Skip to main content

Alternative Thyroid Imaging

  • Chapter
  • First Online:
Thyroid Cancer

Abstract

Alternative radioisotopes have been used to image thyroid cancer with negative radioiodine scintigraphy and elevated thyroglobulin levels. We describe the mechanism of tumor uptake, indications, and the clinical use of thallium 201, 99mTc sestamibi, 99mTc tetrofosmin, and somatostatin analogues. We discuss the role of alternative radiotracer imaging in comparison to 18F FDG PET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kishida T. Mechanisms of thallium-201 accumulation in the thyroid gland—clinical usefulness of the dynamic study in thallium-201 chloride scintigraphy for the differential diagnosis of thyroid nodules. Kaku Igaku. 1987;24:991–1004.

    CAS  PubMed  Google Scholar 

  2. Hoefnagel CA, Delprat CC, Marcuse HR, de Vijlder JJ. Role of thallium-201 total-body scintigraphy in follow-up of thyroid carcinoma. J Nucl Med. 1986;27:1854–7.

    CAS  PubMed  Google Scholar 

  3. Yada H, Hozumi Y, Kanazawa K, Nagai H. Quantitative estimation and clinical significance of accumulation and washout of thallium-201 chloride in follicular thyroid neoplasm. Endocr J. 2002;49:55–60.

    Article  PubMed  Google Scholar 

  4. Uematsu H, Sadato N, Ohtsubo T, et al. Fluorine-18-fluorodeoxyglucose PET versus thallium-201 scintigraphy evaluation of thyroid tumors. J Nucl Med. 1998;39:453–9.

    CAS  PubMed  Google Scholar 

  5. Ramanna L, Waxman A, Braunstein G. Thallium-201 scintigraphy in differentiated thyroid cancer: comparison with radioiodine scintigraphy and serum thyroglobulin determinations. J Nucl Med. 1991;32:441–6.

    CAS  PubMed  Google Scholar 

  6. Brandt-Mainz K, Muller SP, Reiners C, Bockisch A. Relationship between thyroglobulin and reliability of thallium 201 scintigraphy in differentiated thyroid cancer. Nuklearmedizin. 2000;39:20–5.

    CAS  PubMed  Google Scholar 

  7. Brendel AJ, Guyot M, Jeandot R, Lefort G, Manciet G. Thallium-201 imaging in the follow-up of differentiated thyroid carcinoma. J Nucl Med. 1988;29:1515–20.

    CAS  PubMed  Google Scholar 

  8. Carril JM, Quirce R, Serrano J, et al. Total-body scintigraphy with thallium-201 and iodine-131 in the follow-up of differentiated thyroid cancer. J Nucl Med. 1997;38:686–92.

    CAS  PubMed  Google Scholar 

  9. Charkes ND, Vitti RA, Brooks K. Thallium-201 SPECT increases detectability of thyroid cancer metastases. J Nucl Med. 1990;31:147–53.

    CAS  PubMed  Google Scholar 

  10. Harder W, Lind P, Molnar M, et al. Thallium-201 uptake with negative iodine-131 scintigraphy and serum thyroglobulin in metastatic oxyphilic papillary thyroid carcinoma. J Nucl Med. 1998;39:236–8.

    CAS  PubMed  Google Scholar 

  11. Lin JD, Kao PF, Weng HF, Lu WT, Huang MJ. Relative value of thallium-201 and iodine-131 scans in the detection of recurrence or distant metastasis of well differentiated thyroid carcinoma. Eur J Nucl Med. 1998;25:695–700.

    Article  CAS  PubMed  Google Scholar 

  12. Nakada K, Katoh C, Kanegae K, et al. Thallium-201 scintigraphy to predict therapeutic outcome of iodine-131 therapy of metastatic thyroid carcinoma. J Nucl Med. 1998;39:807–10.

    CAS  PubMed  Google Scholar 

  13. Nakada K, Katoh C, Morita K, et al. Relationship among 201T1 uptake, nuclear DNA content and clinical behavior in metastatic thyroid carcinoma. J Nucl Med. 1999;40:963–7.

    CAS  PubMed  Google Scholar 

  14. Maxon HR. Detection of residual and recurrent thyroid cancer by radionuclide imaging. Thyroid. 1999;9:443–6.

    Article  CAS  PubMed  Google Scholar 

  15. Erdil TY, Onsel C, Kanmaz B, et al. Comparison of 99mTc-methoxyisobutyl isonitrile and 201T1 scintigraphy in visualization of suppressed thyroid tissue. J Nucl Med. 2000;41:1163–7.

    CAS  PubMed  Google Scholar 

  16. Alper E, Akbunar T, Tamgac F. Visualization of papillary thyroid carcinoma and its metastatic lymph nodes. Images with Tc-99m pertechnetate, Tl-201, and Tc-99m sestamibi. Clin Nucl Med. 1996;21:815–6.

    Article  CAS  PubMed  Google Scholar 

  17. Klain M, Maurea S, Cuocolo A, et al. Technetium-99m tetrofosmin imaging in thyroid diseases: comparison with Tc-99m-pertechnetate, thallium-201 and Tc-99m-methoxyisobutylisonitrile scans. Eur J Nucl Med. 1996;23:1568–74.

    Article  CAS  PubMed  Google Scholar 

  18. Shiga T, Tsukamoto E, Nakada K, et al. Comparison of 18F-FDG, 131I-Na, and 201Tl in diagnosis of recurrent or metastatic thyroid carcinoma. J Nucl Med. 2001;42:414–9.

    CAS  PubMed  Google Scholar 

  19. Dadparvar S, Chevres A, Tulchinsky M, Krishna-Badrinath L, Khan AS, Slizofski WJ. Clinical utility of technetium-99m methoxyisobutylisonitrile imaging in differentiated thyroid carcinoma: comparison with thallium-201 and iodine-131 Na scintigraphy, and serum thyroglobulin quantitation. Eur J Nucl Med. 1995;22:1330–8.

    Article  CAS  PubMed  Google Scholar 

  20. Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H. Follow-up of differentiated thyroid cancer: what is the value of FDG and sestamibi in the diagnostic algorithm? Nuklearmedizin. 1998;37:12–7.

    CAS  PubMed  Google Scholar 

  21. Yen TC, Lin HD, Lee CH, Chang SL, Yeh SH. The role of technetium-99m sestamibi whole-body scans in diagnosing metastatic Hurthle cell carcinoma of the thyroid gland after total thyroidectomy: a comparison with iodine-131 and thallium-201 whole-body scans. Eur J Nucl Med. 1994;21:980–3.

    Article  CAS  PubMed  Google Scholar 

  22. Sarikaya A, Huseyinova G, Irfanoglu ME, Erkmen N, Cermik TF, Berkarda S. The relationship between 99Tc(m)-sestamibi uptake and ultrastructural cell types of thyroid tumours. Nucl Med Commun. 2001;22:39–44.

    Article  CAS  PubMed  Google Scholar 

  23. Van de Wiele C, Rottey S, Goethals I, et al. 99mTc sestamibi and 99mTc tetrofosmin scintigraphy for predicting resistance to chemotherapy: a critical review of clinical data. Nucl Med Commun. 2003;24:945–50.

    Article  PubMed  Google Scholar 

  24. Saggiorato E, Angusti T, Rosas R, et al. 99mTc-MIBI imaging in the presurgical characterization of thyroid follicular neoplasms: relationship to multidrug resistance protein expression. J Nucl Med. 2009;50:1785–93.

    Article  PubMed  Google Scholar 

  25. Almeida-Filho P, Ravizzini GC, Almeida C, Borges-Neto S. Whole-body Tc-99m sestamibi scintigraphy in the follow-up of differentiated thyroid carcinoma. Clin Nucl Med. 2000;25:443–6.

    Article  CAS  PubMed  Google Scholar 

  26. Seabold JE, Gurll N, Schurrer ME, Aktay R, Kirchner PT. Comparison of 99mTc-methoxyisobutyl isonitrile and 201Tl scintigraphy for detection of residual thyroid cancer after 131I ablative therapy. J Nucl Med. 1999;40:1434–40.

    CAS  PubMed  Google Scholar 

  27. Foldes I, Levay A, Stotz G. Comparative scanning of thyroid nodules with technetium-99m pertechnetate and technetium-99m methoxyisobutylisonitrile. Eur J Nucl Med. 1993;20:330–3.

    Article  CAS  PubMed  Google Scholar 

  28. Kresnik E, Gallowitsch HJ, Mikosch P, Molnar M, Lind P. Tetrofosmin scintigraphy of thyroid disease. Eur J Nucl Med. 1997;24:1332.

    CAS  PubMed  Google Scholar 

  29. Nakahara H, Noguchi S, Murakami N, et al. Technetium-99m-sestamibi scintigraphy compared with thallium-201 in evaluation of thyroid tumors. J Nucl Med. 1996;37:901–4.

    CAS  PubMed  Google Scholar 

  30. Wei JP, Burke GJ. Characterization of the neoplastic potential of solitary solid thyroid lesions with Tc-99m-pertechnetate and Tc-99m-sestamibi scanning. Ann Surg Oncol. 1995;2:233–7.

    Article  CAS  PubMed  Google Scholar 

  31. Casara D, Rubello D, Saladini G. Role of scintigraphy with tumor-seeking agents in the diagnosis and preoperative staging of malignant thyroid nodules. Biomed Pharmacother. 2000;54:334–6.

    Article  CAS  PubMed  Google Scholar 

  32. Boi F, Lai ML, Deias C, et al. The usefulness of 99mTc-SestaMIBI scan in the diagnostic evaluation of thyroid nodules with oncocytic cytology. Eur J Endocrinol. 2003;149:493–8.

    Article  CAS  PubMed  Google Scholar 

  33. Vattimo A, Bertelli P, Cintorino M, Burroni L, Volterrani D, Vella A. Identification of Hurthle cell tumor by single-injection, double-phase scintigraphy with technetium-99m-sestamibi. J Nucl Med. 1995;36:778–82.

    CAS  PubMed  Google Scholar 

  34. Vattimo A, Bertelli P, Cintorino M, et al. Hurthle cell tumor dwelling in hot thyroid nodules: preoperative detection with technetium-99m-MIBI dual-phase scintigraphy. J Nucl Med. 1998;39:822–5.

    CAS  PubMed  Google Scholar 

  35. Chamnanrabiabkij E, Welch A, Jayapaul MK, Perros P. Detection of Hurthle cell carcinoma using sestamibi. Thyroid. 2008;18:575–6.

    Article  PubMed  Google Scholar 

  36. Campenni A, Violi MA, Ruggeri RM, et al. Clinical usefulness of 99mTc-MIBI scintigraphy in the postsurgical evaluation of patients with differentiated thyroid cancer. Nucl Med Commun. 2010;31:274–9.

    Article  PubMed  Google Scholar 

  37. Elser H, Henze M, Hermann C, Eckert W, Mende U. 99m-Tc-MIBI for recurrent and metastatic differentiated thyroid carcinoma. Nuklearmedizin. 1997;36:7–12.

    CAS  PubMed  Google Scholar 

  38. Fridrich L, Messa C, Landoni C, et al. Whole-body scintigraphy with 99mTc-MIBI, 18F-FDG and 131I in patients with metastatic thyroid carcinoma. Nucl Med Commun. 1997;18:3–9.

    Article  CAS  PubMed  Google Scholar 

  39. Fujie S, Okumura Y, Sato S, et al. Diagnostic capabilities of I-131, TI-201, and Tc-99m-MIBI scintigraphy for metastatic differentiated thyroid carcinoma after total thyroidectomy. Acta Med Okayama. 2005;59:99–107.

    PubMed  Google Scholar 

  40. Grunwald F, Menzel C, Bender H, et al. Comparison of 18FDG-PET with 131iodine and 99mTc-sestamibi scintigraphy in differentiated thyroid cancer. Thyroid. 1997;7:327–35.

    Article  CAS  PubMed  Google Scholar 

  41. Hsu CH, Liu FY, Yen RF, Kao CH. Tc-99m MIBI SPECT in detecting metastatic papillary thyroid carcinoma in patients with elevated human serum thyroglobulin levels but negative I-131 whole body scan. Endocr Res. 2003;29:9–15.

    Article  PubMed  Google Scholar 

  42. Iwata M, Kasagi K, Misaki T, et al. Comparison of whole-body 18F-FDG PET, 99mTc-MIBI SPET, and post-therapeutic 131I-Na scintigraphy in the detection of metastatic thyroid cancer. Eur J Nucl Med Mol Imaging. 2004;31:491–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kaya M, Cermik TF. Tc-99m MIBI scintigraphy in tall cell variant of papillary thyroid carcinoma with negative radioiodine scan. Clin Nucl Med. 2008;33:615–8.

    Article  PubMed  Google Scholar 

  44. Kobayashi M, Mogami T, Uchiyama M, et al. Usefulness of 99mTc-MIBI SPECT in the metastatic lesions of thyroid cancer. Nippon Igaku Hoshasen Gakkai Zasshi. 1997;57:127–32.

    CAS  PubMed  Google Scholar 

  45. Kresnik E, Gallowitsch HJ, Mikosch P, Lind P. MIBI and thyroid tumors. J Nucl Med. 1997;38:1501.

    CAS  PubMed  Google Scholar 

  46. Kucuk NO, Kulak HA, Aras G. Clinical importance of technetium-99m-methoxyisobutylisonitrile (MIBI) scintigraphy in differentiated thyroid carcinoma patients with elevated thyroglobulin levels and negative I-131 scanning results. Ann Nucl Med. 2006;20:393–7.

    Article  PubMed  Google Scholar 

  47. Kucuk ON, Aras G, Kulak HA, Ibis E. Clinical importance of anti-thyroglobulin auto-antibodies in patients with differentiated thyroid carcinoma: comparison with 99mTc-MIBI scans. Nucl Med Commun. 2006;27:873–6.

    Article  PubMed  CAS  Google Scholar 

  48. Kucuk ON, Gultekin SS, Aras G, Ibis E. Radioiodine whole-body scans, thyroglobulin levels, 99mTc-MIBI scans and computed tomography: results in patients with lung metastases from differentiated thyroid cancer. Nucl Med Commun. 2006;27:261–6.

    Article  PubMed  Google Scholar 

  49. Miyamoto S, Kasagi K, Misaki T, Alam MS, Konishi J. Evaluation of technetium-99m-MIBI scintigraphy in metastatic differentiated thyroid carcinoma. J Nucl Med. 1997;38:352–6.

    CAS  PubMed  Google Scholar 

  50. Nemec J, Nyvltova O, Blazek T, et al. Positive thyroid cancer scintigraphy using technetium-99m methoxyisobutylisonitrile. Eur J Nucl Med. 1996;23:69–71.

    Article  CAS  PubMed  Google Scholar 

  51. Ronga G, Ventroni G, Montesano T, et al. Sensitivity of [99mTc]methoxyisobutylisonitrile scan in patients with metastatic differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2007;51:364–71.

    CAS  PubMed  Google Scholar 

  52. Sriprapaporn J, Toopmongkol C, Satayaban B, Chantamoon N. Technetium-99m methoxyisobutylisonitrile imaging in the follow-up of differentiated thyroid carcinoma. Ann Acad Med Singapore. 2002;31:195–8.

    CAS  PubMed  Google Scholar 

  53. Ugur O, Kostakoglu L, Caner B, et al. Comparison of 201Tl, 99mTc-MIBI and 131I imaging in the follow-up of patients with well-differentiated thyroid carcinoma. Nucl Med Commun. 1996;17:373–7.

    Article  CAS  PubMed  Google Scholar 

  54. Ng DC, Sundram FX, Sin AE. 99mTc-sestamibi and 131I whole-body scintigraphy and initial serum thyroglobulin in the management of differentiated thyroid carcinoma. J Nucl Med. 2000;41:631–5.

    CAS  PubMed  Google Scholar 

  55. Rubello D, Mazzarotto R, Casara D. The role of technetium-99m methoxyisobutylisonitrile scintigraphy in the planning of therapy and follow-up of patients with differentiated thyroid carcinoma after surgery. Eur J Nucl Med. 2000;27:431–40.

    Article  CAS  PubMed  Google Scholar 

  56. Meller B, Sahlmann C, Horstmann O, Gerl J, Baehre M, Meller J. Conventional gamma and high energy probe for radioguided dissection of metastases in a patient with recurrent thyroid carcinoma with 99mTc-MIBI and 18F-FDG. Nuklearmedizin. 2005;44:N23–5.

    CAS  PubMed  Google Scholar 

  57. Rubello D, Pelizzo MR, Casara D, et al. Radio-guided surgery for non-131I-avid thyroid cancer. Thyroid. 2006;16:1105–11.

    Article  PubMed  Google Scholar 

  58. Rubello D, Piotto A, Pagetta C, Pelizzo MR, Casara D. 99mTc-MIBI radio-guided surgery for recurrent thyroid carcinoma: technical feasibility and procedure, and preliminary clinical results. Eur J Nucl Med Mol Imaging. 2002;29:1201–5.

    Article  CAS  PubMed  Google Scholar 

  59. Rubello D, Salvatori M, Casara D, et al. 99mTc-sestamibi radio-guided surgery of loco-regional 131Iodine-negative recurrent thyroid cancer. Eur J Surg Oncol. 2007;33:902–6.

    Article  CAS  PubMed  Google Scholar 

  60. Rubello D, Salvatori M, Pelizzo MR, et al. Radio-guided surgery of differentiated thyroid cancer using 131I or 99mTc-Sestamibi. Nucl Med Commun. 2006;27:1–4.

    Article  PubMed  Google Scholar 

  61. Boz A, Arici C, Gungor F, Yildiz A, Colak T, Karayalcin B. Gamma probe-guided resection and scanning with TC-99m MIBI of a local recurrence of follicular thyroid carcinoma. Clin Nucl Med. 2001;26:820–2.

    Article  CAS  PubMed  Google Scholar 

  62. Waddington WA, Kettle AG, Heddle RM, Coakley AJ. Intraoperative localization of recurrent medullary carcinoma of the thyroid using indium-111 pentetreotide and a nuclear surgical probe. Eur J Nucl Med. 1994;21:363–4.

    Article  CAS  PubMed  Google Scholar 

  63. Gallegos-Hernandez JF, Pichardo-Romero P, Esparza-Perez H, Resendiz-Colosia JA, Minauro-Munoz GG, Hernandez-Hernandez DM. Value of 99mTc tetrofosmin scan in well-differentiated thyroid cancer. Cir Cir. 2009;77:275–8, 257–79.

    PubMed  Google Scholar 

  64. Kanmaz B, Erdil TY, Yardi OF, et al. The role of 99mTc-tetrofosmin in the evaluation of thyroid nodules. Nucl Med Commun. 2000;21:333–9.

    Article  CAS  PubMed  Google Scholar 

  65. Chen YK, Liu FY, Yen RF, Kao CH. Compare FDG-PET and Tc-99m tetrofosmin SPECT to detect metastatic thyroid carcinoma. Acad Radiol. 2003;10:835–9.

    Article  PubMed  Google Scholar 

  66. Degirmenci B, Aydin A, Comlekci A, Ozdogan O, Bekis R. Technetium-99m tetrofosmin uptake in insular thyroid carcinoma. A comparison with iodine-131. Clin Nucl Med. 2003;28:385–8.

    PubMed  Google Scholar 

  67. Erdem S, Baskan A, Bashekim C, Filiz E. Tc-99m tetrofosmin uptake by recurrent papillary carcinoma of the thyroid. Clin Nucl Med. 1998;23:189.

