAPKs-related p53, p21, and Bcl-xL in thyroid cancer cells. Mol Cell Endocrinol. 2010;320:128–35.

    Article  CAS  PubMed  Google Scholar 

  16. Kim Y, Kim H, Jang SW, Ko J. The role of 14-3-3β in transcriptional activation of estrogen receptor α and its involvement in proliferation of breast cancer cells. Biochem Biophys Res Commun. 2011;414:199–204.

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Clubbs EA, Bomser JA. Genistein modulates prostate epithelial cell proliferation via estrogen- and extracellular signal-regulated kinase-dependent pathways. J Nutr Biochem. 2006;17:204–10.

    Article  PubMed  Google Scholar 

  18. Lee ML, Chen GG, Vlantis AC, Tse GM, Leung BC, van Hasselt CA. Induction of thyroid papillary carcinoma cell proliferation by estrogen is associated with an altered expression of Bcl-xL. Cancer J. 2005;11:113–21.

    Article  CAS  PubMed  Google Scholar 

  19. Antico-Arciuch VG, Dima M, Liao XH, Refetoff S, Di Cristofano A. Cross-talk between PI3K and estrogen in the mouse thyroid predisposes to the development of follicular carcinomas with a higher incidence in females. Oncogene. 2010;29:5678–86.

    Article  CAS  PubMed  Google Scholar 

  20. Rajoria S, Suriano R, Shanmugam A, Wilson YL, Schantz SP, Geliebter J, Tiwari RK. Metastatic phenotype is regulated by estrogen in thyroid cells. Thyroid. 2010;20:33–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zeng Q, Chen GG, van Hasselt CA. Oestrogen mediates the growth of human thyroid carcinoma cells via an oestrogen receptor-ERK pathway. Cell Prolif. 2007;40:921–35.

    Article  CAS  PubMed  Google Scholar 

  22. Zeng Q, Chen GG, van Hasselt C. The contributions of oestrogen receptor isoforms to the development of papillary and anaplastic thyroid carcinomas. J Pathol. 2008;214:425–33.

    Article  CAS  PubMed  Google Scholar 

  23. Dalla Valle L, Belvedere P, Colombo L. Potential for estrogen synthesis and action in human normal and neoplastic thyroid tissues. J Clin Endocrinol Metab. 1998;83:3702–9.

    CAS  PubMed  Google Scholar 

  24. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–8.

    Article  CAS  PubMed  Google Scholar 

  25. Gupta S. Molecular signaling in death receptor and mitochondrial pathways of apoptosis. Int J Oncol. 2003;22:15–20.

    CAS  PubMed  Google Scholar 

  26. Schultz DR, Harrington Jr WJ. Apoptosis: programmed cell death at a molecular level. Semin Arthritis Rheum. 2003;32:345–69.

    Article  CAS  PubMed  Google Scholar 

  27. Sprick MR, Walczak H. The interplay between the Bcl-2 family and death receptor-mediated apoptosis. Biochim Biophys Acta. 2004;1644:125–32.

    Article  CAS  PubMed  Google Scholar 

  28. Roy S, Nicholson DW. Cross-talk in cell death signaling. J Exp Med. 2000;192:F21–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Basolo F, Pollina L, Fontanini G, Fiore L, Pacini F, Baldanzi A. Apoptosis and proliferation in thyroid carcinoma: correlation with bcl-2 and p53 protein expression. Br J Cancer. 1997;75:537–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arscott PL, Stokes T, Myc A, Giordano TJ, Thompson NW, Baker Jr JR. Fas (CD95) expression is up-regulated on papillary thyroid carcinoma. J Clin Endocrinol Metab. 1999;84:4246–52.

    CAS  PubMed  Google Scholar 

  31. Mitsiades N, Poulaki V, Tseleni-Balafouta S, Koutras DA, Stamenkovic I. Thyroid carcinoma cells are resistant to FAS-mediated apoptosis but sensitive tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. 2000;60:4122–9.

    CAS  PubMed  Google Scholar 

  32. Mitsiades N, Poulaki V, Mastorakos G, Tseleni-Balafouta ST, Kotoula V, Koutras DA, Tsokos M. Fas ligand expression in thyroid carcinomas: a potential mechanism of immune evasion. J Clin Endocrinol Metab. 1999;84:2924–32.

    Article  CAS  PubMed  Google Scholar 

  33. Mezosi E, Yamazaki H, Bretz JD, Wang SH, Arscott PL, Utsugi S, Gauger PG, Thompson NW, Baker Jr JR. Aberrant apoptosis in thyroid epithelial cells from goiter nodules. J Clin Endocrinol Metab. 2002;87:4264–72.

    Article  CAS  PubMed  Google Scholar 

  34. Andrikoula M, Vartholomatos G, Tsangaris GT, Bafa M, Tzortzatou-Stathopoulou F, Tsatsoulis A. Fas and Bcl-2 protein expression in thyrocytes of patients with nodular goiter. Eur J Endocrinol. 2001;145:403–7.

    Article  CAS  PubMed  Google Scholar 

  35. Wang SH, Mezosi E, Wolf JM, Cao Z, Utsugi S, Gauger PG, Doherty GM, Baker Jr JR. IFNgamma sensitization to TRAIL-induced apoptosis in human thyroid carcinoma cells by upregulating Bak expression. Oncogene. 2004;23:928–35.

    Article  CAS  PubMed  Google Scholar 

  36. Basolo F, Fiore L, Baldanzi A, Giannini R, Dell’Omodarme M, Fontanini G, Pacini F, Danesi R, Miccoli P, Toniolo A. Suppression of Fas expression and down-regulation of Fas ligand in highly aggressive human thyroid carcinoma. Lab Invest. 2000;80:1413–9.

    Article  CAS  PubMed  Google Scholar 

  37. Matiba B, Mariani SM, Krammer PH. The CD95 system and the death of a lymphocyte. Semin Immunol. 1997;9:59–68.

    Article  CAS  PubMed  Google Scholar 

  38. Walker PR, Saas P, Dietrich PY. Role of Fas ligand (CD95L) in immune escape: the tumor cell strikes back. J Immunol. 1997;158:4521–4.

    CAS  PubMed  Google Scholar 

  39. Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini J, Tschopp J. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science. 1996;274:1363–6.

    Article  CAS  PubMed  Google Scholar 

  40. Stassi G, Todaro M, Zerilli M, Ricci-Vitiani L, Di Liberto D, Patti M, Florena A, Di Gaudio F, Di Gesu G, De Maria R. Thyroid cancer resistance to chemotherapeutic drugs via autocrine production of interleukin-4 and interleukin-10. Cancer Res. 2003;63:6784–90.

    CAS  PubMed  Google Scholar 

  41. Xu W, Li X, Chen S, Huang J, Lin S, Lin J, Li Y, Tan X. Expression and distribution of S-100, CD83 and apoptosis-related proteins (Fas, FasL and Bcl-2) in tissues of thyroid carcinoma. Eur J Histochem. 2008;52:153–62.

    Article  PubMed  Google Scholar 

  42. Cvejic D, Selemetjev S, Savin S, Paunovic I, Petrovic I, Tatic S. Apoptosis and proliferation related molecules (Bcl-2, Bax, p53, PCNA) in papillary microcarcinoma versus papillary carcinoma of the thyroid. Pathology. 2008;40:475–80.

    Article  CAS  PubMed  Google Scholar 

  43. Vella V, Mineo R, Frasca F, Mazzon E, Pandini G, Vigneri R, Belfiore A. Interleukin-4 stimulates papillary thyroid cancer cell survival: implications in patients with thyroid cancer and concomitant Graves’ disease. J Clin Endocrinol Metab. 2004;89:2880–9.

    Article  CAS  PubMed  Google Scholar 

  44. Mitsiades CS, Hayden P, Kotoula V, McMillin DW, McMullan C, Negri J, Delmore JE, Poulaki V, Mitsiades N. Bcl-2 overexpression in thyroid carcinoma cells increases sensitivity to Bcl-2 homology 3 domain inhibition. J Clin Endocrinol Metab. 2007;92:4845–52.

    Article  CAS  PubMed  Google Scholar 

  45. Häcker S, Karl S, Mader I, Cristofanon S, Schweitzer T, Krauss J, Rutkowski S, Debatin KM, Fulda S. Histone deacetylase inhibitors prime medulloblastoma cells for chemotherapy-induced apoptosis by enhancing p53-dependent Bax activation. Oncogene. 2011;30:2275–81.

    Article  PubMed  Google Scholar 

  46. Lee WT, Chang CW. Bax is upregulated by p53 signal pathway in the SPE B-induced apoptosis. Mol Cell Biochem. 2010;343:271–9.

    Article  CAS  PubMed  Google Scholar 

  47. Pohl F, Grosse J, Grimm D, Brockhoff G, Westphal K, Moosbauer J, Koelbl O, Infanger M, Eilles C, Schoenberger J. Changes of apoptosis, p53, and bcl-2 by irradiation in poorly differentiated thyroid carcinoma cell lines: a prognostic marker for the prospect of therapeutic success? Thyroid. 2010;20:159–66.

    Article  CAS  PubMed  Google Scholar 

  48. Moretti F, Farsetti A, Soddu S, Misiti S, Crescenzi M, Filetti S, Andreoli M, Sacchi A, Pontecorvi A. p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene. 1997;14:729–40.

    Article  CAS  PubMed  Google Scholar 

  49. Fagin JA. Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol Endocrinol. 2002;16:903–11.

    CAS  PubMed  Google Scholar 

  50. Kim TH, Lee SY, Rho JH, Jeong NY, Soung YH, Jo WS, Kang DY, Kim SH, Yoo YH. Mutant p53 (G199V) gains antiapoptotic function through signal transducer and activator of transcription 3 in anaplastic thyroid cancer cells. Mol Cancer Res. 2009;7:1645–54.

    Article  CAS  PubMed  Google Scholar 

  51. Messina RL, Sanfilippo M, Vella V, Pandini G, Vigneri P, Nicolosi ML, Gianì F, Vigneri R, Frasca F. Reactivation of p53 mutants by p53 reactivation and induction of massive apoptosis in thyroid cancer cells. Int J Cancer. 2012;130:2259–2270.

    Google Scholar 

  52. Karger S, Berger K, Eszlinger M, Tannapfel A, Dralle H, Paschke R, Führer D. Evaluation of peroxisome proliferator-activated receptor-gamma expression in benign and malignant thyroid pathologies. Thyroid. 2005;15:997–1003.

    Article  CAS  PubMed  Google Scholar 

  53. Aldred MA, Morrison C, Gimm O, Hoang-Vu C, Krause U, Dralle H, Jhiang S, Eng C. Peroxisome proliferator-activated receptor gamma is frequently downregulated in a diversity of sporadic nonmedullary thyroid carcinomas. Oncogene. 2003;22:3412–6.

    Article  CAS  PubMed  Google Scholar 

  54. Araki O, Ying H, Furuya F, Zhu X, Cheng SY. Thyroid hormone receptor beta mutants: dominant negative regulators of peroxisome proliferator-activated receptor gamma action. Proc Natl Acad Sci U S A. 2005;102:16251–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Au AY, McBride C, Wilhelm Jr KG, Koenig RJ, Speller B, Cheung L, Messina M, Wentworth J, Tasevski V, Learoyd D, Robinson BG, Clifton-Bligh RJ. PAX8-peroxisome proliferator-activated receptor gamma (PPARgamma) disrupts normal PAX8 or PPARgamma transcriptional function and stimulates follicular thyroid cell growth. Endocrinology. 2006;147:367–76.

    Article  CAS  PubMed  Google Scholar 

  56. Diallo-Krou E, Yu J, Colby LA, Inoki K, Wilkinson JE, Thomas DG, Giordano TJ, Koenig RJ. Paired box gene 8-peroxisome proliferator-activated receptor-gamma fusion protein and loss of phosphatase and tensin homolog synergistically cause thyroid hyperplasia in transgenic mice. Endocrinology. 2009;150:5181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hayashi N, Nakamori S, Hiraoka N, Tsujie M, Xundi X, Takano T, Amino N, Sakon M, Monden M. Antitumor effects of peroxisome proliferator activate receptor gamma ligands on anaplastic thyroid carcinoma. Int J Oncol. 2004;24:89–95.

    CAS  PubMed  Google Scholar 

  58. Bonofiglio D, Qi H, Gabriele S, Catalano S, Aquila S, Belmonte M, Andò S. Peroxisome proliferator-activated receptor gamma inhibits follicular and anaplastic thyroid carcinoma cells growth by upregulating p21Cip1/WAF1 gene in a Sp1-dependent manner. Endocr Relat Cancer. 2008;15:545–57.

    Article  CAS  PubMed  Google Scholar 

  59. Tepmongkol S, Keelawat S, Honsawek S, Ruangvejvorachai P. Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator-activated receptor-gamma. Thyroid. 2008;18:697–704.

    Article  CAS  PubMed  Google Scholar 

  60. Chiappetta G, Ammirante M, Basile A, Rosati A, Festa M, Monaco M, Vuttariello E, Pasquinelli R, Arra C, Zerilli M, Todaro M, Stassi G, Pezzullo L, Gentilella A, Tosco A, Pascale M, Marzullo L, Belisario MA, Turco MC, Leone A. The antiapoptotic protein BAG3 is expressed in thyroid carcinomas and modulates apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand. J Clin Endocrinol Metab. 2007;92:1159–63.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang HY, Wang HQ, Liu HM, Guan Y, Du ZX. Regulation of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by DJ-1 in thyroid cancer cells. Endocr Relat Cancer. 2008;15:535–44.

    Article  CAS  PubMed  Google Scholar 

  62. Siraj AK, Hussain AR, Al-Rasheed M, Ahmed M, Bavi P, Alsobhi SA, Al-Nuaim A, Uddin S, Al-Kuraya K. Demethylation of TMS1 gene sensitizes thyroid cancer cells to TRAIL-induced apoptosis. J Clin Endocrinol Metab. 2011;96:E215–24.

    Article  CAS  PubMed  Google Scholar 

  63. Nicolini V, Cassinelli G, Cuccuru G, Bongarzone I, Petrangolini G, Tortoreto M, Mondellini P, Casalini P, Favini E, Zaffaroni N, Zunino F, Lanzi C. Interplay between Ret and Fap-1 regulates CD95-mediated apoptosis in medullary thyroid cancer cells. Biochem Pharmacol. 2011;82:778–88.

    Article  CAS  PubMed  Google Scholar 

  64. Yang HL, Pan JX, Sun L, Yeung SC. p21 Waf-1 (Cip-1) enhances apoptosis induced by manumycin and paclitaxel in anaplastic thyroid cancer cells. J Clin Endocrinol Metab. 2003;88:763–72.

    Article  CAS  PubMed  Google Scholar 

  65. Wang SH, Phelps E, Utsugi S, Baker Jr JR. Susceptibility of thyroid cancer cells to 7-hydroxystaurosporine-induced apoptosis correlates with Bcl-2 protein level. Thyroid. 2001;11:725–31.

    Article  CAS  PubMed  Google Scholar 

  66. Rinner B, Siegl V, Purstner P, Efferth T, Brem B, Greger H, Pfragner R. Activity of novel plant extracts against medullary thyroid carcinoma cells. Anticancer Res. 2004;24:495–500.

    PubMed  Google Scholar 

  67. Ahmad M, Shi Y. TRAIL-induced apoptosis of thyroid cancer cells: potential for therapeutic intervention. Oncogene. 2000;19:3363–71.

    Article  CAS  PubMed  Google Scholar 

  68. Borbone E, Berlingieri MT, De Bellis F, Nebbioso A, Chiappetta G, Mai A, Altucci L, Fusco A. Histone deacetylase inhibitors induce thyroid cancer-specific apoptosis through proteasome-dependent inhibition of TRAIL degradation. Oncogene. 2010;29:105–16.

    Article  CAS  PubMed  Google Scholar 

  69. Morello S, Sorrentino R, Porta A, Forte G, Popolo A, Petrella A, Pinto A. Cl-IB-MECA enhances TRAIL-induced apoptosis via the modulation of NF-kappaB signalling pathway in thyroid cancer cells. J Cell Physiol. 2009;221:378–86.

    Article  CAS  PubMed  Google Scholar 

  70. Festa M, Petrella A, Alfano S, Parente L. R-roscovitine sensitizes anaplastic thyroid carcinoma cells to TRAIL-induced apoptosis via regulation of IKK/NF-kappaB pathway. Int J Cancer. 2009;124:2728–36.

    Article  CAS  PubMed  Google Scholar 

  71. Du ZX, Zhang HY, Meng X, Guan Y, Wang HQ. Role of oxidative stress and intracellular glutathione in the sensitivity to apoptosis induced by proteasome inhibitor in thyroid cancer cells. BMC Cancer. 2009;9:56.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bauerle KT, Schweppe RE, Haugen BR. Inhibition of nuclear factor-kappa B differentially affects thyroid cancer cell growth, apoptosis, and invasion. Mol Cancer. 2010;9:117.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Truong M, Cook MR, Pinchot SN, Kunnimalaiyaan M, Chen H. Resveratrol induces Notch2-mediated apoptosis and suppression of neuroendocrine markers in medullary thyroid cancer. Ann Surg Oncol. 2011;18:1506–11.

    Article  PubMed  Google Scholar 

  74. Zeybek ND, Gulcelik NE, Kaymaz FF, Sarisozen C, Vural I, Bodur E, Canpinar H, Usman A, Asan E. Rosuvastatin induces apoptosis in cultured human papillary thyroid cancer cells. J Endocrinol. 2011;210:105–15.

    Article  CAS  PubMed  Google Scholar 

  75. Lim YC, Cha YY. Epigallocatechin-3-gallate induces growth inhibition and apoptosis of human anaplastic thyroid carcinoma cells through suppression of EGFR/ERK pathway and cyclin B1/CDK1 complex. J Surg Oncol. 2011;107:776–780.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su He Wang MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, S.H., Baker, J.R. (2016). Apoptosis in Thyroid Cancer. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics