Skip to main content

Minimal Processing of Fruits

  • Chapter
  • First Online:
Fruit Preservation

Abstract

Food are biological systems, in which microbiological growth and enzymatic and chemical reactions are constantly taking place causing deterioration and quality losses. These unwanted phenomena must be controlled in order to preserve fruits for longer times. Despite the health benefits provided by fresh fruits, they could be a vehicle for foodborne diseases. In addition, the enzymatic activity, microbiological contamination, and nutrient losses are higher in chopped, cut, sliced, or peeled fruit products. The utilization of adequate posthandling techniques to assure the safety of produce is necessary. Washing and sanitization are the first operations applied to decrease the microbial loads of fresh fruits; nevertheless, the use of sanitizers in fresh-cut fruits is not enough to obtain safe products. A reduction of microbial load is obtained, but an additional preservation factor or preservation method is required to extend their shelf-life. In this way, the application of minimal processing technologies to extend shelf-life of produce, while maintaining the fresh-like state, is relevant. Methods such as refrigeration, the use of natural preservatives, edible coating, irradiation, UV, pulsed light, ultrasound, high hydrostatic pressure, controlled and modified atmospheres may help to maintain the quality of fresh-cut fruits after disinfection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadias, M., I. Alegre, J. Usall, R. Torres, and I. Viñas. 2011. Evaluation of alternative sanitizers to chlorine disinfection for reducing foodborne pathogens in fresh-cut apple. Postharvest Biology and Technology 59: 289–297.

    Article  CAS  Google Scholar 

  • Al-Haq, M.I., Y. Seo, S. Oshita, and Y. Kawagoe. 2002. Disinfection effects of electrolyzed oxidizing water on suppressing fruit rot of pear caused by Botryosphaeria berengeriana. Food Research International 35(7): 657–664.

    Article  Google Scholar 

  • Alemán, G., F. Farkas Dl, J.A. Torres, E. Wilhelmsen, and S. McIntyre. 1994. Ultra-high pressure pasteurization of fresh cut pineapple. Journal of Food Protection 10(4): 931–934.

    Article  Google Scholar 

  • Alexandre, E.M.C., T.R.S. Brandão, and C.L.M. Silva. 2012. Assessment of the impact of hydrogen peroxide solutions on microbial loads and quality factors of red bell peppers, strawberries and watercress. Food Control 27: 362–368.

    Article  CAS  Google Scholar 

  • Alzamora, S.M., A. López-Malo, and M.S. Tapia. 2000. Overview. In Minimally processed fruits and vegetables, Fundamentals and applications, ed. S.M. Alzamora, M.S. Tapia, and A. Lopez-Malo, 1–9. Gaithersburg, Maryland: Aspen.

    Google Scholar 

  • Annous, B.A., G.M. Sapers, A.M. Mattrazzo, and D.C.R. Riordan. 2001. Efficacy of washing with a commercial flatbed brush washer, using conventional and experimental washing agents, in reducing populations of Escherichia coli on artificially inoculated apples. Journal of Food Protection 64(2): 159–163.

    Article  CAS  PubMed  Google Scholar 

  • Artés, F., P. Gómez, E. Aguayo, V. Escalona, and F. Artés-Hernández. 2009. Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biology and Technology 51: 287–296.

    Article  CAS  Google Scholar 

  • Arvanitoyannis, I., A.C. Stratakos, and P. Tsarouhas. 2009. Irradiation applications in vegetables and fruits: A review. Critical Reviews in Food Science and Nutrition 49: 427–462.

    Article  CAS  PubMed  Google Scholar 

  • Beuchat, L.R., B.V. Nail, B.B. Adler, and M.R.S. Clavero. 1998. Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes and lettuce. Journal of Food Protection 61: 1305–1311.

    Article  CAS  PubMed  Google Scholar 

  • Beuchat, L.R. 2000. Use of sanitizers in raw fruit and vegetable processing. In Minimally processed fruits and vegetables, Fundamental aspects and applications, ed. S.M. Alzamora, M.S. Tapia, and A. Lopez-Malo, 63–79. Gaithersburg, Maryland: Aspen.

    Google Scholar 

  • Bialka, K.L., and A. Demirci. 2008. Efficacy of pulsed UV-Light for the decontamination of Escherichia coli O157:H7 and Salmonella spp. on raspberries and strawberries. Journal of Food Science 73(5): M201–M207.

    Article  CAS  PubMed  Google Scholar 

  • Borsa, J. 2000. Irradiation of foods. In Wiley encyclopedia of food science and technology, vol. 1, ed. F.J. Francis, 1428–1436. New York: Wiley.

    Google Scholar 

  • Boylston, T.D., C.A. Reitmeier, J.H. Moy, G.A. Mosher, and L. Taladriz. 2002. Sensory quality and nutrient composition of three Hawaiian fruits treated by X‐irradiation. Journal of Food Quality 25(5): 419–433.

    Article  CAS  Google Scholar 

  • Cao, S., Z. Hu, and B. Pang. 2010a. Optimization of postharvest ultrasonic treatment of strawberry fruit. Postharvest Biology and Technology 55: 150–153.

    Article  Google Scholar 

  • Cao, S., Z. Hu, B. Pang, H. Wang, H. Xie, and F. Wu. 2010b. Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control 21: 529–532.

    Article  CAS  Google Scholar 

  • Chakraverty, A., A.S. Mujumdar, G.S. Raghavan, and H.S. Ramaswamy. 2003. Introduction: Production, trade, losses, causes, and preservation. In Handbook of postharvest technology: Cereals, fruits, vegetables, tea and species, ed. A. Chakraverty, A.S. Mujumdar, G.S. Raghavan, and H.S. Ramaswamy. New York: Marcel Dekker.

    Google Scholar 

  • Chen, Z., and C. Zhu. 2011. Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.). Postharvest Biology and Technology 61(2): 117–123.

    Article  CAS  Google Scholar 

  • Chien, P.J., F. Sheu, and H.R. Lin. 2007a. Coating citrus (Murcott tangor) fruit with low molecular weight chitosan increases postharvest quality and shelf life. Food Chemistry 100: 1160–1164.

    Article  CAS  Google Scholar 

  • Chien, P.J., F. Sheu, and F.H. Yang. 2007b. Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. Journal of Food Engineering 78: 225–229.

    Article  CAS  Google Scholar 

  • Dalal, V.B., W.E. Eipeson, and N.S. Singh. 1971. Wax Emulsion for fresh fruits and vegetables to extend their storage life. Indian Food Packer 25: 9.

    CAS  Google Scholar 

  • Dalal, V.B., P. Thomas, N. Nagaraia, G.R. Shah, and B.C. Arnla. 1970. Effect of wax coating on bananas of varying maturity. Indian Food Packer 24(2): 36–39.

    Google Scholar 

  • De Azevedo Pimentel, R.M., and J.M. Melges Walder. 2004. Gamma radiation in papaya harvested at three stages of maturation. Scientific Agriculture 61(2): 146–150.

    Google Scholar 

  • Zagory, D. 1999. Effects of post-processing handling and packaging on microbial populations. Postharvest Biology and Technology 15: 313–321.

    Article  Google Scholar 

  • Donhowe, I.G., and O.R. Fennema. 1993. The effects of plasticizers on crystallinity, permeability, and mechanical properties of methylcellulose films. Journal of Food Processing and Preservation 17: 247–257.

    Article  CAS  Google Scholar 

  • Escobedo-Avellaneda, Z., M. Pateiro Moure, N. Chotyakul, J.A. Torres, J. Welti-Chanes, and C. Pérez Lamela. 2011. Benefits and limitations of food processing by high-pressure technologies: Effects on functional compounds and nonbiotic contaminants. CyTA—Journal of Food 9(4): 352–365.

    Article  CAS  Google Scholar 

  • FAO. 2003. Handling and preservation of fruits and vegetables by combined methods for rural areas. Technical manual. FAO Agricultural Services Bulletin 149, ed. G.V. Barbosa-Cánovas, J.J. Fernández-Molina, S.M. Alzamora, M.S. Tapia, A. López-Malo, and J. Welti-Chanes, 3–18. Rome, Italy: FAO.

    Google Scholar 

  • Farkas, J. 1998. Irradiation as a method for decontaminating food: A review. International Journal of Food Microbiology 44(3): 189–204.

    Article  CAS  PubMed  Google Scholar 

  • Fonseca, J.M., and J.W. Rushing. 2006. Effect of ultraviolet-C light on quality and microbial population of fresh-cut watermelon. Postharvest Biology and Technology 40: 256–261.

    Article  CAS  Google Scholar 

  • Garcia, E., and D. Barrett. 2005. Fresh-cut fruits. In Processing fruits science and technology, 2nd ed, ed. D.M. Barrett, L. Somogyi, and H. Ramaswamy, 53–72. Boca Raton, FL: CRC.

    Google Scholar 

  • Grant, L., and J.K. Burns. 1994. Application of coatings. In Edible coatings and films to improve food quality, ed. J.M. Krochta, E.A. Baldwin, and M.O. Nisperos-Carriedo, 89. Boca Raton, FL: CRC.

    Google Scholar 

  • Gil, M.I., M.V. Selma, F. López-Gálvez, and A. Allende. 2009. Fresh-cut product sanitation and wash water disinfection: Problems and solutions. International Journal of Food Microbiology 134: 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-López, V.M., P. Ragaert, J. Debevere, and F. Devlieghere. 2007. Pulsed light for food decontamination: A review. Trends in Food Science & Technology 18: 464–473.

    Article  CAS  Google Scholar 

  • Gómez-López, V.M., A. Rajkovic, P. Ragaert, N. Smigic, and F. Devlieghere. 2009. Chlorine dioxide for minimally processed produce preservation: A review. Trends in Food Science & Technology 20: 17–26.

    Article  CAS  Google Scholar 

  • Gonzalez, R.J., Y. Luo, S. Ruiz-Cruz, and J.L. McEvoy. 2004. Efficacy of sanitizers to inactivate Escherichia coli O157:H7 on fresh-cut carrot shreds under simulated process water conditions. Journal of Food Protection 67: 2375–2380.

    Article  PubMed  Google Scholar 

  • Goodburn, C., and C.A. Wallace. 2013. The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control 32: 418–427.

    Article  CAS  Google Scholar 

  • Graca, A., M. Abadias, M. Salazar, and C. Nunes. 2011. The use of electrolyzed water as a disinfectant for minimally processed apples. Postharvest Biology and Technology 61: 172–177.

    Article  CAS  Google Scholar 

  • Guilbert, S. 1986. Technology and application of edible protective films. In Food packaging and preservation: Theory and practice, ed. M. Mathlouthi, 371–399. London: Elsevier.

    Google Scholar 

  • Gunes, G., J.H. Hotchkiss, and C.B. Watkins. 2001. Effects of gamma irradiation on the texture of minimally processed apple slices. Journal of Food Science 66(1): 63–67.

    Article  CAS  Google Scholar 

  • Hawkes, J.G. 2000. Food processing: Effect on nutritional quality. In Wiley encyclopedia of food science and technology, vol. 1, ed. F.J. Francis, 969–986. New York: Wiley.

    Google Scholar 

  • Huang, T.S., C.L. Xu, K. Walker, P. West, S.Q. Zhang, and J. Weese. 2006. Decontamination efficacy of combined chlorine dioxide with ultrasonication on apples and lettuce. Journal of Food Science 71: M134–M139.

    Article  CAS  Google Scholar 

  • Hyldgaard, M., T. Mygind, and R.L. Meyer. 2002. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology 3: 1–24.

    Google Scholar 

  • Jin, Y.Y., Y.J. Kim, K.S. Chung, M. Won, and B. Song. 2007. Effect of aqueous chlorine treatment on the microbial growth and qualities of strawberries during storage. Food Science and Biotechnology 16: 1018–1022.

    CAS  Google Scholar 

  • Kader, A., and D.M. Barrett. 2005. Classification, composition of fruits and postharvest maintenance of quality. In Processing fruits Science and technology, Secondth ed, ed. D.M. Barrett, L. Somogyi, and H. Ramaswamy, 3–22. Boca Raton, FL: CRC.

    Google Scholar 

  • Kader, A.A., and D. Ke. 1994. Controlled atmospheres. In Insect pests and fresh horticultural products, ed. R.E. Paull and J.W. Armstrong, 223–236. Wallingford, England: CAB International.

    Google Scholar 

  • Kader, A.A. 1985. Modified atmosphere and low-pressure systems during transport and storage. In Postharvest technology of horticultural crops, ed. A.A. Kader, R.F. Kasmire, F.G. Mitchell, M.S. Reid, W.S. Sommer, and J.F. Thompson, 458–467. Davis, CA: Special Publication 3311. University of California.

    Google Scholar 

  • Kader, A. 2002. Quality parameters of fresh-cut fruit and vegetable products. In Fresh-cut fruits and vegetables: Science, technology and market, ed. O. Lamikanra. Boca Raton, FL: CRC.

    Google Scholar 

  • Kader, A.A., D. Zagory, and E.V. Kerbel. 1989. Modified atmosphere packaging of fruit and vegetables. Critical Reviews in Food Science and Nutrition 28(1): 1–30.

    Article  CAS  PubMed  Google Scholar 

  • Ke, D., and A.A. Kader. 1990. Tolerance of ‘Valencia’ oranges to controlled atmospheres as determined by physiological responses and quality attributes. Journal of American Society of Horticultural and Science 115(5): 779–783.

    CAS  Google Scholar 

  • Ke, D., and A.A. Kader. 1992. Potential of controlled atmospheres for postharvest insect disinfestation of fruits and vegetables. Postharvest News and Information 3(2): 31N–37N.

    Google Scholar 

  • Ke, D., L. Goldstein, M. O’Mahony, and A.A. Kader. 1991. Effects of short term exposure to low O2 and high CO2 atmosphere on quality attributes of strawberries. Journal of Food Science 56: 50–54.

    Article  Google Scholar 

  • Ke, D., H. Van Gorsel, and A.A. Kader. 1990. Physiological and quality responses of ‘Bartlett’ pears to reduced O2 and enhanced-CO2 atmospheres and storage temperatures. Journal of the American Science for Horticultural Science 155: 435–439.

    Google Scholar 

  • Kilcast, D. 1995. Food irradiation: Current problems and future potential. International Biodeterioration & Biodegradation 36(3–4): 279–296.

    Article  Google Scholar 

  • Koseki, S., K. Yoshida, S. Isobe, and K. Itoh. 2004. Efficacy of acidic electrolyzed water for microbial decontamination of cucumbers and strawberries. Journal of Food Protection 67(6): 1247–1251.

    Article  CAS  PubMed  Google Scholar 

  • Kupferman, E. 2001. Controlled atmosphere storage of apples and pears. Washington State University. Tree Fruit Research and Extension Center. http://postharvest.tfrec.wsu.edu/EMK2001D.pdf.

  • Lado, B.H., and A.E. Yousef. 2002. Alternative food-preservation technologies: Efficacy and mechanisms. Microbes and Infection 4: 433–440.

    Article  PubMed  Google Scholar 

  • Lagunas-Solar, M.C., C. Piña, J.D. MacDonald, and L. Bolkan. 2006. Development of pulsed UV light processes for surface fungal disinfection of fresh fruits. Journal of Food Protection 2(9): 376–384.

    Article  Google Scholar 

  • Lamikanra, O., D. Kueneman, D. Ukuku, and K.L. Bett-Garber. 2005. Effect of processing under ultraviolet light on the shelf life of fresh-cut cantaloupe melon. Food Science 70(9): C534–C539.

    Article  CAS  Google Scholar 

  • Lee, J.Y., H.J. Park, C.Y. Lee, and W.Y. Choi. 2003. Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. LWT--Food Science and Technology 36(3): 323–329.

    Article  CAS  Google Scholar 

  • Lee, S.Y., G.I. Dancer, S.S. Chang, M.K. Rhee, and D.H. Kang. 2006. Efficacy of chlorine dioxide gas against Alicyclobacillus acidoterrestris spores on apple surfaces. International Journal of Food Microbiology 108: 364–368.

    CAS  PubMed  Google Scholar 

  • Lu, J.Y., C. Stevens, V.A. Khan, M. Kabwe, and C.L. Wilson. 1991. The effect of ultraviolet irradiation on shelf-life and ripening of peaches and apples. Journal of Food Quality 14(4): 299–305.

    Article  Google Scholar 

  • Lukasik, J., M.L. Bradley, T.M. Scott, M. Dea, A. Koo, W.Y. Hsu, et al. 2003. Reduction of poliovirus 1, bacteriophages, Salmonella Montevideo, and Escherichia coli O157:H7 on strawberries by physical and disinfectant washes. Journal of Food Protection 66(2): 188–193.

    Article  PubMed  Google Scholar 

  • Manzocco, L., S. Da Pieve, and M. Maifreni. 2011. Impact of UV-C light on safety and quality of fresh-cut melon. Innovative Food Science and Emerging Technologies 12: 13–17.

    Article  CAS  Google Scholar 

  • Mari, M., T. Cembali, E. Baraldi, and L. Casalini. 1999. Peracetic acid and chlorine dioxide for postharvest control of Monilinia laxa in stone fruits. Plant Disease 83(8): 773–776.

    Article  CAS  PubMed  Google Scholar 

  • Mari, M., R. Gregori, and I. Donati. 2004. Postharvest control of Monilinia laxa and Rhizopus stolonifer in stone fruit by peracetic acid. Postharvest Biology and Technology 33(3): 319–325.

    Article  CAS  Google Scholar 

  • Mathur, P.B., and H.C. Srivastava. 1955. Effect of akin coatings on the storage behaviour of mangoes. Journal of Food Science 20(6): 559–566.

    Article  CAS  Google Scholar 

  • Martínez-Ferrer, M., C. Harper, F. Pérez-Muñoz, and M. Chaparro. 2002. Modified atmosphere packaging of minimally processed mango and pineapple fruits. Journal of Food Science 67(9): 3365–3371.

    Article  Google Scholar 

  • Okull, D.O., and L.F. Laborde. 2004. Activity of electrolyzed oxidizing water against Penicillium expansum in suspension and on wounded apples. Journal of Food Science 69(1): FMS23–FMS27.

    Article  CAS  Google Scholar 

  • Ölmez, H., and U. Kretzschmar. 2009. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT—Food Science and Technology 42: 686–693.

    Article  CAS  Google Scholar 

  • Patil, B.S., J. Vanamala, and G. Hallman. 2004. Irradiation and storage influence on bioactive components and quality of early and late season ‘Rio Red’ grapefruit (Citrus paradisi Macf.). Postharvest Biology and Technology 34: 53–64.

    Article  CAS  Google Scholar 

  • Pavlaths, A.E., and W. Orts. 2009. Edible films: Why, what and how! In Edible films and coatings for food and other applications, ed. M.E. Embuscado and K.C. Huber, 1–24. New York: Springer.

    Google Scholar 

  • Pérez, A.G., C. Sanz, J.J. Ríos, R. Olıas, and J.M. Olıas. 1999. Effects of ozone treatment on postharvest strawberry. The Journal of Agricultural and Food Chemistry 47: 1652–1656.

    Article  PubMed  Google Scholar 

  • Qi, L., T. Wu, and A.E. Watada. 1999. Quality changes of fresh‐cut honeydew melons during controlled atmosphere storage. Journal of Food Quality 22(5): 513–521.

    Article  CAS  Google Scholar 

  • Ramos, B., F.A. Miller, T.R.S. Brandão, P. Teixeira, and C.L.M. Silva. 2013. Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety. Innovative Food Science and Emerging Technologies 20: 1–15.

    Article  CAS  Google Scholar 

  • Rattanapanone, N., Y. Lee, T. Wu, and A.E. Watada. 2001. Quality and microbial changes of fresh-cut mango cubes held in controlled atmosphere. HortScience 36(6): 1091–1095.

    Google Scholar 

  • Rennie, T.J., C. Vigneault, J.R. Deell, and G.S.V. Raghavan. 2003. Cooling and storage. In Handbook of postharvest technology: Cereals, fruits, vegetables, tea and species, ed. A. Chakraverty, A.S. Mujumdar, G.S. Raghavan, and H.S. Ramaswamy, 505–538. New York: Marcel Dekker.

    Google Scholar 

  • Rico, D., A.B. Martín-Diana, J.M. Barat, and C. Barry-Ryan. 2007. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends in Food Science and Technology 18: 373–386.

    Article  CAS  Google Scholar 

  • Rodgers, S.L., J.N. Cash, M. Siddiq, and E.T. Ryser. 2004. A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries and cantaloupe. Journal of Food Protection 67: 721–731.

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Graü, M.A., R. Soliva-Fortuny, and O. Martín-Belloso. 2009. Edible coatings to incorporate active ingredients to fresh-cut fruits: A review. Trends in Food Science and Technology 20: 438–447.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M.A., M.A. Tapia, and O. Martín-Belloso. 2008. Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT—Food Science and Technology 41: 139–147.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M.A., M.S. Tapia, F.J. Rodríguez, A.J. Carmona, and O. Martin-Belloso. 2007. Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocolloids 21(1): 118–127.

    Article  CAS  Google Scholar 

  • Rossi, M., E. Giussani, R. Morelli, R. Lo Scalzo, R.C. Nani, and D. Torreggiani. 2003. Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Research International 36(9–10): 999–1005.

    Article  CAS  Google Scholar 

  • Russell, R. 2005. The disinfection of raw vegetables and salads-focus on mixed oxidants or anolyte. Washing and decontamination of fresh produce forum. Gloucestershire, England: Campden and Chorleywood Food Research Association Group. Newsletter Issue 6.

    Google Scholar 

  • Sapers, G.M., and J.E. Sites. 2003. Efficacy of 1% hydrogen peroxide wash in decontaminating apples and cantaloupe melons. Journal of Food Science 68(5): 1793–1797.

    Article  CAS  Google Scholar 

  • Sapers, G.M., R.L. Miller, and A.M. Mattrazzo. 1999. Effectiveness of sanitizing agents in inactivating Escherichia coli in Golden Delicious apples. Journal of Food Science 64(4): 734–737.

    Article  CAS  Google Scholar 

  • Sapers, G.M., R.L. Miller, V. Pilizota, and A.M. Mattrazzo. 2001. Antimicrobial treatments for minimally processed cantaloupe melon. Journal of Food Science 66(2): 345–349.

    Article  CAS  Google Scholar 

  • Sauer, A., and C.I. Moraru. 2009. Inactivation of Escherichia coli ATCC 25922 and Escherichia coli O157:H7 in apple juice and apple cider, using pulsed light treatment. Journal of Food Protection 5(8): 937–944.

    Article  Google Scholar 

  • Serrano, M., D. Martınez-Romero, S. Castillo, F. Guillen, and D. Valero. 2005. The use of natural antifungal compounds improves the beneficial effect of MAP in sweet cherry storage. Innovative Food Science and Emerging Technologies 6: 115–123.

    Article  CAS  Google Scholar 

  • Schenk, M., S. Guerrero, and S.M. Alzamora. 2008. Response of some microorganisms to ultraviolet treatment on fresh-cut pear. Food and Bioprocess Technology 1(4): 384–392.

    Article  Google Scholar 

  • Siegel, A., P. Markakis, and C.L. Bedford. 1971. Stabilization of anthocyanins in frozen tart cherries by blanching. Journal of Food Science 36(6): 962–963.

    Article  CAS  Google Scholar 

  • Singh, T.K., and K.R. Cadwallader. 2004. Ways of measuring shelf-life and spoilage. In Understanding and measuring the shelf-life of food, ed. R. Steele. Cambridge, England: Woodhead.

    Google Scholar 

  • Soliva-Fortuny, and O. Martın-Belloso. 2003. New advances in extending the shelf life of fresh-cut fruits: A review. Trends in Food Science & Technology 14: 341–353.

    Article  CAS  Google Scholar 

  • Smilanick, J.L., D.M. Margosan, and F. Mlikota Gabler. 2002. Impact of ozonated water on the quality and shelf-life of fresh citrus fruit, stone fruit, and table grapes. Ozone: Science and Engineering 24(5): 343–356.

    Article  CAS  Google Scholar 

  • Sy, K.V., K.H. McWatters, and L.R. Beuchat. 2005. Efficacy of gaseous chlorine dioxide as a sanitizer for killing Salmonella, yeasts, and molds on blueberries, strawberries, and raspberries. Journal of Food Protection 68(6): 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  • Tapia, M.S., M.A. Rojas-Graü, A. Carmona, F.J. Rodríguez, R. Soliva-Fortuny, and O. Martin-Belloso. 2008. Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocolloids 22(8): 1493–1503.

    Article  CAS  Google Scholar 

  • Tapia, M.S., M.A. Rojas-Graü, F.J. Rodríguez, J. Ramírez, A. Carmona, and O. Martin-Belloso. 2007. Alginate- and gellan-based edible films for probiotic coatings on fresh-cut fruits. Journal of Food Science 72(4): E190–E196.

    Article  CAS  PubMed  Google Scholar 

  • Tapia, M.S., and J. Welti-Chanes. 2012. Hurdle technology principles applied in decontamination of whole and fresh-cut produce. In Decontamination of fresh and minimally processed produce, 1st ed, ed. V.M. Gómez-López, 417–444. Oxford: Wiley.

    Chapter  Google Scholar 

  • Thompson, J.F., F.G. Mitchell, and R.F. Kasmire. 2002. Cooling horticultural commodities. In Postharvest technology of horticultural crops, 3rd ed, ed. A.A. Kader, 97–112. Oakland, CA: Regents of the University of California.

    Google Scholar 

  • Udompijitkul, P., M.A. Daeschel, and Y. Zhao. 2007. Antimicrobial effect of electrolyzed oxidizing water against Escherichia coli O157:H7 and Listeria monocytogenes on fresh strawberries (Fragaria × ananassa). Journal of Food Science 72(9): M397–M406.

    Article  CAS  PubMed  Google Scholar 

  • Venkitanarayanan, K.S., C.M. Lin, H. Bailey, and M.P. Doyle. 2002. Inactivation of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes on apples, oranges and tomatoes by lactic acid with hydrogen peroxide. Journal of Food Protection 65: 100–105.

    Article  CAS  PubMed  Google Scholar 

  • Vroom, N., and C.J.M. Zuyderwijk. 2006. Improvement treatments for controlled atmospheres in stored product pest control. In Proceedings of the Annual Conference on Methyl Bromide Alternatives and Emissions Reductions. November 6–9. Orlando, FL: The Double Tree Hotel.

    Google Scholar 

  • Wang, H., H. Feng, and Y. Luo. 2006. Dual-phasic inactivation of Escherichia coli O157:H7 with peroxyacetic acid, acidic electrolyzed water and chlorine on cantaloupes and fresh-cut apples. Journal of Food Safety 26: 335–347.

    Article  Google Scholar 

  • Wolbang, C.M., J.L. Fitos, and M.T. Treeby. 2008. The effect of high pressure processing on nutritional value and quality attributes of Cucumis melo L. Innovative Food Science & Emerging Technologies 9(2): 196–200.

    Article  CAS  Google Scholar 

  • Wu, V.C., and B. Kim. 2007. Effect of a simple chlorine dioxide method for controlling five foodborne pathogens, yeasts and molds on blueberries. Food Microbiology 24: 794–800.

    Article  CAS  PubMed  Google Scholar 

  • Xie, F. 2003. Disinfection byproducts in drinking water: Form, analysis and control, 176. Boca Raton, FL: CRC/Technology and Industrial Arts.

    Book  Google Scholar 

  • Yu, K., M.C. Newman, D.D. Archbold, and T. Hamilton-Kemp. 2001. Survival of Escherichia coli O157:H7 on strawberry fruit and reduction of the pathogen population by chemical agents. Journal of Food Protection 64(9): 1334–1340.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Welti-Chanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Escobedo-Avellaneda, Z., Guerrero-Beltrán, J.Á., Tapia, M.S., Barbosa-Cánovas, G.V., Welti-Chanes, J. (2018). Minimal Processing of Fruits. In: Rosenthal, A., Deliza, R., Welti-Chanes, J., Barbosa-Cánovas, G. (eds) Fruit Preservation. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3311-2_4

Download citation

Publish with us

Policies and ethics