    Article  CAS  PubMed  Google Scholar 

  68. Gallowitsch HJ, Kresnik E, Mikosch P, Pipam W, Gomez I, Lind P. Tc-99m-tetrofosmin scintigraphy: an alternative scintigraphic method for following up differentiated thyroid carcinoma—preliminary results. Nuklearmedizin. 1996;35:230–5.

    CAS  PubMed  Google Scholar 

  69. Gallowitsch HJ, Mikosch P, Kresnik E, Unterweger O, Gomez I, Lind P. Thyroglobulin and low-dose iodine-131 and technetium-99m-tetrofosmin whole-body scintigraphy in differentiated thyroid carcinoma. J Nucl Med. 1998;39:870–5.

    CAS  PubMed  Google Scholar 

  70. Klain M, Cuocolo A, Salvatore M, Maurea S. Tetrofosmin thyroid scintigraphy. Eur J Nucl Med. 1998;25:816.

    CAS  PubMed  Google Scholar 

  71. Klain M, Maurea S, Lastoria S, et al. Technetium-99m-tetrofosmin imaging of differentiated mixed thyroid cancer. J Nucl Med. 1995;36:2248–51.

    CAS  PubMed  Google Scholar 

  72. Kosuda S, Yokoyama H, Katayama M, Yokokawa T, Kusano S, Yamamoto O. Technetium-99m tetrofosmin and technetium-99m sestamibi imaging of multiple metastases from differentiated thyroid carcinoma. Eur J Nucl Med. 1995;22:1218–20.

    Article  CAS  PubMed  Google Scholar 

  73. Lind P, Gallowitsch HJ. The use of non-specific tracers in the follow up of differentiated thyroid cancer: results with Tc-99m tetrofosmin whole body scintigraphy. Acta Med Austriaca. 1996;23:69–75.

    CAS  PubMed  Google Scholar 

  74. Lind P, Gallowitsch HJ, Langsteger W, Kresnik E, Mikosch P, Gomez I. Technetium-99m-tetrofosmin whole-body scintigraphy in the follow-up of differentiated thyroid carcinoma. J Nucl Med. 1997;38:348–52.

    CAS  PubMed  Google Scholar 

  75. Lind P, Gallowitsch HJ, Mikosch P, et al. Comparison of different tracers in the follow up of differentiated thyroid carcinoma. Acta Med Austriaca. 1999;26:115–7.

    CAS  PubMed  Google Scholar 

  76. Lind P, Gallowitsch HJ, Unterweger O, Mikosch P, Starlinger M, Dinges HP. FDG PET in the follow-up of differentiated thyroid cancer. Comparison with Tc-99m Tetrofosmin and I-131 whole body scintigraphy. Clin Positron Imaging. 1998;1:237.

    Article  PubMed  Google Scholar 

  77. Nemec J, Nyvltova O, Preiningerova M, et al. Positive thyroid cancer scintigraphy using 99mTc-tetrofosmin (Myoview): a preliminary report. Nucl Med Commun. 1995;16:694–7.

    Article  CAS  PubMed  Google Scholar 

  78. Nishiyama Y, Yamamoto Y, Ono Y, et al. Comparison of 99mTc-tetrofosmin with 201Tl and 131I in the detection of differentiated thyroid cancer metastases. Nucl Med Commun. 2000;21:917–23.

    Article  CAS  PubMed  Google Scholar 

  79. Unal S, Menda Y, Adalet I, et al. Thallium-201, technetium-99m-tetrofosmin and iodine-131 in detecting differentiated thyroid carcinoma metastases. J Nucl Med. 1998;39:1897–902.

    CAS  PubMed  Google Scholar 

  80. Wu HS, Liu FY, Huang WS, Liu YC, Chang CT, Kao CH. Technetium-99m tetrofosmin single photon emission computed tomography to detect metastatic papillary thyroid carcinoma in patients with elevated human serum thyroglobulin levels but negative I-131 whole body scan. Clin Radiol. 2003;58:787–90.

    Article  PubMed  Google Scholar 

  81. Wu YJ, Wu HS, Yen RF, Shen YY, Kao CH. Detecting metastatic neck lymph nodes in papillary thyroid carcinoma by 18F-2-deoxyglucose positron emission tomography and Tc-99m tetrofosmin single photon emission computed tomography. Anticancer Res. 2003;23:2973–6.

    CAS  PubMed  Google Scholar 

  82. Tisell LE, Ahlman H, Wangberg B, et al. Expression of somatostatin receptors in oncocytic (Hurthle cell) neoplasia of the thyroid. Br J Cancer. 1999;79:1579–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ain KB, Taylor KD, Tofiq S, Venkataraman G. Somatostatin receptor subtype expression in human thyroid and thyroid carcinoma cell lines. J Clin Endocrinol Metab. 1997;82:1857–62.

    CAS  PubMed  Google Scholar 

  84. Virgolini I, Traub T, Novotny C, et al. Experience with indium-111 and yttrium-90-labeled somatostatin analogs. Curr Pharm Des. 2002;8:1781–807.

    Article  CAS  PubMed  Google Scholar 

  85. Baudin E, Schlumberger M, Lumbroso J, Travagli JP, Caillou B, Parmentier C. Octreotide scintigraphy in patients with differentiated thyroid carcinoma: contribution for patients with negative radioiodine scan. J Clin Endocrinol Metab. 1996;81:2541–4.

    CAS  PubMed  Google Scholar 

  86. Christian JA, Cook GJ, Harmer C. Indium-111-labelled octreotide scintigraphy in the diagnosis and management of non-iodine avid metastatic carcinoma of the thyroid. Br J Cancer. 2003;89:258–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Giammarile F, Houzard C, Bournaud C, Hafdi Z, Sassolas G, Borson-Chazot F. Diagnostic management of suspected metastatic thyroid carcinoma: clinical value of octreotide scintigraphy in patients with negative high-dose radioiodine scans. Eur J Endocrinol. 2004;150:277–83.

    Article  CAS  PubMed  Google Scholar 

  88. Gorges R, Kahaly G, Muller-Brand J, Macke H, Roser HW, Bockisch A. Radionuclide-labeled somatostatin analogues for diagnostic and therapeutic purposes in nonmedullary thyroid cancer. Thyroid. 2001;11:647–59.

    Article  CAS  PubMed  Google Scholar 

  89. Postema PT, De Herder WW, Reubi JC, et al. Somatostatin receptor scintigraphy in non-medullary thyroid cancer. Digestion. 1996;57 Suppl 1:36–7.

    Google Scholar 

  90. Sarlis NJ, Gourgiotis L, Guthrie LC, et al. In-111 DTPA-octreotide scintigraphy for disease detection in metastatic thyroid cancer: comparison with F-18 FDG positron emission tomography and extensive conventional radiographic imaging. Clin Nucl Med. 2003;28:208–17.

    PubMed  Google Scholar 

  91. Stokkel MP, Reigman HI, Verkooijen RB, Smit JW. Indium-111-octreotide scintigraphy in differentiated thyroid carcinoma metastases that do not respond to treatment with high-dose I-131. J Cancer Res Clin Oncol. 2003;129:287–94.

    CAS  PubMed  Google Scholar 

  92. Stokkel MP, Verkooijen RB, Smit JW. Indium-111 octreotide scintigraphy for the detection of non-functioning metastases from differentiated thyroid cancer: diagnostic and prognostic value. Eur J Nucl Med Mol Imaging. 2004;31:950–7.

    Article  PubMed  Google Scholar 

  93. Gambini JP, Quagliata A, Finozzi R, et al. Tc-99m- and Ga-68-labeled somatostatin analogues in the evaluation of hurthle cell thyroid cancer. Clin Nucl Med. 2011;36:803–4.

    Article  PubMed  Google Scholar 

  94. Kostoglou-Athanassiou I, Pappas A, Gogou L, Kaldrymides P. Scintigraphy with 111In octreotide and 201Tl in a Hurthle cell thyroid carcinoma without detectable radio-iodine uptake. Report of a case and review of the literature. Horm Res. 2003;60:205–8.

    Article  CAS  PubMed  Google Scholar 

  95. Alhamarneh O, Murphy J, Atkin SL, England RJ. Somatostatin analogues have no role in the treatment of advanced differentiated thyroid cancer. J Laryngol Otol. 2004;118:653–4.

    Article  CAS  PubMed  Google Scholar 

  96. Kohlfuerst S, Igerc I, Gallowitsch HJ, et al. Is there a role for sandostatin treatment in patients with progressive thyroid cancer and iodine-negative but somatostatin-receptor-positive metastases? Thyroid. 2006;16:1113–9.

    Article  CAS  PubMed  Google Scholar 

  97. Margulies DJ, Blum M. Somatostatin receptor scintigraphy as a potential diagnostic and treatment modality for thyroid follicular-cell-derived cancers. Thyroid. 2010;20:671–2.

    Article  CAS  PubMed  Google Scholar 

  98. Teunissen JJ, Kwekkeboom DJ, Kooij PP, Bakker WH, Krenning EP. Peptide receptor radionuclide therapy for non-radioiodine-avid differentiated thyroid carcinoma. J Nucl Med. 2005;46:107S–14.

    CAS  PubMed  Google Scholar 

  99. Teunissen JJ, Kwekkeboom DJ, Krenning EP. Staging and treatment of differentiated thyroid carcinoma with radiolabeled somatostatin analogs. Trends Endocrinol Metab. 2006;17:19–25.

    Article  CAS  PubMed  Google Scholar 

  100. Gabriel M, Froehlich F, Decristoforo C, et al. 99mTc-EDDA/HYNIC-TOC and (18)F-FDG in thyroid cancer patients with negative 131I whole-body scans. Eur J Nucl Med Mol Imaging. 2004;31:330–41.

    Article  CAS  PubMed  Google Scholar 

  101. Gambini JP, Nunez M, Vila R, Noble J, Alonso O. Tc-99m hynic octreotide SPECT-MRI in brain metastasis of thyroid papillary-insular cancer. Clin Nucl Med. 2009;34:920–1.

    Article  PubMed  Google Scholar 

  102. Rodrigues M, Li S, Gabriel M, Heute D, Greifeneder M, Virgolini I. 99mTc-depreotide scintigraphy versus 18F-FDG-PET in the diagnosis of radioiodine-negative thyroid cancer. J Clin Endocrinol Metab. 2006;91:3997–4000.

    Article  CAS  PubMed  Google Scholar 

  103. Rodrigues M, Traub-Weidinger T, Leimer M, et al. Value of 111In-DOTA-lanreotide and 111In-DOTA-DPhe1-Tyr3-octreotide in differentiated thyroid cancer: results of in vitro binding studies and in vivo comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2005;32:1144–51.

    Article  CAS  PubMed  Google Scholar 

  104. Valsamaki P, Gotzamani-Psarrakou A, Tsiouris S, et al. Tc-99m depreotide imaging of I-131-negative recurrent metastatic papillary thyroid carcinoma. Int J Cancer. 2006;119:968–70.

    Google Scholar 

  105. Sager S, Kabasakal L, Halac M, et al. Comparison of 99mTc-HYNIC-TOC and HYNIC-TATE octreotide scintigraphy with FDG PET and 99mTc-MIBI in local recurrent or distant metastatic thyroid cancers. Clin Nucl Med. 2013;38:321–5.

    Article  PubMed  Google Scholar 

  106. Ocak M, Demirci E, Kabasakal L, Aygun A, Tutar RO, Araman A, Kanmaz B. Evaluation and comparison of Ga-68 DOTA-TATE and Ga-68 DOTA-NOC PET/CT imaging in well-differentiated thyroid cancer. Nuclear Medicine Communications. 2013;34:1084–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca M. Avram MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Avram, A.M., Rosenspire, K.C., Davidson, S.C., Freitas, J.E., Wong, K.K., Gross, M.D. (2016). Alternative Thyroid Imaging. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_44

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics