Skip to main content

Stunning by 131I Scanning: Untoward Effect of 131I Thyroid Imaging Prior to Radioablation Therapy

  • Chapter
  • First Online:

Abstract

Thyroid stunning is a temporary suppression of iodine-trapping function of the thyrocytes and thyroid cancer cells as a result of the radiation given off by the scanning (or first) dose of 131I. The stunned cells may not be able to take up the ensuing therapeutic 131I to the degree of their original unaffected capacity. This may lead to an incomplete ablation of the thyroid remnant or metastatic lesion. Stunning is radiation dose dependent, i.e., the higher the radiation dose absorbed by the target tissue, the greater the stunning effect. The use of 123I in lieu of 131I for diagnostic scanning avoids stunning, due to the 100-fold lower absorbed radiation dose. When 123I is not available or otherwise practical, other possible measures to reduce stunning include reducing the diagnostic 131I dose, decreasing the time between the dose and scan, and shortening the interval between scanning and 131I treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Park HM. 123I: almost a designer radioiodine for thyroid scanning. J Nucl Med. 2002;43:77–8.

    CAS  PubMed  Google Scholar 

  2. Park HM. Potential adverse effect of high survey dose of 131I administered prior to 131I therapy in the management of differentiated thyroid cancers. In: Schmidt H, Van Der Schoot JB, editors. Nuclear medicine: the state of the art of nuclear medicine in Europe. Stuttgart: Schattauer; 1991. p. 340–2.

    Google Scholar 

  3. Park HM, Perkins OW, Edmondson JW, Shnute RB, Manatunga A. Influence of diagnostic radioiodines on the uptake of ablative dose of 131I. Thyroid. 1994;4:49–54.

    Article  CAS  PubMed  Google Scholar 

  4. Park HM. The stunning effect in radioiodine therapy of thyroid cancer. Nucl Med Ann. 2001: 49–67.

    Google Scholar 

  5. McDougall IR. 74 MBq 131I does not prevent uptake of therapeutic doses of 131I in differentiated thyroid cancer. Nucl Med Commun. 1997;18:505–12.

    Article  CAS  PubMed  Google Scholar 

  6. Huic D, Medvedec M, Dodig D, Popovic S, Ivancevic D, Pavlinovic Z, Zuvic M. Radioiodine uptake in thyroid cancer patients after diagnostic application of low-dose 131I. Nucl Med Commun. 1996;17:839–42.

    Article  CAS  PubMed  Google Scholar 

  7. Medvedec M, Pavlinovic Z, Dodig D. 74 MBq radioiodine 131I does prevent uptake of therapeutic activity of 131I in residual thyroid tissue. Eur J Nucl Med. 1999;26:1013.

    Google Scholar 

  8. McMenemin RM, Hilditch TE, Dempsey MF, Reed NS. Thyroid stunning after 131I diagnostic whole-body scanning. J Nucl Med. 2001;42:986–7.

    CAS  PubMed  Google Scholar 

  9. Jeevanram RK, Shah DH, Sharma SM, Ganatra RD. Influence of initial large dose on subsequent uptake of therapeutic radioiodine in thyroid cancer patients. Nucl Med Biol. 1986;13:277–9.

    CAS  Google Scholar 

  10. Leger FA, Izembart M, Dagousset F, et al. Decreased uptake of therapeutic doses of 131I after 185 mBq 131I diagnostic imaging for thyroid remnants in differentiated thyroid carcinoma. Eur J Nucl Med. 1998;25:242–6.

    Article  CAS  PubMed  Google Scholar 

  11. Postgard P, Himmelman J, Lindencrona L, Bhogal N, Wiberg D, Berg G, Jansson S, Nystrom E, Forssell-Aronsson E, Nilsson M. Stunning of iodide transport by 131I irradiation in cultured thyroid epithelial cells. J Nucl Med. 2002;43:828–34.

    CAS  PubMed  Google Scholar 

  12. Sabri O, Zimny M, Schreckenberger M, Meyer-Oelmann A, Reinartz P, Buell U. Does thyroid stunning exist? A model with benign thyroid disease. Eur J Nucl Med. 2000;27:1591–7.

    Article  CAS  PubMed  Google Scholar 

  13. Lassmann M, Luster M, Hänscheid H, Reiners C. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med. 2004;45:619–25.

    PubMed  Google Scholar 

  14. Medvedec M, Grosev D, Loncaric S, Pavlinovic Z, Dodig D. As soon as possible is already too late. J Nucl Med. 2001;42:322P (abstract).

    Google Scholar 

  15. Cholewinski S, Yoo K, Klieger P, O’Mara R. Absence of thyroid stunning after diagnostic whole-body scanning with 185 MBq 131I. J Nucl Med. 2000;41:1198–202.

    CAS  PubMed  Google Scholar 

  16. Dam HQ, Kim SM, Lin HC, Intenzo CM. 131I therapeutic efficacy is not influenced by stunning after diagnostic whole-body scanning. Radiology. 2004;232:527–33.

    Article  PubMed  Google Scholar 

  17. Lundh C, Norden MM, Nilsson M, Forssell-Aronsson E. Reduced iodide transport (stunning) and DNA synthesis in thyrocytes exposed to low absorbed doses from 131I in vitro. J Nucl Med. 2007;48:481–6.

    CAS  PubMed  Google Scholar 

  18. Norden MM, Larsson F, et al. Down-regulation of the sodium/iodide symporter explains 131I-induced thyroid stunning. Cancer Res. 2007;67:7512–7.

    Article  CAS  PubMed  Google Scholar 

  19. Lundh C, Lindencrona U, et al. Radiation-induced thyroid stunning: differential effects of 123I, 131I, 99mTc, and 111at on iodide transport and NIS mRNA expression in cultured thyroid cells. J Nucl Med. 2009;50:1161–7.

    Article  CAS  PubMed  Google Scholar 

  20. Hilditch TE, Dempsey MF, et al. Self-stunning in thyroid ablation: evidence from comparative studies of diagnostic 131I and 123I. Eur J Nucl Med. 2002;29:783–8.

    Article  CAS  Google Scholar 

  21. Sisson JC, Avram AM, et al. The so-called stunning of thyroid tissue. J Nucl Med. 2006;47:1406–12.

    CAS  PubMed  Google Scholar 

  22. Kao CH, Yen TC. Stunning effects after a diagnostic dose of 131I. Nuklearmedizin. 1998;37:23–5.

    Google Scholar 

  23. Park H, Park Y, Zhou X. Detection of thyroid remnant/metastasis without stunning: an ongoing dilemma. Thyroid. 1997;7:277–80.

    Article  CAS  PubMed  Google Scholar 

  24. Muratet J, Daver A, Minier J, Larra F. Influence of scanning doses of 131I on subsequent first ablative treatment outcome in patients operated on for differentiated thyroid carcinoma. J Nucl Med. 1998;39:1546–50.

    CAS  PubMed  Google Scholar 

  25. Chmielowiec C, Logus JW, et al. The effect of thyroid gland stunning by 131I sodium iodide diagnostic scans on subsequent patient ablation doses – a 25 year retrospective study. Eur J Nucl Med. 2000;27:1154.

    Google Scholar 

  26. Lees W, Mansberg R, Roberts J, Towson J, Chua E, Turtle J. The clinical effects of thyroid stunning after diagnostic whole-body scanning with 185 MBq 131I. Eur J Nucl Med. 2002;29:1421–7.

    Article  CAS  Google Scholar 

  27. Morris LF, Waxman AD, Braunstein GD. J Clin Endocrinol Metab. 2001;86:3507–11.

    Article  CAS  PubMed  Google Scholar 

  28. Silberstein EB. Comparison of outcomes after 123I versus 131I preablation imaging before radioiodine ablation in differentiated thyroid carcinoma. J Nucl Med. 2007;48:1043–6.

    Article  CAS  PubMed  Google Scholar 

  29. Verburg FA, Verkooijen RB, Stokkel MP, van Isselt JW. The success of 131I ablation in thyroid cancer patients is significantly reduced after a diagnostic activity of 40 MBq 131I. Nuklearmedizin. 2009;48:138–42.

    CAS  PubMed  Google Scholar 

  30. Hu Y, Wang P, Wang S, et al. Influence of 131I diagnostic dose on subsequent ablation in patients with differentiated thyroid carcinoma: discrepancy between the presence of visually apparent stunning and the impairment of successful ablation. Nucl Med Commun. 2004;25:793–7.

    Article  PubMed  Google Scholar 

  31. Gerard SK. Stunning with 131I diagnostic whole body imaging of patients with thyroid cancer. Radiology. 2005;234:972–3.

    Article  PubMed  Google Scholar 

  32. Becker D, Charkes ND, Dworkin H, et al. Procedure guideline for extended scintigraphy for differentiated thyroid cancer: 1.0. Society of nuclear medicine. J Nucl Med. 1996;37:1269–71.

    CAS  PubMed  Google Scholar 

  33. Wu H, Hseu H, et al. Decreased uptake after fractionated ablative doses of iodine-131. Eur J Nucl Med Mol Imaging. 2005;32:167–73.

    Article  CAS  PubMed  Google Scholar 

  34. Krohn T, Meyer PT, Ocklenburg C, et al. Stunning in radioiodine therapy of benign thyroid disease. Quantification and therapeutic relevance. Nuklearmedizin. 2008;47:248–54.

    CAS  PubMed  Google Scholar 

  35. Berman M, Braverman LE, Burke J, et al. MIRD (Medical Internal Radiation Dose) Committee Report # 5 Summary of current radiation dose estimates to humans from 123I, 124I, 125I, 126I, 130I, 131I, and 132I as sodium iodide. J Nucl Med 1975; 16:857–860.

    Google Scholar 

  36. Waxman A, Ramanna L, Chapman N, et al. Significance of 131I scan dose in patients with thyroid cancer: determination of ablation: concise communication. J Nucl Med. 1981;22:861–5.

    CAS  PubMed  Google Scholar 

  37. Gerard SK, Cavalieri RR. 123I diagnostic thyroid tumor whole body scanning with imaging at 6, 24, and 48 hours. Clin Nucl Med. 2002;27:1–8.

    Article  PubMed  Google Scholar 

  38. Gulzar Z, Jana S, Young I, et al. Neck and whole-body scanning with a 5 mCi dose of 123I as diagnostic tracer in patients with well-differentiated thyroid cancer. Endocr Pract. 2001;7:244–9.

    CAS  PubMed  Google Scholar 

  39. Mandel SJ, Shankar LK, Benard F, Yamamoto A, Alavi A. Superiority of iodine-123 compared with iodine-131 scanning for thyroid remnants in patients with differentiated thyroid cancer. Clin Nucl Med. 2001;26:6–9.

    Article  CAS  PubMed  Google Scholar 

  40. Ali N, Sebastian C, Foley R, et al. The management of differentiated thyroid cancer using 123I for imaging to assess the need for 131I therapy. Nucl Med Commun. 2006;27:165–9.

    Article  PubMed  Google Scholar 

  41. Sarkar SD, Kalapparambath TP, Palestro CJ. Comparison of 123I and 131I for whole-body imaging in thyroid cancer. J Nucl Med. 2002;43:632–4.

    PubMed  Google Scholar 

  42. Bautovich GJ, Towson JE, Eberl S, Turtle J, Chua E, Rawdry R, MacKinnon I, McHarg D. Comparison of Iodine-123 and Iodine-131 as a scanning agent for the detection of metastatic thyroid cancer. J Nucl Med. 1997;38:150P–1 (abstract).

    Google Scholar 

  43. Shankar LK, Yamamoto AJ, Alavi A, Mandel SJ. Comparison of 123I scintigraphy at 5 and 24 hours in patients with differentiated thyroid cancer. J Nucl Med. 2002;43:72–6.

    PubMed  Google Scholar 

  44. De Geus-Oei LF, Pauwels EKJ, Stokkel MPM. A comparison between low and high dose 123I WBS in the follow-up of thyroid cancer. Eur J Nucl Med. 2000;27:931.

    Google Scholar 

  45. Klein HA, DiSibio KJ, et al. 123I whole body scanning: case report and discussion. Clin Nucl Med. 2005;30:312–6.

    Article  PubMed  Google Scholar 

  46. Urhan M, Dadparvar S, Mavi A, et al. Iodine-123 as a diagnostic imaging agent in differentiated thyroid carcinoma: a comparison with iodine-131 post-therapy scanning and serum thyroglobulin measurement. Eur J Nucl Med Mol Imaging. 2007;34:1012–7.

    Article  CAS  PubMed  Google Scholar 

  47. Thomas DL, Mendas Y, Bushnell D. A comparison between diagnostic 123I and post-therapy 131I scans in the detection of remnant and locoregional thyroid disease. Clin Nucl Med. 2009;34:745–8.

    Article  PubMed  Google Scholar 

  48. Kalinyak JE. 123I as a diagnostic tracer in the management of thyroid cancer. Editorial. Nucl Med Commun. 2002;23:509–11.

    Article  CAS  PubMed  Google Scholar 

  49. McDougall IR, Iagaru A. Thyroid stunning: fact or fiction? Semin Nucl Med. 2011;41:105–12.

    Article  PubMed  Google Scholar 

  50. Berbano R, Naddaf S, Echemendia E, et al. Use of Iodine-123 as a diagnostic tracer for neck and whole body scanning in patients with well-differentiated thyroid cancer. Endocr Pract. 1998;4:11–6.

    Article  CAS  PubMed  Google Scholar 

  51. Anderson GS, Fish S, Nakhoda K, Zhuang H, Alavi A, Mandel S. Comparison of 123I and 131I for whole-body imaging after stimulation by recombinant human thyrotropin: a preliminary report. Clin Nucl Med. 2003;28:93–6.

    PubMed  Google Scholar 

  52. Alzahrani AS, Alshaikh O, Tuli M, et al. Diagnostic value of recombinant human thyrotropin-stimulated 123I whole-body scintigraphy in the follow-up of patients with differentiated thyroid cancer. Clin Nucl Med. 2012;37:229–34.

    Article  PubMed  Google Scholar 

  53. Kim HY, Gelfand MJ, Sharp SE. SPECT/CT imaging in children with papillary thyroid carcinoma. Pediatr Radiol. 2011;41:1008–12.

    Article  PubMed  Google Scholar 

  54. Berg G, Lindstedt G, Suurkula M, Jansson S. Radioiodine ablation and therapy in differentiated thyroid cancer under stimulation with recombinant human thyroid-stimulating hormone. J Endocrinol Invest. 2002;25:44–52.

    Article  CAS  PubMed  Google Scholar 

  55. Robbins RJ, Larson SM, Sinha N, et al. A retrospective review of the effectiveness of recombinant human TSH as a preparation for radioiodine thyroid remnant ablation. J Nucl Med. 2002;43:1482–8.

    CAS  PubMed  Google Scholar 

  56. Jarzab B, Handkiewicz-Junak D, Roskosz J, et al. Recombinant human TSH-aided radioiodine treatment of advanced differentiated thyroid carcinoma: a single-centre study of 54 patients. Eur J Nucl Med Mol Imaging. 2003;30:1077–86.

    Article  CAS  PubMed  Google Scholar 

  57. Duntas LH, Cooper DS. Review on the occasion of a decade of recombinant human TSH: prospects and novel uses. Thyroid. 2008;18:509–16.

    Article  CAS  PubMed  Google Scholar 

  58. Middendorp M, Grünwald F. Update on recent developments in the therapy of differentiated thyroid cancer. Semin Nucl Med. 2010;40:145–52.

    Article  PubMed  Google Scholar 

  59. Schlumberger M, Catargi B, Borget I, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Eng J Med. 2012;366:1663–73.

    Article  CAS  Google Scholar 

  60. Mallick U, Harmer C, Yap B, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. New Eng J Med. 2012;366:1674–85.

    Article  CAS  PubMed  Google Scholar 

  61. Luster M, Sherman SI, Skarulis MC, Reynolds JR, Lassman M, Hanscheid H, Reiners C. Comparison of radioiodine biokinetics following the administration of recombinant human thyroid stimulating hormone and after thyroid hormone withdrawal in thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2003;30:1371–7.

    Article  CAS  PubMed  Google Scholar 

  62. Medvedec M. Thyroid stunning in vivo and in vitro. Nucl Med Commun. 2005;28:731–5.

    Article  Google Scholar 

  63. Stabin MG, Stubbs JB, Toohey RE. Radiation dose estimates for radiopharmaceuticals. NUREG/CR-6345 Radiation Internal Dose Information Center. Oak Ridge: Oak Ridge Institute for Science and Education; 1996. 37831–0117, April.

    Google Scholar 

  64. Rawson RW, Rall JE, Peacock W. Limitations and indications in the treatment of cancer of the thyroid with radioactive iodine. J Clin Endocrinol Metab. 1951;11:1128–31.

    Article  CAS  PubMed  Google Scholar 

  65. Pluijmen MJHM, Eustatia-Rutten C, Goslings BM, et al. Effects of low-iodide diet on postsurgical radioiodide ablation therapy in patients with differentiated thyroid carcinoma. Clin Endocrinol. 2003;58:428–35.

    Article  CAS  Google Scholar 

  66. Silberstein EB, Alavi A, Balon HR, Balon HR, et al. The SNM practice guideline for therapy of thyroid disease with 131I 3.0. J Nucl Med. 2012;53:1–19.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. Richard Schnute, Christine Park, and Trudy Lionel for reviewing this article and rendering helpful suggestions and to Dr. S. Bae of Koshin University, Korea, for providing images for Figs. 16.2 and 16.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. Gerard MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Park, HM., Gerard, S.K. (2016). Stunning by 131I Scanning: Untoward Effect of 131I Thyroid Imaging Prior to Radioablation Therapy. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics