Skip to main content

Diagnosis of Recurrent Thyroid Cancer in Patients with Anti-thyroglobulin Antibodies

  • Chapter
  • First Online:
Thyroid Cancer

Abstract

Whole-body radioiodine scanning, measurement of serum thyroglobulin, and a number of different radiographic methods are used to monitor patients with thyroid cancer for recurrence of their tumors. Over the past decade, substantial improvements in thyroglobulin immunoassays and a greater recognition of the limitations of I-131 scanning, particularly regarding its relatively low sensitivity for neck recurrences, have led to recommendations that rely primarily on accurate thyroglobulin measurements and neck ultrasound. However, there are some limitations of current thyroglobulin immunoassays, including inadequate sensitivity during L-T4 therapy depending on the particular assay and the presence of interfering anti-thyroglobulin antibodies in approximately 20 % of patients. Because circulating anti-thyroglobulin antibodies interfere with accurate thyroglobulin measurement, there is increased reliance on radiographic testing to monitor patients with detectable anti-thyroglobulin antibodies. In this chapter, potential alternative approaches to blood-based monitoring methods in patients with circulating anti-thyroglobulin antibodies will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazzaferri EL, Robbins RJ, Spencer CA, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2003;88(4):1433–41.

    Article  CAS  PubMed  Google Scholar 

  2. Schlumberger M, Berg G, Cohen O, et al. Follow-up of low-risk patients with differentiated thyroid carcinoma: a European perspective. Eur J Endocrinol. 2004;150(2):105–12.

    Article  CAS  PubMed  Google Scholar 

  3. Baloch Z, Carayon P, Conte-Devolx B, et al. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid. 2003;13(1):3–126.

    Article  PubMed  Google Scholar 

  4. Benvenga S, Burek CL, Talor M, Rose NR, Trimarchi F. Heterogeneity of the thyroglobulin epitopes associated with circulating thyroid hormone autoantibodies in hashimoto’s thyroiditis and non-autoimmune thyroid diseases. J Endocrinol Invest. 2002;25(11):977–82.

    Article  CAS  PubMed  Google Scholar 

  5. Spencer CA, Takeuchi M, Kazarosyan M, et al. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 1998;83(4):1121–7.

    CAS  PubMed  Google Scholar 

  6. Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The Colorado thyroid disease prevalence study. Arch Intern Med. 2000;160(4):526–34.

    Article  CAS  PubMed  Google Scholar 

  7. Hollowell JG, Staehling NW, Flanders WD, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.

    Article  CAS  PubMed  Google Scholar 

  8. Hjiyiannakis P, Mundy J, Harmer C. Thyroglobulin antibodies in differentiated thyroid cancer. Clin Oncol (R Coll Radiol). 1999;11(4):240–4.

    Article  CAS  Google Scholar 

  9. Cunha LL, Soares FA, Vassallo J, Ward LS. The role of tumor-infiltrating lymphocytes in papillary thyroid carcinomas. J Endocrinol Invest. 2011;34(9):733.

    Article  CAS  PubMed  Google Scholar 

  10. Romaldini J, Villagelin D, Santos R. Is diffuse and peritumoral lymphocyte infiltration in papillary thyroid cancer a marker of good prognosis? J Endocrinol Invest. 2011;34:e403–8.

    PubMed  Google Scholar 

  11. Kebebew E, Treseler PA, Ituarte PH, Clark OH. Coexisting chronic lymphocytic thyroiditis and papillary thyroid cancer revisited. World J Surg. 2001;25(5):632–7.

    Article  CAS  PubMed  Google Scholar 

  12. Kumar A, Shah DH, Shrihari U, Dandekar SR, Vijayan U, Sharma SM. Significance of antithyroglobulin autoantibodies in differentiated thyroid carcinoma. Thyroid. 1994;4(2):199–202.

    Article  CAS  PubMed  Google Scholar 

  13. McConahey WM, Hay ID, Woolner LB, van Heerden JA, Taylor WF. Papillary thyroid cancer treated at the Mayo Clinic, 1946 through 1970: initial manifestations, pathologic findings, therapy, and outcome. Mayo Clin Proc. 1986;61(12):978–96.

    Article  CAS  PubMed  Google Scholar 

  14. Preissner CM, O’Kane DJ, Singh RJ, Morris JC, Grebe SK. Phantoms in the assay tube: heterophile antibody interferences in serum thyroglobulin assays. J Clin Endocrinol Metab. 2003;88(7):3069–74.

    Article  CAS  PubMed  Google Scholar 

  15. Giovanella L, Keller F, Ceriani L, Tozzoli R. Heterophile antibodies may falsely increase or decrease thyroglobulin measurement in patients with differentiated thyroid carcinoma. Clin Chem Lab Med. 2009;47(8):952–4.

    CAS  PubMed  Google Scholar 

  16. Verburg FA, Waschle K, Reiners C, Giovanella L, Lentjes EG. Heterophile antibodies rarely influence the measurement of thyroglobulin and thyroglobulin antibodies in differentiated thyroid cancer patients. Horm Metab Res. 2010;42(10):736–9.

    Article  CAS  PubMed  Google Scholar 

  17. Chung JK, Park YJ, Kim TY, et al. Clinical significance of elevated level of serum antithyroglobulin antibody in patients with differentiated thyroid cancer after thyroid ablation. Clin Endocrinol (Oxf). 2002;57(2):215–21.

    Article  Google Scholar 

  18. Spencer CA. Challenges of serum thyroglobulin (Tg) measurement in the presence of Tg autoantibodies. J Clin Endocrinol Metab. 2004;89(8):3702–4.

    Article  CAS  PubMed  Google Scholar 

  19. Chiovato L, Latrofa F, Braverman LE, et al. Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med. 2003;139(5 Pt 1):346–51.

    Article  CAS  PubMed  Google Scholar 

  20. American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1–133.

    Google Scholar 

  21. Spencer C, Petrovic I, Fatemi S. Current thyroglobulin autoantibody (TgAb) assays often fail to detect interfering TgAb that can result in the reporting of falsely low/undetectable serum Tg IMA values for patients with differentiated thyroid cancer. J Clin Endocrinol Metab. 2011;96(5):1283–91.

    Article  CAS  PubMed  Google Scholar 

  22. Hung CJ, Ginzinger DG, Zarnegar R, et al. Expression of vascular endothelial growth factor-C in benign and malignant thyroid tumors. J Clin Endocrinol Metab. 2003;88(8):3694–9.

    Article  CAS  PubMed  Google Scholar 

  23. Klein M, Vignaud JM, Hennequin V, et al. Increased expression of the vascular endothelial growth factor is a pejorative prognosis marker in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2001;86(2):656–8.

    Article  CAS  PubMed  Google Scholar 

  24. Viglietto G, Romano A, Manzo G, et al. Upregulation of the angiogenic factors PlGF, VEGF and their receptors (Flt-1, Flk-1/KDR) by TSH in cultured thyrocytes and in the thyroid gland of thiouracil-fed rats suggest a TSH-dependent paracrine mechanism for goiter hypervascularization. Oncogene. 1997;15(22):2687–98.

    Article  CAS  PubMed  Google Scholar 

  25. Karaca Z, Tanriverdi F, Unluhizarci K, et al. VEGFR1 expression is related to lymph node metastasis and serum VEGF may be a marker of progression in the follow-up of patients with differentiated thyroid carcinoma. Eur J Endocrinol. 2011;164(2):277–84.

    Article  CAS  PubMed  Google Scholar 

  26. Lin SY, Wang YY, Sheu WH. Preoperative plasma concentrations of vascular endothelial growth factor and matrix metalloproteinase 9 are associated with stage progression in papillary thyroid cancer. Clin Endocrinol (Oxf). 2003;58(4):513–8.

    Article  CAS  Google Scholar 

  27. Pasieka Z, Stepien H, Komorowski J, Kolomecki K, Kuzdak K. Evaluation of the levels of bFGF, VEGF, sICAM-1, and sVCAM-1 in serum of patients with thyroid cancer. Recent Results Cancer Res. 2003;162:189–94.

    Article  CAS  PubMed  Google Scholar 

  28. Sorvillo F, Mazziotti G, Carbone A, et al. Recombinant human thyrotropin reduces serum vascular endothelial growth factor levels in patients monitored for thyroid carcinoma even in the absence of thyroid tissue. J Clin Endocrinol Metab. 2003;88(10):4818–22.

    Article  CAS  PubMed  Google Scholar 

  29. Tuttle RM, Fleisher M, Francis GL, Robbins RJ. Serum vascular endothelial growth factor levels are elevated in metastatic differentiated thyroid cancer but not increased by short-term TSH stimulation. J Clin Endocrinol Metab. 2002;87(4):1737–42.

    Article  CAS  PubMed  Google Scholar 

  30. Buitrago D, Keutgen XM, Crowley M, Filicori F, Aldailami H, Hoda R, Liu YF, Hoda RS, Scognamiglio T, Jin M, Fahey TJ 3rd, Zarnegar R. Intercellular adhesion molecule-1 (ICAM-1) is upregulated in aggressive papillary thyroid carcinoma. Annals of Surgical Oncology. 2012;19(3):973–80.

    Google Scholar 

  31. Liang H, Zhong Y, Luo Z, et al. Assessment of biomarkers for clinical diagnosis of papillary thyroid carcinoma with distant metastasis. Int J Biol Markers. 2010;25(1):38–45.

    CAS  PubMed  Google Scholar 

  32. Pasieka Z, Kuzdak K, Czyz W, Stepien H, Komorowski J. Soluble intracellular adhesion molecules (sICAM-1, sVCAM-1) in peripheral blood of patients with thyroid cancer. Neoplasma. 2004;51(1):34–7.

    CAS  PubMed  Google Scholar 

  33. Wehmeier M, Petrich T, Brand K, Lichtinghagen R, Hesse E. Oncofetal fibronectin mRNA is highly abundant in the blood of patients with papillary thyroid carcinoma and correlates with high-serum thyroid-stimulating hormone levels. Thyroid. 2010;20(6):607–13.

    Article  CAS  PubMed  Google Scholar 

  34. Wang JX, Yu JK, Wang L, Liu QL, Zhang J, Zheng S. Application of serum protein fingerprint in diagnosis of papillary thyroid carcinoma. Proteomics. 2006;6(19):5344–9.

    Article  CAS  PubMed  Google Scholar 

  35. Fan Y, Shi L, Liu Q, et al. Discovery and identification of potential biomarkers of papillary thyroid carcinoma. Mol Cancer. 2009;8:79.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cradic KW, Milosevic D, Rosenberg AM, Erickson LA, McIver B, Grebe SK. Mutant BRAF(T1799A) can be detected in the blood of papillary thyroid carcinoma patients and correlates with disease status. J Clin Endocrinol Metab. 2009;94(12):5001–9.

    Article  CAS  PubMed  Google Scholar 

  37. Ditkoff BA, Marvin MR, Yemul S, et al. Detection of circulating thyroid cells in peripheral blood. Surgery. 1996;120(6):959–64. discussion 964-955.

    Article  CAS  PubMed  Google Scholar 

  38. Tallini G, Ghossein RA, Emanuel J, et al. Detection of thyroglobulin, thyroid peroxidase, and RET/PTC1 mRNA transcripts in the peripheral blood of patients with thyroid disease. J Clin Oncol. 1998;16(3):1158–66.

    CAS  PubMed  Google Scholar 

  39. Ringel MD, Ladenson PW, Levine MA. Molecular diagnosis of residual and recurrent thyroid cancer by amplification of thyroglobulin messenger ribonucleic acid in peripheral blood. J Clin Endocrinol Metab. 1998;83(12):4435–42.

    CAS  PubMed  Google Scholar 

  40. Bojunga J, Kusterer K, Schumm-Draeger PM, Usadel KH. Polymerase chain reaction in the detection of tumor cells: new approaches in diagnosis and follow-up of patients with thyroid cancer. Thyroid. 2002;12(12):1097–107.

    Article  CAS  PubMed  Google Scholar 

  41. Chinnappa P, Taguba L, Arciaga R, et al. Detection of thyrotropin-receptor messenger ribonucleic acid (mRNA) and thyroglobulin mRNA transcripts in peripheral blood of patients with thyroid disease: sensitive and specific markers for thyroid cancer. J Clin Endocrinol Metab. 2004;89(8):3705–9.

    Article  CAS  PubMed  Google Scholar 

  42. Fugazzola L, Mihalich A, Persani L, et al. Highly sensitive serum thyroglobulin and circulating thyroglobulin mRNA evaluations in the management of patients with differentiated thyroid cancer in apparent remission. J Clin Endocrinol Metab. 2002;87(7):3201–8.

    Article  CAS  PubMed  Google Scholar 

  43. Grammatopoulos D, Elliott Y, Smith SC, et al. Measurement of thyroglobulin mRNA in peripheral blood as an adjunctive test for monitoring thyroid cancer. Mol Pathol. 2003;56(3):162–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Span PN, Sleegers MJ, van den Broek WJ, et al. Quantitative detection of peripheral thyroglobulin mRNA has limited clinical value in the follow-up of thyroid cancer patients. Ann Clin Biochem. 2003;40(Pt 1):94–9.

    Article  CAS  PubMed  Google Scholar 

  45. Ringel MD. Molecular detection of thyroid cancer: differentiating “signal” and “noise” in clinical assays. J Clin Endocrinol Metab. 2004;89(1):29–32.

    Article  CAS  PubMed  Google Scholar 

  46. Gupta M, Taguba L, Arciaga R, Siperstein A, Faiman C, Mehta A, Sethu S. Detection of circulating thyroid cancer cells by reverse transcription-PCR for thyroid-stimulating hormone receptor and thyroglobulin: the importance of primer selection. Clin Chem. 2002;48(10):1862–5.

    Google Scholar 

  47. Milas M, Shin J, Gupta M, et al. Circulating thyrotropin receptor mRNA as a novel marker of thyroid cancer: clinical applications learned from 1758 samples. Ann Surg. 2010;252(4):643–51.

    PubMed  Google Scholar 

  48. Bellantone R, Lombardi CP, Bossola M, et al. Validity of thyroglobulin mRNA assay in peripheral blood of postoperative thyroid carcinoma patients in predicting tumor recurrences varies according to the histologic type: results of a prospective study. Cancer. 2001;92(9):2273–9.

    Article  CAS  PubMed  Google Scholar 

  49. Elisei R, Vivaldi A, Agate L, et al. Low specificity of blood thyroglobulin messenger ribonucleic acid assay prevents its use in the follow-up of differentiated thyroid cancer patients. J Clin Endocrinol Metab. 2004;89(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  50. Eszlinger M, Neumann S, Otto L, Paschke R. Thyroglobulin mRNA quantification in the peripheral blood is not a reliable marker for the follow-up of patients with differentiated thyroid cancer. Eur J Endocrinol. 2002;147(5):575–82.

    Article  CAS  PubMed  Google Scholar 

  51. Ringel MD, Balducci-Silano PL, Anderson JS, et al. Quantitative reverse transcription-polymerase chain reaction of circulating thyroglobulin messenger ribonucleic acid for monitoring patients with thyroid carcinoma. J Clin Endocrinol Metab. 1999;84(11):4037–42.

    CAS  PubMed  Google Scholar 

  52. Savagner F, Rodien P, Reynier P, Rohmer V, Bigorgne JC, Malthiery Y. Analysis of Tg transcripts by real-time RT-PCR in the blood of thyroid cancer patients. J Clin Endocrinol Metab. 2002;87(2):635–9.

    Article  CAS  PubMed  Google Scholar 

  53. Wingo ST, Ringel MD, Anderson JS, et al. Quantitative reverse transcription-PCR measurement of thyroglobulin mRNA in peripheral blood of healthy subjects. Clin Chem. 1999;45(6 Pt 1):785–9.

    CAS  PubMed  Google Scholar 

  54. Yang C, Robbins PD. The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol. 2011;2011:842849.

    PubMed  PubMed Central  Google Scholar 

  55. Ringel MD. Metastatic dormancy and progression in thyroid cancer: targeting cells in the metastatic frontier. Thyroid. 2011;21(5):487–92.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91.

    Article  CAS  PubMed  Google Scholar 

  57. Hoofnagle AN, Becker JO, Wener MH, Heinecke JW. Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clin Chem. 2008;54(11):1796–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dufour DR. Thyroglobulin antibodies – failing the test. J Clin Endocrinol Metab. 2011;96(5):1276–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Ringel MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ringel, M.D., Sipos, J.A. (2016). Diagnosis of Recurrent Thyroid Cancer in Patients with Anti-thyroglobulin Antibodies. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_39

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics