Skip to main content

Radioiodine Whole-Body Imaging

  • Chapter
  • First Online:
Thyroid Cancer

Abstract

Radioiodine imaging is an important diagnostic modality for the evaluation of differentiated thyroid carcinoma. A basic understanding of the physics, radioisotopes, equipment, and imaging techniques will help the physician fully comprehend the logistics, interpretation, strengths, and weaknesses of this diagnostic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silberstein EB, Alavi A, Balon HR, Becker D, Charkes ND, Clarke SEM, Divgi CR, Donohoe KJ, Delbeke D, Goldsmith SJ, Meier DA, Sarkar SD, Waxman AD, Society of Nuclear Medicine procedure guideline for scintigraphy for differentiated papillary and follicular thyroid cancer http://snmmi.files.cms-plus.com/docs/Scintigraphy%20for%20Differentiated%20Thyroid%20Cancer%20V3%200%20(9-25-06).pdf

    Google Scholar 

  2. Schlumberger M, Tubiana M, De Vathaire F, et al. Long term results of treatment of 283 patients with lung bone and metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metab. 1998;63:960–7.

    Google Scholar 

  3. Pacini F, Lippi F, Formica N, et al. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med. 1987;28:1888–91.

    CAS  PubMed  Google Scholar 

  4. Cailleux AF, Baudin E, Travagli JP, Schlumberger RM. Is diagnostic iodine-131 scanning useful after total thyroid ablation for differentiated thyroid cancer? J Clin Endocrinol Metab. 2000;85:175–8.

    Article  CAS  PubMed  Google Scholar 

  5. Wartofsky L. Clinical utility of rh-TSH-stimulated thyroglobulin testing without scan in the follow-up of differentiated thyroid cancer. Denver: Program of the 83rd Annual Meeting of the Endocrine Society; 2000:P2–P535.

    Google Scholar 

  6. Mazzaferri EL, Kloos RT. Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation? J Clin Endocrinol Metab. 2002;87:1490–8.

    Article  CAS  PubMed  Google Scholar 

  7. Wartofsky L. Using baseline and recombinant human TSH-stimulated Tg measurements to manage thyroid cancer without diagnostic I-131 scanning. J Clin Endocrinol Metab. 2002;87:1486–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hilt SV, Hellman D, Anderson J, Woolfenden J, Van Antwerp J, Serial PD, TSH. Determination after T3 withdrawal or thyroidectomy in the Therapy of Thyroid Carcinoma. J Nucl Med. 1979;20:928–32.

    Google Scholar 

  9. Maxon HR, Smith HR. Radioiodine-131 in the diagnosis and treatment of metastatic well-differentiated thyroid cancer. Endocrinol Metab Clin North Am. 1990;19:685–718.

    PubMed  Google Scholar 

  10. Mandel SJ, Shankar LK, Benard F, et al. Superiority of iodine-123 compared with iodine-131 scanning for thyroid remnants in patients with differentiated thyroid cancer. Clin Nucl Med. 2001;26:6–9.

    Article  CAS  PubMed  Google Scholar 

  11. Hilditch TE, Dempsey MF, Bolster AA, McMenemin RM, Reed RS. Self-stunning in thyroid ablation: evidence from comparative studies of diagnostic 131I and 123I. Eur J Nucl Med. 2002;29:783–8.

    Google Scholar 

  12. Jeevanram RK, Shah DH, Shama M, et al. Influence of initial large dose on subsequent uptake of therapeutic radioiodine in thyroid cancer patient. Nucl Med Biol. 1986;13:277.

    CAS  Google Scholar 

  13. Naddaf S, Young I, Rapun R, et al. Comparison between iodine-123 (I-123) and iodine-131I sodium iodide total body scanning in thyroid cancer patients. J Nucl Med. 1996;37:251P.

    Google Scholar 

  14. Berbano B, Naddaf S, Echemendia, et al. Use of iodine-123 as a diagnostic tracer for neck and whole body scanning in patients with well-differentiated thyroid cancer. Endocr Pract. 1998;4:11–6.

    Article  CAS  PubMed  Google Scholar 

  15. Maxon JR, Thomas SR, Washburn LC, et al. High-activity 123I for the diagnostic evaluations of patients with thyroid cancer. J Nucl Med. 1993;34:42P.

    Google Scholar 

  16. Yaakob W, Gordon L, Spicer KM, Nitke SJ. The usefulness of iodine-123 whole-body scans in evaluating thyroid carcinoma and metastases. J Nucl Med Technol. 1999;27:279–81.

    Google Scholar 

  17. Shankar LK, Mandel S, Benard F. The promising role of 123I Scintigraphy in the management of differentiated thyroid cancer. J Nucl Med. 2002;43:526.

    Google Scholar 

  18. Shankar LK, Yamamoto AJ, Alavi A, et al. Comparison of I-123 scintigraphy at 5 and 24 hours in patients with differentiated thyroid cancer. J Nucl Med. 2002;43:72–6.

    PubMed  Google Scholar 

  19. Gerard SK, Cavalieri RR. 123I diagnostic thyroid tumor whole-body scanning with imaging at 6, 24, and 48 hours. Clin Nucl Med. 2002;27:1–8.

    Article  PubMed  Google Scholar 

  20. Alzahrani AS, Bakheet S, Mandil MAL, et al. 123I isotope as a diagnostic agent in the follow-up of patients with differentiated thyroid cancer: comparison with post 131I therapy whole body scanning. J Clin Endocrinol Metab. 2001;86:5294–300.

    Article  CAS  PubMed  Google Scholar 

  21. Siddiqi A, Foley RR, Britton KE, et al. The role of 123I diagnostic imaging in the follow-up of patients with differentiated thyroid carcinoma as compared to 131I scanning; avoidance of negative therapeutic uptake due to stunning. Clin Endocrinol. 2001;55:515–21.

    Article  CAS  Google Scholar 

  22. Sarkar SD, Kalapparambath TP, Palestro CJ. Comparison of 123I and 131I for whole body imaging in thyroid cancer. J Nucl Med. 2002;43:632–4.

    PubMed  Google Scholar 

  23. Khan J, Hickeson M, Zhuang HM, et al. Diagnostic scanning by 123I vs 131I in thyroid remnant following surgery for differentiated thyroid cancer. J Nucl Med. 2002;43:129P.

    Google Scholar 

  24. Anderson GS, Fish S, Nakhoda K, et al. Comparison of 123I and 131I for whole body imaging after stimulation by recombinant human thyrotropin: a preliminary report. Clin Nucl Med. 2003;28:93–6.

    PubMed  Google Scholar 

  25. Eschmann SM, Reischl G, Bilger K, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Euro J Nucl Med. 2002;29:760–7.

    Article  CAS  Google Scholar 

  26. Sgouros G, Kolbert KS, Sheikh A, et al. Patient-specific dosimetry for I-131 thyroid cancer therapy using I-124 PET and 3-dimensionalinternal dosimetry (3D-ID) software. J Nucl Med. 2004;45:1366–72.

    CAS  PubMed  Google Scholar 

  27. Nadig MR, Pant GS, Bal C. Usefulness of 99mTc-pertechnetate single-photon emission computed tomography in remnant mass estimation of postsurgical patients of differentiated thyroid cancer during internal dosimetry. Nucl Med Commun. 2008;29:809–14.

    Google Scholar 

  28. Kueh SSH, Roach PJ, Schembri GP. Role of Tc-99m pertechnetate for remnant scintigraphy post-thyroidectomy. Clin Nucl Med. 2010;35:671–4.

    Article  PubMed  Google Scholar 

  29. Markovic V, Eterovic D, Punda A, et al. Preoperative Tc-99m-pertechnetate scan visualization of gross neck metastases from microcarcinoma papillare and another papillary carcinoma of tall cell variant scintigraphically presented like small warm nodule in Graves Disease Patient. Clin Nucl Med. 2010;35:858–61.

    Article  PubMed  Google Scholar 

  30. Giovanella L, Suriano S, Ricci R, et al. Postsurgical thyroid remnant estimation by (99m) Tc-pertechnetate scintigraphy predicts radioiodine ablation effectiveness in patients with differentiated thyroid carcinoma. Head Neck. 2011;33:552–6.

    Article  PubMed  Google Scholar 

  31. Nemec J, Rohling S, Zamarazil V, Pohunkova D. Comparison of the distribution of diagnostic and thyroablative I-131 in the evaluation of differentiated thyroid cancers. J Nucl Med. 1997;20:92–7.

    Google Scholar 

  32. Balachandran S, Sayle BA. Value of thyroid carcinoma imaging after therapeutic doses of radioiodine. Clin Nucl Med. 1981;6:162–7.

    Article  CAS  PubMed  Google Scholar 

  33. Sherman SI, Tielens ET, Sostre S, et al. Clinical utility of post treatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab. 1994;78:629–34.

    CAS  PubMed  Google Scholar 

  34. Spies WG, Wojtowicz CH, Spies SM, et al. Value of post-therapy whole-body I-131 imaging in the evaluation of patients with thyroid carcinoma having undergone high-dose I-131 therapy. Clin Nucl Med. 1989;14:793–800.

    Article  CAS  PubMed  Google Scholar 

  35. Fatourechi V, Hay ID, Mullan BP, et al. Are post therapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid. 2000;10:573–7.

    Article  CAS  PubMed  Google Scholar 

  36. Pineda JD, Lee T, Ain K, et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab. 1995;80:1488–92.

    CAS  PubMed  Google Scholar 

  37. Rosario PWSD, Barroso AL, Rezende LL, et al. Post I-131 therapy scanning in patients with thyroid carcinoma metastases; an unnecessary cost or a relevant contribution? Clin Nucl Med. 2004;29:795–8.

    Article  Google Scholar 

  38. Khan S, Waxman A, Magarj N, Braunstein G. Optimization of post ablative I-131 scintigraphy: comparison of 2 day vs 7 day post therapy study in patients with differentiated thyroid cancer (DTC). J Nucl Med. 1994;35:15P.

    Google Scholar 

  39. Bourgeois P, Bordet J. Imaging the patients 3 and/or 7 days after treatment with 131-I for differentiated thyroid cancer (DTC)? Eur J Nucl Med Mol Imaging. 2005;32:S240.

    Google Scholar 

  40. Oliveira C, Neto J, Barros C, Ferreira P, Almeida A, Curvo-Semedo A, et al. Post-therapy whole-body scan: what is the best time to do? Eur J Nucl Med Mol Imaging. 2008;35:S266.

    Google Scholar 

  41. Hung BT, Huang SH, Huagn YE, Wang PW. Appropriate time for post-therapeutic I-131 whole body scan. Clin Nucl Med. 2009;34:339–42.

    Article  PubMed  Google Scholar 

  42. Chong A, Song HC, Min JJ, Jeong SY, Ha JM, Kim JA, et al. Improved detection of lung or bone metastases with an I-131 whole body scan on the 7th day after high-dose I-131 therapy in patients with thyroid cancer. Nucl Med Mol Imaging. 2010;44:273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee JW, Lee SM, Koh GP, Lee DH. The comparison of (131)I whole-body scans on the third and tenth day after (131) therapy in patients with well-differentiated thyroid cancer: preliminary report. Ann Nucl Med. 2011;15:439–46.

    Article  Google Scholar 

  44. Wakabayashi H, Nakajima K, Fukuoka M, Inaki A, Nakamura A, Kayano D, et al. Double-phase 131I whole body scan nad 131I SPECT-CT images in patients with differentiated thyroid cancer: their effectiveness for accurate identification. Ann Nucl Med. 2011;25:609–15.

    Article  PubMed  Google Scholar 

  45. Salvatori M, Peotti G, Villani MF, Mazza R, Maussier ML, Indovina L, Sigismondi A, Dottorini ME, Giodano A. Determining the appropriate time of execution of an I-131 post-therapy whole-body scan: comparison between early and late imaging. Nucl Med Commun. 2013;34:900–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Van Nostrand MD, FACP, FACNM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Atkins, F.B., Van Nostrand, D. (2016). Radioiodine Whole-Body Imaging. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics