Skip to main content

Remnant Ablation, Adjuvant Treatment and Treatment of Locoregional Metastases with 131I

  • Chapter
  • First Online:
Thyroid Cancer

Abstract

The two major areas of controversy in the management of patients with differentiated thyroid cancer are when to administer an 131I therapy and, if administered, what should be the amount of prescribed activity of 131I that is administered. Although one of the more frequent factors that is cited for the two controversies is the lack of good prospective studies, these two controversies are complicated by many other factors such as (1) the use of the same terms with different definitions, (2) the use of the same terms with different objectives (e.g., destruction of remnant tissue, reduced recurrence, or decreased disease-specific mortality), (3) the use of a term with the same definition and objectives but different end points as the measure of success for those objectives (e.g., uptake, scan, stimulated or non-stimulated thyroglobulin blood level, recurrence, and/or structural evidence of disease), (4) the end points are measured at different follow-up times (e.g., 6, 9, 12 months), and (5) variability in the extent of initial surgery and different staging systems (risk assessment tools).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khorjekar G, Van Nostrand D, Kharazi P, Kulkarni K, Garcia C, Acio E, Atkins F. Division of Nuclear Medicine, Washington Hospital Center. Washington, D.C. Can the controversy regarding selecting the prescribed activity of 131I for first-time therapies in patient with differentiation thyroid cancer be reduced by defining the terms? An educational exhibit. J Nucl Med. 2011;52S(abstract).

    Google Scholar 

  2. Haugen BR, Alexander EA, Bible KC, Doherty G, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff K, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133.

    Google Scholar 

  3. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JWA, Wiersinga W, The European Thyroid Cancer Taskforce. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154:787–803.

    Article  CAS  PubMed  Google Scholar 

  4. Perros P, Colley S, Boelaert K, Evans C, Evans RM, Gerrard GE, Gilbert JA, Harrison B, Johnson SJ, Giles TE, Moss L, Lewington V, Newbold KL, Taylor J, Thakker RV, Watkinson J, Williams GR. British Thyroid Association guidelines for the management of thyroid cancer. Clin Endocrinol. 2014;81 Suppl 1:1–122.

    Article  CAS  Google Scholar 

  5. National Comprehensive Cancer Network (NCCN). Clinical practice guidelines in oncology. Thyroid carcinoma. Follicular thyroid carcinoma. V.2.2015. www.nccn.org.

  6. Silberstein E, Alavi A, Halon H, et al. The SNMMI practice guideline for therapy of thyroid disease with 131I 3.0. J Nucl Med. 2012;53:1633–51.

    Article  PubMed  Google Scholar 

  7. Van Nostrand D. The benefits and risks of 131I therapy in patients with well-differentiated thyroid cancer. Thyroid. 2009;19:1381–91.

    Article  PubMed  Google Scholar 

  8. Wikipedia. http://en.wikipedia.org/wiki/Prognosis. Updated 4 Dec 2014 at 22:48. Accessed 21 Dec 2014.

  9. Wikipedia. http://en.wikipedia.org/wiki/Objective_(goal). Updated 11 Dec 2014 at 23:58. Accessed 21 Dec 2014.

  10. Mazzaferri EL, Kloos RT. Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 2001;86:1447–63.

    Article  CAS  PubMed  Google Scholar 

  11. Wartofsky L, Sherman SI, Gopal J, et al. Therapeutic controversy: the use of radioactive iodine in patients with papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 1998;83:4195–203.

    Article  CAS  PubMed  Google Scholar 

  12. Beierwaltes WH, Rabbani R, Dmuchowski C, et al. An analysis of ablation of thyroid remnants” with I-131 in 511 patients from 1947–1984: experience at University of Michigan. J Nucl Med. 1984;25:1287–93.

    CAS  PubMed  Google Scholar 

  13. Comtois R, Theriault C, Del Vecchio P. Assessment of the efficacy of iodine-131 for thyroid ablation. J Nucl Med. 1993;34:1927–30.

    CAS  PubMed  Google Scholar 

  14. DeGroot KJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment, and course of papillary thyroid carcinoma. J Clin Endocrinol Metab. 1990;71:414–24.

    Article  CAS  PubMed  Google Scholar 

  15. Doi SAR, Woodhouse NJY. Ablation of the thyroid remnant and 131-I dose in differentiated thyroid cancer. Clin Endocrinol. 2000;52:765–73.

    Article  CAS  Google Scholar 

  16. Heufelder AE, Gorman CA. Radioiodine therapy in the treatment of differentiated thyroid cancer: guidelines and considerations. Endocrinologist. 1991;1:273–80.

    Google Scholar 

  17. Hodgson DC, Brierley JD, Tsang RW, Panzarella T. Prescribing 131-I iodine based on neck uptake produces effective thyroid ablation and reduced hospital stay. Radiother Oncol. 1998;47:325–30.

    Article  CAS  PubMed  Google Scholar 

  18. Hung G, Tu ST, Wu IS, et al. Comparison of the effectiveness between a single low dose and fractionated doses of radioiodine in ablation of post-operative thyroid remnants. Jpn J Clin Oncol. 2004;34:469–71.

    Article  PubMed  Google Scholar 

  19. Klain M, Ricard M, Leboulleux S, et al. Radioiodine therapy for papillary and follicular thyroid carcinoma. Eur J Nucl Med. 2002;29 Suppl 2:S479–85.

    Article  CAS  Google Scholar 

  20. Kuni CC, Klingensmith WC. Failure of low doses of I-131 to ablate residual thyroid tissue following surgery for thyroid cancer. Radiology 1980; 137:773–74. Leung SF, Law MWM, Ho SKW. Efficacy of low-dose iodine-131 ablation of postoperative thyroid remnants: a study of 69 cases. Br J Radiol. 1992; 65:905–9.

    Google Scholar 

  21. Logue JP, Tang RW, Brierley JD, et al. Radioiodine ablation of residual tissue in thyroid cancer: relationship between administered activity, neck uptake and outcome. Br J Radiol. 1994;67:1127–31.

    Article  CAS  PubMed  Google Scholar 

  22. Maxon HR, Thomas SR, Hertzberg VS, et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. NEJM. 1983;309:937–41.

    Article  CAS  PubMed  Google Scholar 

  23. Mazzaferri EL. Thyroid remnant 131-I ablation for papillary and follicular thyroid carcinoma. Thyroid. 1997;7:265–71.

    Article  CAS  PubMed  Google Scholar 

  24. Meier DA, Brill DR, Becker DV, et al. Procedure guideline for therapy of thyroid disease with I-131. J Nucl Med. 2002;43:856–61.

    CAS  PubMed  Google Scholar 

  25. Ramacciotti C, Pretorius HT, Line B, et al. Ablation of non-malignant thyroid remnants with low doses of radioactive iodine: concise communication. J Nucl Med. 1982;23:483–9.

    CAS  PubMed  Google Scholar 

  26. Samaan NA, Schultz PN, Hickey RD, et al. The results of various modalities of treatment of well-differentiated thyroid carcinoma: a retrospective review of 1599 patients. J Clin Endocrinol Metab. 1992;75:714–20.

    CAS  PubMed  Google Scholar 

  27. Sawka AM, Tepmongkol K, Brouwers M, et al. A systematic review and meta-analysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J Clin Endocrinol Metab. 2004;89:3668–76.

    Article  CAS  PubMed  Google Scholar 

  28. Simpson WJ, Panzarella T, Carruthers JS, et al. Papillary and follicular thyroid cancer: impact of treatment in 1578 patients. Int J Radiat Oncol Biol Phys. 1988;104:1063–75.

    Article  Google Scholar 

  29. Sisson JC. Applying the radioactive eraser: I-131 to ablate normal thyroid tissue in patients from whom thyroid cancer has been resected. J Nucl Med. 1983;24:743–5.

    CAS  PubMed  Google Scholar 

  30. Verkooijen RB, Stokkel MPM, Smit JWA, et al. Radioactive I-131 in differentiated thyroid cancer: a retrospective analysis of an uptake-related ablation strategy. Eur J Nucl Med. 2004;31:499–506.

    Article  CAS  Google Scholar 

  31. Abdel-Hamid A, Hardman J, Macias E, Roques T, Whitaker S, Vijayn R, Alvarez P, Beare S, Forsyth S, Kadalayil L, Hackshaw A. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. NEJM. 2012;366:1674–85.

    Article  PubMed  Google Scholar 

  32. Bal CS, Padhy AK, Jana S, et al. Prospective randomized clinical trial to evaluate the optimal dose of I-131 for remnant ablation in patients with differentiated thyroid carcinoma. Cancer. 1996;77:2574–80.

    Article  CAS  PubMed  Google Scholar 

  33. Bal CS, Kumar A, Pant GS. Radioiodine doses of 25 to 50 mCi are equally effective for thyroid remnant ablation in patients with thyroid carcinoma. J Clin Endocrinol Metab. 2004;89:1666–73.

    Article  CAS  PubMed  Google Scholar 

  34. DeGroot L, Reily M. Comparison of 30- and 50-mCi of doses of iodine-131 for thyroid ablation. Ann Intern Med. 1992;96:51–3.

    Article  Google Scholar 

  35. Samuel AM, Rajashekharrao B. Radioiodine therapy for well-differentiated thyroid cancer: a quantitative dosimetric evaluation for remnant thyroid ablation after surgery. J Nucl Med. 1994;35:1944–50.

    CAS  PubMed  Google Scholar 

  36. Mallick U, Harmer C, Yap B, Wadsley J, Clarke S, Moss L, Nicol A, Clarke PM, Franell K, McCready R, Smellie J, Frankly JA, John R, Nutting CM, Newbodl K, Lemon C, Gerrard G. NEJM. 2012;366:1674-85.

    Google Scholar 

  37. Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridji B, Bardet S, Leenhardt L, Bastie D, Schvartz C, Vera P, Morel O, Benisvy D, Bournaud C, Bonichon F, Dejax C, Toubert ME, Leboulleux S, Ricard M, Benhamou E. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. NEJM. 2012;366:1663–73.

    Article  CAS  PubMed  Google Scholar 

  38. Castagna MG, Cevenini G, Theodoropoulou A, Maino F, Memmo S, Claudia C, Belardini V, Brianzoni E, Pacini F. Post-surgical thyroid ablation with low or high radioiodine activities results in similar outcomes in intermediate risk differentiated thyroid cancer patients. Eur J Endocrinol. 2013;169:23–9.

    Article  CAS  PubMed  Google Scholar 

  39. Han JM, Kim WG, Kim TY, Jeon MJ, Ryu JS, Song DE, Hong SJ, Shong YK, Kim WB. Effects of low-dose and high-dose postoperative radioiodine therapy on the clinical outcome in patients with small differentiated thyroid cancer having microscopic extrathyroid extension. Thyroid. 2014;24(5):820–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maxon HR, Smith HS. I-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin N Am. 1990;19:685–718.

    Google Scholar 

  41. Thomas SR, Maxon HR, Kereiakes JG. In vivo quantitation of lesion radioactivity using external counting methods. Med Phys. 1976;3:253–5.

    Article  CAS  Google Scholar 

  42. Maxon HR. Quantitative 131I therapy in the treatment of differentiated thyroid cancer. Q J Nucl Med. 1999;43:313–23.

    CAS  PubMed  Google Scholar 

  43. Maxon HR, Englaro EE, Thomas SR, et al. 131I therapy for well differentiated thyroid cancer – a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J Nucl Med. 1992;33:1132–6.

    PubMed  Google Scholar 

  44. O’Connell MEA, Flower MA, Hinton PJ, Harmer CL, McCready VR. Radiation dose assessment in radioiodine therapy. Dose-response relationships in differentiated thyroid carcinoma using quantitative scanning and PET. Radiother Oncol. 1993;28:16–26.

    Article  PubMed  Google Scholar 

  45. Klubo-Gwiezdzinska J, Van Nostrand D, Atkins F, Burman K, Jonklaas J, Mete M, Wartofsky L. Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab. 2011;96(10):3217–25.

    Article  CAS  PubMed  Google Scholar 

  46. Leeper R. Controversies in the treatment of thyroid cancer: the New York Memorial Hospital approach. Thyroid Today. 1982;5:1–4.

    Google Scholar 

  47. Kulkarni K, Van Nostrand D, Atkins FB, Aiken MJ, Burman K, Wartofsky L. The frequency with which empiric amounts of radioiodine “over-” or “under-” treat patients with metastatic well-differentiated thyroid cancer. Thyroid. 2006;16:1019–23.

    Article  CAS  PubMed  Google Scholar 

  48. Tuttle RM, Leboeuf R, Robbins RJ, et al. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med. 2006;47:1587–91.

    PubMed  Google Scholar 

  49. Leeper RD, Shimaoka K. Treatment of metastatic thyroid cancer. Clin Endocrinol Metab. 1980;9:383–404.

    Article  CAS  PubMed  Google Scholar 

  50. Benua RS, Cicale NR, Sonenberg M, Rawson RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med. 1962;87:171–82.

    CAS  PubMed  Google Scholar 

  51. Snyder WS, Ford MR, Warner GG, et al. “S” absorbed dose per unit cumulated activity for selected radionuclides and organs. In MIRD Pamphlet, no. 11. Reston: Society of Nuclear Medicine; 1975.

    Google Scholar 

  52. Zanzonico PB. Internal radionuclide radiation dosimetry: a review of basic concepts and recent developments. J Nucl Med. 2000;41:297–308.

    CAS  PubMed  Google Scholar 

  53. Van Nostrand D, Atkins F, Moreau S, et al. Utility of the radioiodine whole-body retention at 48 hours for modifying empiric activity of 131-iodine for the treatment of metastatic well-differentiated thyroid carcinoma. Thyroid. 2009;10:1093–8.

    Article  Google Scholar 

  54. Hanscheid H, Lassmann M, Luster M, et al. Blood dosimetry from a single measurement of the whole body radioiodine retention in patients with differentiated thyroid carcinoma. Endocrinol Relat Cancer. 2009;16:1283–9.

    Article  Google Scholar 

  55. Wikipedia. http://en.wikipedia.org/wiki/Dose_fractionation. Updated 16 Sept 2013 at 08:17. Accessed 21 Dec 2014.

  56. Hall EJ, Giaccia AJ. Fractionated radiation and the dose-rate effect. In: Hall EJ, Giaccia AJ, editors. Radiobiology for the radiologists, 2nd edn, Philadelphia: Wolters Kluwer; 2012. p. 67–85.

    Google Scholar 

  57. Arad E, Flannery K, Wilson GA, O’Mara R. Fractionated doses of radioiodine for ablation of postsurgical thyroid tissue remnants. Clin Nucl Med. 1990;10:676–7.

    Article  Google Scholar 

  58. Wang SJ, Liu TJ. Use of fractionated doses of iodine-131 for ablation of thyroid remnants. Chin Med J (Taipei). 2002;65:336–40.

    Google Scholar 

  59. Wu HS, Hseu HH, Lin WY, Wang SJ, Kiu YC. Decreased uptake after fractionated ablative doses of iodine-131. Eur J Nucl Med Mol Imag. 2005;32:167–73.

    Article  CAS  Google Scholar 

  60. Czepczynski R, Ziemnicka K, Baczyk M, Oleksa R, Ruchala M, Sowinski J. Fractionated dosage of radioiodine for the ablation of differentiated thyroid carcinoma. Thyroid. 2005;15:1261–5.

    Article  CAS  PubMed  Google Scholar 

  61. Clerc J, Bienvenu-Perrard M, Pichard de Malleray C, Dagousset F, Delbot T, Dreyfuss M, Groussin L, Marlow RJ, Leger FA, Chevalie A. Outpatient thyroid remnant ablation using repeated low 131-iodine activities (740 GBq/20mCi x 2) in patients with low-risk differentiated thyroid cancer. JCEM. 2012;97:871–80.

    CAS  PubMed  Google Scholar 

  62. Fregly MJ, Gennaro JF. Effect of thiazides on metacorticoid hypertension and on thyroid activity of rats. Can J Physiol Pharm. 1973;43:521–30.

    Article  Google Scholar 

  63. Seabold JE, Ben-Haim S, Pettit WA, et al. Diuretic enhanced I-131 clearance after ablation therapy for differentiated thyroid cancer. Radiology. 1993;187:839–42.

    Article  CAS  PubMed  Google Scholar 

  64. Maruca J, Santner S, Miller K, Santen RJ. Prolonged iodine clearance with a depletion regimen for thyroid carcinoma: concise communication. J Nucl Med. 1984;25:1089–93.

    CAS  PubMed  Google Scholar 

  65. McCarthy JS, Fregly MJ, Nechay BR. Effect of diuretics on renal iodide excretion by rats and dogs. J Pharm Exp Ther. 1967;158:294–304.

    CAS  Google Scholar 

  66. Fregly MJ. Effect of thiazides on the thyroid gland of rats. Toxicol Appl Pharm. 1965;8:558–66.

    Article  Google Scholar 

  67. Kapucu LO, Azizoglu F, Ayvaz G, Karakoc A. Effects of diuretics on iodine uptake in non-toxic goiter-comparison with low-iodine diet. Eur J Nucl Med Mol Imaging. 2003;30:L1270–2.

    Article  Google Scholar 

  68. Tepmongkol S. Enhancement of radioiodine uptake in hyperthyroidism with hydrochlorothiazide: a prospective randomized control study. Eur J Nucl Med Mol Imaging. 2002;29:1307–10.

    Article  CAS  PubMed  Google Scholar 

  69. Ding H, Kuang AR, Guan CT. Randomized controlled trial of hydrochlorothiazide in augmenting the dose of 131I absorbed by thyroid remnant. Sichuan Da Xue Xue Bao Yi Xue Ban. 2004;35:546–8.

    CAS  PubMed  Google Scholar 

  70. Norfray JF, Quinn JL. Furosemide mediated elevations of thyroid uptake in the rat. Proc Soc Exp Biol Med. 1974;145:286–8.

    Article  CAS  PubMed  Google Scholar 

  71. Hamburger JI. Diuretic augmentation of 131-I uptake in inoperable thyroid cancer. N Eng J Med. 1969;280:1091–4.

    Article  CAS  Google Scholar 

  72. Matovic M, Jankovic S, Jeremic M, Tasic Z, Vlajkovic M. Unexpected effect of furosemide on radioiodine excretion in patients with differentiated thyroid carcinomas treated with iodine 131. Thyroid. 2009;19:843–8.

    Article  CAS  PubMed  Google Scholar 

  73. Barbaro D, Gross M, Boni G, Lapi P, Pasquini C, Orsini P, Turco A, Meucci G, Marzola MC, Berti P, Miccoli P, Marinai G, Rubello D. Recombinant human TSH and ablation of post-surgical thyroid remnants in differentiated thyroid cancer: the effect of pre-treatment with furosemide and furosemide plus lithium. Eur J Nucl Med Mol Imaging. 2010;37:242–9.

    Article  CAS  PubMed  Google Scholar 

  74. Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. NEJM. 2013;2013(368):623–32.

    Article  Google Scholar 

  75. Reynolds JC. Comparison of I-131 absorbed radiation doses in children and adults; a tool for estimating therapeutic I-131 doses in children. In: Robbins J, editor. Treatment of thyroid cancer in children. Springfield: US Department of Commerce Technology Administration, National Technical Information Service; 1994. p. 127–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Van Nostrand MD, FACP, FACNM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Nostrand, D. (2016). Remnant Ablation, Adjuvant Treatment and Treatment of Locoregional Metastases with 131I. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_33

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics