Skip to main content

High Pressure Processing of Fruit Products

  • Chapter
  • First Online:
Fruit Preservation

Abstract

High-pressure processing (HPP) is an excellent alternative for the processing of fruit products such as juices, smoothies, jams, and fresh-cuts. This nonthermal technology can inactivate pathogenic and deteriorative microorganisms and undesirable enzymes. Retention of nutrients and sensory attributes of the products make this technology very appropriate for the fruit processing industry, as some fruit products are very sensitive to conventional thermal processes. This chapter elaborates on the application of high pressure in the food industry for the processing of a variety of fruit products. Inactivation of microorganisms, reduction of enzyme activity, and retention of bioactive compounds and antioxidant activity during processing of fruit products are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akyol, Ç., H. Alpas, and A. Bayındırlı. 2006. Inactivation of peroxidase and lipoxygenase in carrots, green beans, and green peas by combination of high hydrostatic pressure and mild heat treatment. European Food Research and Technology 224 (2): 171–176.

    Article  CAS  Google Scholar 

  • Alemán, G., D.F. Farkas, J.A. Torres, E. Wilhelmsen, and S. McIntyre. 1994. Ultra-high pressure pasteurization of fresh cut pineapple. Journal of Food Protection 57 (10): 931–934.

    Article  PubMed  Google Scholar 

  • Alexandrakis, Z., G. Katsaros, P. Stavros, P. Katapodis, G. Nounesis, and P. Taoukis. 2014a. Comparative structural changes and inactivation kinetics of pectin methylesterases from different orange cultivars processed by high pressure. Food and Bioprocess Technology 7 (3): 853–867.

    Article  CAS  Google Scholar 

  • Alexandrakis, Z., K. Kyriakopoulou, G. Katsaros, M. Krokida, and P. Taoukis. 2014b. Selection of process conditions for high pressure pasteurization of sea buckthorn juice retaining high antioxidant activity. Food and Bioprocess Technology 7 (11): 3226–3234.

    Article  CAS  Google Scholar 

  • Alpas, H., L. Alma, and F. Bozoglu. 2003. Inactivation of Alicyclobacillus acidoterrestris vegetative cells in model system, apple, orange and tomato juices by high hydrostatic pressure. World Journal of Microbiology and Biotechnology 19 (6): 619–623.

    Article  Google Scholar 

  • Balasubramaniam, V.M., G.V. Barbosa-Cánovas, and H.L. Lelieveld. 2016. High-pressure processing equipment for the food industry. In High Pressure Processing of Food, 39–65. New York: Springer.

    Chapter  Google Scholar 

  • Balasubramaniam, V.M., D. Farkas, and E.J. Turek. 2008. Preserving foods through high-pressure processing. Food Technology 11: 32–38.

    Google Scholar 

  • Balda, F.P., B.V. Aparicio, and C.T. Samson. 2012. Industrial high pressure processing of foods: Review of evolution and emerging trends. Journal of Food Science and Engineering 2 (10): 543.

    CAS  Google Scholar 

  • Barba, F.J., M.J. Esteve, and A. Frígola. 2013. Physicochemical and nutritional characteristics of blueberry juice after high pressure processing. Food Research International 50 (2): 545–549.

    Article  CAS  Google Scholar 

  • Barrett, D.M., and B. Lloyd. 2012. Advanced preservation methods and nutrient retention in fruits and vegetables. Journal of the Science of Food and Agriculture 92 (1): 7–22.

    Article  CAS  PubMed  Google Scholar 

  • Bevilacqua, A., M.R. Corbo, and M. Sinigaglia. 2012. Use of natural antimicrobials and high pressure homogenization to control the growth of Saccharomyces bayanus in apple juice. Food Control 24 (1): 109–115.

    Article  CAS  Google Scholar 

  • Bisconsin-Junior, A., A. Rosenthal, and M. Monteiro. 2014. Optimisation of high hydrostatic pressure processing of Pêra Rio orange juice. Food and Bioprocess Technology 7 (6): 1670–1677.

    Article  CAS  Google Scholar 

  • Bodelón, O.G., J.M. Avizcuri, P. Fernández-Zurbano, M. Dizy, and G. Préstamo. 2013. Pressurization and cold storage of strawberry purée: Colour, anthocyanins, ascorbic acid and pectin methylesterase. Food Science and Technology 52 (2): 123–130.

    Google Scholar 

  • Boulekou, S.S., G.J. Katsaros, and P.S. Taoukis. 2010. Inactivation kinetics of peach pulp pectin methylesterase as a function of high hydrostatic pressure and temperature process conditions. Food and Bioprocess Technology 3 (5): 699–706.

    Article  CAS  Google Scholar 

  • Boynton, B.B., C.A. Sims, S. Sargent, M.O. Balaban, and M.R. Marshall. 2002. Quality and stability of precut mangos and carambolas subjected to high-pressure processing. Journal of Food Science 67 (1): 409–415.

    Article  CAS  Google Scholar 

  • Buckow, R., U. Weiss, and D. Knorr. 2009. Inactivation kinetics of apple polyphenol oxidase in different pressure–temperature domains. Innovative Food Science & Emerging Technologies 10 (4): 441–448.

    Article  CAS  Google Scholar 

  • Bull, M.K., E.A. Szabo, M.B. Cole, and C.M. Stewart. 2005. Toward validation of process criteria for high-pressure processing of orange juice with predictive models. Journal of Food Protection 68 (5): 949–954.

    Article  PubMed  Google Scholar 

  • Butz, P., A.F. Garcıa, R. Lindauer, S. Dieterich, A. Bognar, and B. Tauscher. 2003. Influence of ultra-high pressure processing on fruit and vegetable products. Journal of Food Engineering 56 (2): 233–236.

    Article  Google Scholar 

  • Buzrul, S., H. Alpas, A. Largeteau, and G. Demazeau. 2008. Inactivation of Escherichia coli and Listeria innocua in kiwifruit and pineapple juices by high hydrostatic pressure. International Journal of Food Microbiology 124 (3): 275–278.

    Article  CAS  PubMed  Google Scholar 

  • Calligaris, S., M. Foschia, I. Bartolomeoli, M. Maifreni, and L. Manzocco. 2012. Study on the applicability of high-pressure homogenization for the production of banana juices. Food Science and Technology 45 (1): 117–121.

    CAS  Google Scholar 

  • Cano, M.P., A. Hernandez, and B.D. de Ancos. 1997. High pressure and temperature effects on enzyme inactivation in strawberry and orange products. Journal of Food Science 62 (1): 85–88.

    Article  CAS  Google Scholar 

  • Cao, X., X. Bi, W. Huang, J. Wu, X. Hu, and X. Liao. 2012. Changes of quality of high hydrostatic pressure processed cloudy and clear strawberry juices during storage. Innovative Food Science & Emerging Technologies 16: 181–190.

    Article  CAS  Google Scholar 

  • Cao, X., Y. Zhang, F. Zhang, Y. Wang, J. Yi, and X. Liao. 2011. Effects of high hydrostatic pressure on enzymes, phenolic compounds, anthocyanins, polymeric color and color of strawberry pulps. Journal of the Science of Food and Agriculture 91 (5): 877–885.

    Article  CAS  PubMed  Google Scholar 

  • Carbonell-Capella, J.M., F.J. Barba, M.J. Esteve, and A. Frígola. 2013. High pressure processing of fruit juice mixture sweetened with Stevia rebaudiana Bertoni: Optimal retention of physical and nutritional quality. Innovative Food Science & Emerging Technologies 18: 48–56.

    Article  CAS  Google Scholar 

  • Chaikham, P., and A. Apichartsrangkoon. 2012. Comparison of dynamic viscoelastic and physicochemical properties of pressurised and pasteurised longan juices with xanthan addition. Food Chemistry 134 (4): 2194–2200.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, S., N. Kaushik, P.S. Rao, and H.N. Mishra. 2014a. High-pressure inactivation of enzymes: A review on its recent applications on fruit purees and juices. Comprehensive Reviews in Food Science and Food Safety 13 (4): 578–596.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, S., P.S. Rao, and H.N. Mishra. 2014b. Effect of pH on enzyme inactivation kinetics in high-pressure processed pineapple (Ananas comosus L.) purée using response surface methodology. Food and Bioprocess Technology 7 (12): 3629–3645.

    Article  CAS  Google Scholar 

  • Cheftel, J.C. 1992. Effects of high hydrostatic pressure on food constituents: An overview. In High Pressure and Biotechnology, ed. C. Balny, R. Hayashi, K. Heremans, and P. Masson, vol. 224, 195–209. Paris: INSERM and John Libbey.

    Google Scholar 

  • ———. 1995. Review: High-pressure, microbial inactivation and food preservation. Food Science and Technology International 1 (2–3): 75–90.

    Article  Google Scholar 

  • Chen, D., H. Xi, X. Guo, Z. Qin, X. Pang, X. Hu, et al. 2013. Comparative study of quality of cloudy pomegranate juice treated by high hydrostatic pressure and high temperature short time. Innovative Food Science & Emerging Technologies 19: 85–94.

    Article  CAS  Google Scholar 

  • Coroller, L., I. Leguérinel, E. Mettler, N. Savy, and P. Mafart. 2006. General model, based on two mixed Weibull distributions of bacterial resistance, for describing various shapes of inactivation curves. Applied and Environmental Microbiology 72 (10): 6493–6502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dajanta, K., A. Apichartsrangkoon, and S. Somsang. 2012. Comparison of physical and chemical properties of high pressure-and heat-treated Lychee (Litchi chinensis Sonn.) in syrup. High Pressure Research 32 (1): 114–118.

    Article  CAS  Google Scholar 

  • de Ancos, B., E. Gonzalez, and M.P. Cano. 2000. Effect of high-pressure treatment on the carotenoid composition and the radical scavenging activity of persimmon fruit purees. Journal of Agricultural and Food Chemistry 48 (8): 3542–3548.

    Article  PubMed  CAS  Google Scholar 

  • Donsi, G., G. Ferrari, and M. Di Matteo. 1996. High pressure stabilization of orange juice: evaluation of the effects of process conditions. Italian Journal of Food Science 8 (2): 99–106.

    CAS  Google Scholar 

  • Elamin, W.M., J.B. Endan, Y.A. Yosuf, R. Shamsudin, and A. Ahmedov. 2015. High pressure processing technology and equipment evolution: A review. Journal of Engineering Science and Technology Review 8 (5): 75–83.

    Article  Google Scholar 

  • Engmann, F.N., Y. Ma, H. Zhang, L. Yu, and N. Deng. 2014. The application of response surface methodology in studying the effect of heat and high hydrostatic pressure on anthocyanins, polyphenol oxidase, and peroxidase of mulberry (Morus nigra) juice. Journal of the Science of Food and Agriculture 94 (11): 2345–2356.

    Article  CAS  PubMed  Google Scholar 

  • Erkmen, O. 2011. Effects of high hydrostatic pressure on Salmonella typhimurium and aerobic bacteria in milk and fruit juices. Romanian Biotechnological Letters 16 (5): 6540–6547.

    CAS  Google Scholar 

  • Espina, L., D. García-Gonzalo, A. Laglaoui, B.M. Mackey, and R. Pagán. 2013. Synergistic combinations of high hydrostatic pressure and essential oils or their constituents and their use in preservation of fruit juices. International Journal of Food Microbiology 161 (1): 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Fachin, D., A.V. Loey, O. Indrawati, L. Ludikhuyze, and M. Hendrickx. 2002. Thermal and high-pressure inactivation of tomato polygalacturonase: A kinetic study. Journal of Food Science 67 (5): 1610–1615.

    Article  CAS  Google Scholar 

  • Falguera, V., F. Gatius, A. Ibarz, and G.V. Barbosa-Cánovas. 2013. Kinetic and multivariate analysis of polyphenol oxidase inactivation by high pressure and temperature processing in apple juices made from six different varieties. Food and Bioprocess Technology 6 (9): 2342–2352.

    Article  CAS  Google Scholar 

  • Fang, L., B. Jiang, and T. Zhang. 2008. Effect of combined high pressure and thermal treatment on kiwifruit peroxidase. Food Chemistry 109 (4): 802–807.

    Article  CAS  PubMed  Google Scholar 

  • Farkas, D.F., and D.G. Hoover. 2000. High pressure processing. Journal of Food Science 65 (s8): 47–64.

    Article  Google Scholar 

  • Fernández-Sestelo, A., R.S. de Saá, C. Pérez-Lamela, A. Torrado-Agrasar, M.L. Rúa, and L. Pastrana-Castro. 2013. Overall quality properties in pressurized kiwi purée: Microbial, physicochemical, nutritive and sensory tests during refrigerated storage. Innovative Food Science & Emerging Technologies 20: 64–72.

    Article  CAS  Google Scholar 

  • Ferragut, V., M. Hernández-Herrero, M.T. Veciana-Nogués, M. Borras-Suarez, J. González-Linares, M.C. Vidal-Carou, and B. Guamis. 2015. Ultra-high-pressure homogenization (UHPH) system for producing high-quality vegetable-based beverages: physicochemical, microbiological, nutritional and toxicological characteristics. Journal of the Science of Food and Agriculture 95 (5): 953–961.

    Article  CAS  Google Scholar 

  • Ferrari, G., P. Maresca, and R. Ciccarone. 2010. The application of high hydrostatic pressure for the stabilization of functional foods: Pomegranate juice. Journal of Food Engineering 100 (2): 245–253.

    Article  CAS  Google Scholar 

  • Ferreira, E., L.M.P. Masson, A. Rosenthal, M. Souza, L. Tashima, and P.R. Massaguer. 2011. Termorresistência de fungos filamentosos isolados de néctares de frutas envasados assepticamente. Brazilian Journal of Food Technology 14 (3): 164–171.

    Article  Google Scholar 

  • Garcia-Palazon, A., W. Suthanthangjai, P. Kajda, and I. Zabetakis. 2004. The effects of high hydrostatic pressure on β-glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragaria× ananassa). Food Chemistry 88 (1): 7–10.

    Article  CAS  Google Scholar 

  • García-Parra, J., R. Contador, J. Delgado-Adámez, F. González-Cebrino, and R. Ramírez. 2014. The applied pretreatment (blanching, ascorbic acid) at the manufacture process affects the quality of nectarine purée processed by hydrostatic high pressure. International Journal of Food Science and Technology 49 (4): 1203–1214.

    Article  CAS  Google Scholar 

  • Gil, M.I., F.A. Tomás-Barberán, B. Hess-Pierce, D.M. Holcroft, and A.A. Kader. 2000. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry 48 (10): 4581–4589.

    Article  CAS  PubMed  Google Scholar 

  • Gomes, M.R.A., and D.A. Ledward. 1996. Effect of high-pressure treatment on the activity of some polyphenoloxidases. Food Chemistry 56 (1): 1–5.

    Article  CAS  Google Scholar 

  • González-Cebrino, F., R. Durán, J. Delgado-Adámez, R. Contador, and R. Ramírez. 2013. Changes after high-pressure processing on physicochemical parameters, bioactive compounds, and polyphenol oxidase activity of red flesh and peel plum purée. Innovative Food Science & Emerging Technologies 20: 34–41.

    Article  CAS  Google Scholar 

  • Goodner, J.K., R.J. Braddock, and M.E. Parish. 1998. Inactivation of pectinesterase in orange and grapefruit juices by high pressure. Journal of Agricultural and Food Chemistry 46 (5): 1997–2000.

    Article  CAS  Google Scholar 

  • Goodner, J.K., R.J. Braddock, M.E. Parish, and C.A. Sims. 1999. Cloud stabilization of orange juice by high pressure processing. Journal of Food Science 64 (4): 699–700.

    Article  CAS  Google Scholar 

  • Guerrero-Beltrán, J.A., G.V. Barbosa-Cánovas, and B.G. Swanson. 2005a. High hydrostatic pressure processing of fruit and vegetable products. Food Reviews International 21 (4): 411–425.

    Article  CAS  Google Scholar 

  • Guerrero-Beltrán, J.A., G.V. Barbosa-Cánovas, and J. Welti-Chanes. 2011. High hydrostatic pressure effect on natural microflora, Saccharomyces cerevisiae, Escherichia coli, and Listeria Innocua in navel orange juice. International Journal of Food Engineering 7 (1).

    Google Scholar 

  • Guerrero-Beltrán, J.A., B.G. Swanson, and G.V. Barbosa-Canovas. 2005b. High hydrostatic pressure processing of mango puree containing antibrowning agents. Food Science and Technology International 11 (4): 261–267.

    Article  CAS  Google Scholar 

  • Guerrero-Beltrán, J.A., B.G. Swanson, and G.V. Barbosa-Cánovas. 2005c. Shelf life of HHP-processed peach puree with antibrowning agents. Journal of Food Quality 28 (5–6): 479–491.

    Article  Google Scholar 

  • Guiavarc’h, Y., O. Segovia, M. Hendrickx, and A. Van Loey. 2005. Purification, characterization, thermal and high-pressure inactivation of a pectin methylesterase from white grapefruit (Citrus paradisi). Innovative Food Science & Emerging Technologies 6 (4): 363–371.

    Article  CAS  Google Scholar 

  • Harte, F. 2016. Food processing by high-pressure homogenization. In High Pressure Processing of Food, 123–141. New York: Springer.

    Chapter  Google Scholar 

  • Hartyáni, P., I. Dalmadi, and D. Knorr. 2013. Electronic nose investigation of Alicyclobacillus acidoterrestris inoculated apple and orange juice treated by high hydrostatic pressure. Food Control 32 (1): 262–269.

    Article  Google Scholar 

  • Hendrickx, M., L. Ludikhuyze, I. Van den Broeck, and C. Weemaes. 1998. Effects of high pressure on enzymes related to food quality. Trends in Food Science & Technology 9 (5): 197–203.

    Article  CAS  Google Scholar 

  • Hernández-Brenes, C., P.A. Ramos-Parra, D.A. Jacobo-Velázquez, R. Villarreal-Lara, and R.I. Díaz-De la Garza. 2013. High hydrostatic pressure processing as a strategy to increase carotenoid contents of tropical fruits. Matrix 5: 11.

    Google Scholar 

  • Hernández-Carrión, M., J.L. Vázquez-Gutiérrez, I. Hernando, and A. Quiles. 2014. Impact of high hydrostatic pressure and pasteurization on the structure and the extractability of bioactive compounds of persimmon “Rojo Brillante”. Journal of Food Science 79 (1): C32–C38.

    Article  PubMed  CAS  Google Scholar 

  • Hicks, D.T., L.F. Pivarnik, R. McDermott, N. Richard, D.G. Hoover, and K.E. Kniel. 2009. Consumer awareness and willingness to pay for high-pressure processing of ready-to-eat food. Journal of Food Science Education 8 (2): 32–38.

    Article  Google Scholar 

  • Hiremath, N.D., and H.S. Ramaswamy. 2012. High-pressure destruction kinetics of spoilage and pathogenic microorganisms in mango juice. Journal of Food Processing and Preservation 36 (2): 113–125.

    Article  Google Scholar 

  • Huang, W., X. Bi, X. Zhang, X. Liao, X. Hu, and J. Wu. 2013. Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time. Innovative Food Science & Emerging Technologies 18: 74–82.

    Article  CAS  Google Scholar 

  • Igual, M., F. Sampedro, N. Martinez-Navarrete, and X. Fan. 2013. Combined osmodehydration and high pressure processing on the enzyme stability and antioxidant capacity of a grapefruit jam. Journal of Food Engineering 114 (4): 514–521.

    Article  CAS  Google Scholar 

  • Jacobo-Velázquez, D.A., and C. Hernández-Brenes. 2010. Biochemical changes during the storage of high hydrostatic pressure processed avocado paste. Journal of Food Science 75 (6): S264–S270.

    Article  PubMed  CAS  Google Scholar 

  • ———. 2012. Stability of avocado paste carotenoids as affected by high hydrostatic pressure processing and storage. Innovative Food Science & Emerging Technologies 16: 121–128.

    Article  CAS  Google Scholar 

  • Jacobo-Velázquez, D.A., M.R. Cuéllar-Villarreal, J. Welti-Chanes, J.L. Cisneros-Zevallos, P.A. Ramos-Parra, and C. Hernández-Brenes. 2017. Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends in Food Science and Technology. 60: 80–87.

    Article  CAS  Google Scholar 

  • Jordan, S.L., C. Pascual, E. Bracey, and B.M. Mackey. 2001. Inactivation and injury of pressure-resistant strains of Escherichia coli O157 and Listeria monocytogenes in fruit juices. Journal of Applied Microbiology 91 (3): 463–469.

    Article  CAS  PubMed  Google Scholar 

  • Jung, S., Samson, C. T., & de Lamballerie, M. (2010). High hydrostatic pressure food processing. In Alternatives to Conventional Food Processing (pp. 254–306).

    Google Scholar 

  • Katsaros, G.I., M. Tsevdou, T. Panagiotou, and P.S. Taoukis. 2010. Kinetic study of high pressure microbial and enzyme inactivation and selection of pasteurization conditions for Valencia orange juice. International Journal of Food Science and Technology 45 (6): 1119–1129.

    Article  CAS  Google Scholar 

  • Katsaros, G., Apseridis, J., & Taoukis, P. (2006). Modelling of High Hydrostatic Pressure inactivation of pectinmethylesterase from persimmon fruit. In 13th World Congress of Food Science & Technology, (pp 753–753) IUFoST Edpsciences.

    Google Scholar 

  • Kaushik, N., B.P. Kaur, and P.S. Rao. 2014a. Application of high pressure processing for shelf life extension of litchi fruits (Litchi chinensis cv. Bombai) during refrigerated storage. Food Science and Technology International 20 (7): 527–541.

    Article  PubMed  Google Scholar 

  • Kaushik, N., B.P. Kaur, P.S. Rao, and H.N. Mishra. 2014b. Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science & Emerging Technologies 22: 40–50.

    Article  CAS  Google Scholar 

  • Keenan, D.F., N.P. Brunton, T.R. Gormley, F. Butler, B.K. Tiwari, and A. Patras. 2010b. Effect of thermal and high hydrostatic pressure processing on antioxidant activity and colour of fruit smoothies. Innovative Food Science & Emerging Technologies 11 (4): 551–556.

    Article  CAS  Google Scholar 

  • Keenan, D.F., N. Brunton, R. Gormley, and F. Butler. 2010a. Effects of thermal and high hydrostatic pressure processing and storage on the content of polyphenols and some quality attributes of fruit smoothies. Journal of Agricultural and Food Chemistry 59 (2): 601–607.

    Article  PubMed  CAS  Google Scholar 

  • Keenan, D.F., C. Rößle, R. Gormley, F. Butler, and N.P. Brunton. 2012. Effect of high hydrostatic pressure and thermal processing on the nutritional quality and enzyme activity of fruit smoothies. Food Science and Technology 45 (1): 50–57.

    CAS  Google Scholar 

  • Kingsley, D.H., and H. Chen. 2009. Influence of pH, salt, and temperature on pressure inactivation of hepatitis A virus. International Journal of Food Microbiology 130 (1): 61–64.

    Article  CAS  PubMed  Google Scholar 

  • Kingsley, D.H., D. Guan, and D.G. Hoover. 2005. Pressure inactivation of hepatitis A virus in strawberry puree and sliced green onions. Journal of Food Protection® 68 (8): 1748–1751.

    Article  Google Scholar 

  • Kingsly, A.R.P., V.M. Balasubramaniam, and N.K. Rastogi. 2009. Effect of high-pressure processing on texture and drying behavior of pineapple. Journal of Food Process Engineering 32 (3): 369–381.

    Article  Google Scholar 

  • Knorr, D., O. Schlüter, and V. Heinz. 1998. Impact of high hydrostatic pressure on phase transitions of foods. Food Technology (USA) 52 (9): 42–45.

    Google Scholar 

  • Kovač, K., M. Diez-Valcarce, P. Raspor, M. Hernández, and D. Rodríguez-Lázaro. 2012. Effect of high hydrostatic pressure processing on norovirus infectivity and genome stability in strawberry puree and mineral water. International Journal of Food Microbiology 152 (1): 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Krebbers, B., A.M. Matser, S.W. Hoogerwerf, R. Moezelaar, M.M. Tomassen, and R.W. van den Berg. 2003. Combined high-pressure and thermal treatments for processing of tomato puree: evaluation of microbial inactivation and quality parameters. Innovative Food Science & Emerging Technologies 4 (4): 377–385.

    Article  Google Scholar 

  • Lambert, Y., G. Demazeau, A. Largeteau, and J.M. Bouvier. 1999. Changes in aromatic volatile composition of strawberry after high pressure treatment. Food Chemistry 67 (1): 7–16.

    Article  CAS  Google Scholar 

  • Landl, A., M. Abadias, C. Sárraga, I. Viñas, and P.A. Picouet. 2010. Effect of high pressure processing on the quality of acidified Granny Smith apple purée product. Innovative Food Science & Emerging Technologies 11 (4): 557–564.

    Article  CAS  Google Scholar 

  • Lee, S.Y., R.H. Dougherty, and D.H. Kang. 2002. Inhibitory effects of high pressure and heat on Alicyclobacillus acidoterrestris spores in apple juice. Applied and Environmental Microbiology 68 (8): 4158–4161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelieveld, H.L., and H. Hoogland. 2016. Continuous high-pressure processing to extend product shelf life. In High Pressure Processing of Food, ed. V.M. Balasubramaniam, G.V. Barbosa-Cánovas, and H.L.M. Lelieveld, 67–72. New York: Springer.

    Chapter  Google Scholar 

  • Lemmens, L., E.S. Tchuenche, A.M. Van Loey, and M.E. Hendrickx. 2013. Beta-carotene isomerisation in mango puree as influenced by thermal processing and high-pressure homogenisation. European Food Research and Technology 236 (1): 155–163.

    Article  CAS  Google Scholar 

  • Liu, F., Y. Wang, R. Li, X. Bi, and X. Liao. 2014. Effects of high hydrostatic pressure and high temperature short time on antioxidant activity, antioxidant compounds and color of mango nectars. Innovative Food Science & Emerging Technologies 21: 35–43.

    Article  CAS  Google Scholar 

  • Liu, Y., X. Hu, X. Zhao, and H. Song. 2012. Combined effect of high pressure carbon dioxide and mild heat treatment on overall quality parameters of watermelon juice. Innovative Food Science & Emerging Technologies 13: 112–119.

    Article  CAS  Google Scholar 

  • Lopes, M.L.M., V.L. Valente Mesquita, A.C.N. Chiaradia, A.A.R. Fernandes, and P. Fernandes. 2010. High hydrostatic pressure processing of tropical fruits. Annals of the New York Academy of Sciences 1189 (1): 6–15.

    Article  PubMed  Google Scholar 

  • López-Malo, A., E. Palou, G.V. Barbosa-Cánovas, J. Welti-Chanes, and B.G. Swanson. 1998. Polyphenoloxidase activity and color changes during storage of high hydrostatic pressure treated avocado puree. Food Research International 31 (8): 549–556.

    Article  Google Scholar 

  • Ludikhuyze, L., A. Van Loey, O. Indrawati, C. Smout, and M. Hendrickx. 2003. Effects of combined pressure and temperature on enzymes related to quality of fruits and vegetables: from kinetic information to process engineering aspects. Critical Reviews in Food Science and Nutrition 43 (5): 527–586.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y., X. Hu, J. Chen, G. Zhao, X. Liao, F. Chen, et al. 2010. Effect of UHP on enzyme, microorganism and flavor in cantaloupe (Cucumis melo L.) juice. Journal of Food Process Engineering 33 (3): 540–553.

    Article  Google Scholar 

  • MacDonald, L., and C.J. Schaschke. 2000. Combined effect of high pressure, temperature and holding time on polyphenoloxidase and peroxidase activity in banana (Musa acuminata). Journal of the Science of Food and Agriculture 80 (6): 719–724.

    Article  CAS  PubMed  Google Scholar 

  • Moody, A., G. Marx, B.G. Swanson, and D. Bermúdez-Aguirre. 2014. A comprehensive study on the inactivation of Escherichia coli under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and ultrasound. Food Control 37: 305–314.

    Article  CAS  Google Scholar 

  • Mujica-Paz, H., A. Valdez-Fragoso, C.T. Samson, J. Welti-Chanes, and J.A. Torres. 2011. High-pressure processing technologies for the pasteurization and sterilization of foods. Food and Bioprocess Technology 4 (6): 969.

    Article  Google Scholar 

  • Muñoz, M., B. de Ancos, C. Sánchez-Moreno, and M.P. Cano. 2007. Effects of high pressure and mild heat on endogenous microflora and on the inactivation and sublethal injury of Escherichia coli inoculated into fruit juices and vegetable soup. Journal of Food Protection 70 (7): 1587–1593.

    Article  PubMed  Google Scholar 

  • Naik, L., R. Sharma, Y.S. Rajput, and G. Manju. 2013. Application of high pressure processing technology for dairy food preservation-future perspective: A review. Journal of Animal Production Advances 3 (8): 232–241.

    Article  Google Scholar 

  • Nienaber, U., and T.H. Shellhammer. 2001. High-pressure processing of orange juice: Kinetics of pectinmethylesterase inactivation. Journal of Food Science 66 (2): 328–331.

    Article  CAS  Google Scholar 

  • Noma, S., C. Tomita, M. Shimoda, and I. Hayakawa. 2004. Response of Escherichia coli O157: H7 in apple and orange juices by hydrostatic pressure treatment with rapid decompression. Food Microbiology 21 (4): 469–473.

    Article  Google Scholar 

  • Oey, I., M. Lille, A. Van Loey, and M. Hendrickx. 2008a. Effect of high-pressure processing on colour, texture and flavour of fruit-and vegetable-based food products: A review. Trends in Food Science & Technology 19 (6): 320–328.

    Article  CAS  Google Scholar 

  • Oey, I., I. Van der Plancken, A. Van Loey, and M. Hendrickx. 2008b. Does high pressure processing influence nutritional aspects of plant based food systems? Trends in Food Science & Technology 19 (6): 300–308.

    Article  CAS  Google Scholar 

  • Ortuño, C., T. Duong, M. Balaban, and J. Benedito. 2013. Combined high hydrostatic pressure and carbon dioxide inactivation of pectin methylesterase, polyphenol oxidase and peroxidase in feijoa purée. The Journal of Supercritical Fluids 82: 56–62.

    Article  CAS  Google Scholar 

  • Palou, E., C. Hernández-Salgado, A. López-Malo, G.V. Barbosa-Cánovas, B.G. Swanson, and J. Welti-Chanes. 2000. High pressure-processed guacamole. Innovative Food Science & Emerging Technologies 1 (1): 69–75.

    Article  Google Scholar 

  • Palou, E., A. López-Malo, G.V. Barbosa-Cánovas, J. Welti-Chanes, and B.G. Swanson. 1997. Effect of water activity on high hydrostatic pressure inhibition of Zygosaccharomyces bailii. Letters in Applied Microbiology 24: 417–420.

    Google Scholar 

  • ———. 1999. Polyphenoloxidase activity and color of blanched and high hydrostatic pressure treated banana puree. Journal of Food Science 64 (1): 42–45.

    Article  CAS  Google Scholar 

  • Parish, M.E., and D.P. Higgins. 1989. Survival of Listeria monocytogenes in low pH model broth systems. Journal of Food Protection 52 (3): 144–147.

    Article  PubMed  Google Scholar 

  • Patras, A., N.P. Brunton, S. Da Pieve, and F. Butler. 2009. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies 10 (3): 308–313.

    Article  CAS  Google Scholar 

  • Patrignani, F., G. Tabanelli, L. Siroli, F. Gardini, and R. Lanciotti. 2013. Combined effects of high pressure homogenization treatment and citral on microbiological quality of apricot juice. International Journal of Food Microbiology 160 (3): 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, M.F., A.M. McKay, M. Connolly, and M. Linton. 2012. The effect of high hydrostatic pressure on the microbiological quality and safety of carrot juice during refrigerated storage. Food Microbiology 30 (1): 205–212.

    Article  PubMed  Google Scholar 

  • Patterson, M.F., D.A. Ledward, and N. Rogers. 2006. High pressure processing. In Food Processing Handbook, ed. J.C. Brenan, 173–197. Weinheim, Germany: Wiley-VCH Publishing.

    Chapter  Google Scholar 

  • Peleg, M., and M.B. Cole. 1998. Reinterpretation of microbial survival curves. Critical Reviews in Food Science 38 (5): 353–380.

    Article  CAS  Google Scholar 

  • Penchalaraju, M., and B. Shireesha. 2013. Preservation of foods by high-pressure processing: A review. Indian Journal of Scientific Research and Technology 1 (3): 30–38.

    Google Scholar 

  • Phunchaisri, C., and A. Apichartsrangkoon. 2005. Effects of ultra-high pressure on biochemical and physical modification of lychee (Litchi chinensis Sonn.). Food Chemistry 93 (1): 57–64.

    Article  CAS  Google Scholar 

  • Plaza, L., C. Colina, B. de Ancos, C. Sánchez-Moreno, and M.P. Cano. 2012. Influence of ripening and astringency on carotenoid content of high-pressure treated persimmon fruit (Diospyros kaki L.). Food Chemistry 130 (3): 591–597.

    Article  CAS  Google Scholar 

  • Plaza, L., C. Sánchez-Moreno, B. de Ancos, P. Elez-Martínez, O. Martín-Belloso, and M.P. Cano. 2011. Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. Food Science and Technology 44 (4): 834–839.

    CAS  Google Scholar 

  • Polydera, A.C., E. Galanou, N.G. Stoforos, and P.S. Taoukis. 2004. Inactivation kinetics of pectin methylesterase of Greek Navel orange juice as a function of high hydrostatic pressure and temperature process conditions. Journal of Food Engineering 62 (3): 291–298.

    Article  Google Scholar 

  • Prasad, K.N., E. Yang, C. Yi, M. Zhao, and Y. Jiang. 2009. Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innovative Food Science & Emerging Technologies 10 (2): 155–159.

    Article  CAS  Google Scholar 

  • Queiroz, C., C.F.F. Moreira, F.C. Lavinas, M.L.M. Lopes, E. Fialho, and V.L. Valente-Mesquita. 2010. Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice. High Pressure Research 30 (4): 507–513.

    Article  CAS  Google Scholar 

  • Ramaswamy, H.S., E. Riahi, and E. Idziak. 2003. High-pressure destruction kinetics of E. coli (29055) in Apple Juice. Journal of Food Science 68 (5): 1750–1756.

    Article  CAS  Google Scholar 

  • Ramesh, M.N., K. Sathyanarayana, and A.B. Girish. 1998. Biphasic model for the kinetics of vegetable cooking at 100 °C. Journal of Food Engineering 35 (1): 127–133.

    Article  Google Scholar 

  • Rasanayagam, V., V.M. Balasubramaniam, E. Ting, C.E. Sizer, C. Bush, and C. Anderson. 2003. Compression heating of selected fatty food materials during high-pressure processing. Journal of Food Science 68 (1): 254–259.

    Article  CAS  Google Scholar 

  • Rastogi, N.K., and D. Knorr. 2013. Recent Developments in High Pressure Processing of Foods. New York: Springer.

    Book  Google Scholar 

  • Rastogi, N.K., A. Angersbach, and D. Knorr. 2000. Synergistic effect of high hydrostatic pressure pretreatment and osmotic stress on mass transfer during osmotic dehydration. Journal of Food Engineering 45 (1): 25–31.

    Article  Google Scholar 

  • Rastogi, N.K., M.N. Eshtiaghi, and D. Knorr. 1999. Effects of combined high pressure and heat treatment on the reduction of peroxidase and polyphenoloxidase activity in red grapes. Food Biotechnology 13 (2): 195–208.

    Article  CAS  Google Scholar 

  • Rastogi, N.K., K.S.M.S. Raghavarao, V.M. Balasubramaniam, K. Niranjan, and D. Knorr. 2007. Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition 47 (1): 69–112.

    Article  CAS  PubMed  Google Scholar 

  • Rizvi, A.F., and C.H. Tong. 1997. Fractional conversion for determining texture degradation kinetics of vegetables. Journal of Food Science 62 (1): 1–7.

    Article  CAS  Google Scholar 

  • Romano, K.R., F.D.B.A. Finco, A. Rosenthal, M.V.A. Finco, and R. Deliza. 2016. Willingness to pay more for value-added pomegranate juice (Punica granatum L.): An open-ended contingent valuation. Food Research International 89: 359–364.

    Article  PubMed  Google Scholar 

  • Rosenthal, A., D. Ledward, A. Defaye, S. Gilmour, and L. Trinca. 2002. Effect of pressure, temperature, time and storage on peroxidase and polyphenol oxidase from pineapple. Progress in Biotechnology 19: 525–532.

    Article  CAS  Google Scholar 

  • Ruiz-Espinosa, H., G.G. Amador-Espejo, M.E. Barcenas-Pozos, J.O. Angulo-Guerrero, H.S. Garcia, and J. Welti-Chanes. 2013. Multiple-pass high-pressure homogenization of milk for the development of pasteurization-like processing conditions. Letters in Applied Microbiology 56 (2): 142–148.

    Article  CAS  PubMed  Google Scholar 

  • Sampedro, F., D. Rodrigo, and M. Hendrickx. 2008. Inactivation kinetics of pectin methyl esterase under combined thermal–high pressure treatment in an orange juice–milk beverage. Journal of Food Engineering 86 (1): 133–139.

    Article  CAS  Google Scholar 

  • Sánchez-Moreno, C., L. Plaza, P. Elez-Martínez, B. de Ancos, O. Martín-Belloso, and M.P. Cano. 2005. Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry 53 (11): 4403–4409.

    Article  PubMed  CAS  Google Scholar 

  • Sanguansri, P., and M.A. Augustin. 2006. Nanoscale materials development–a food industry perspective. Trends in Food Science & Technology 17 (10): 547–556.

    Article  CAS  Google Scholar 

  • Scalbert, A., C. Manach, C. Morand, C. Rémésy, and L. Jiménez. 2005. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition 45 (4): 287–306.

    Article  CAS  PubMed  Google Scholar 

  • Serment-Moreno, V., G. Barbosa-Cánovas, J.A. Torres, and J. Welti-Chanes. 2014. High-pressure processing: Kinetic models for microbial and enzyme inactivation. Food Engineering Reviews 6 (3): 56–88.

    Article  CAS  Google Scholar 

  • Serment-Moreno, V., C. Fuentes, G. Barbosa-Cánovas, J.A. Torres, and J. Welti-Chanes. 2015. Evaluation of high pressure processing kinetic models for microbial inactivation using standard statistical tools and information theory criteria, and the development of generic time-pressure functions for process design. Food and Bioprocess Technology 8 (6): 1244–1257.

    Article  CAS  Google Scholar 

  • Seyderhelm, I., S. Boguslawski, G. Michaelis, and D. Knorr. 1996. Pressure induced inactivation of selected food enzymes. Journal of Food Science 61 (2): 308–310.

    Article  CAS  Google Scholar 

  • Sokołowska, B., S. Skąpska, M. Fonberg-Broczek, J. Niezgoda, M. Chotkiewicz, A. Dekowska, and S. Rzoska. 2012. The combined effect of high pressure and nisin or lysozyme on the inactivation of Alicyclobacillus acidoterrestris spores in apple juice. High Pressure Research 32 (1): 119–127.

    Article  CAS  Google Scholar 

  • Sokołowska, B., S. Skąpska, M. Fonberg-Broczek, J. Niezgoda, M. Chotkiewicz, A. Dekowska, and S.J. Rzoska. 2013a. Factors influencing the inactivation of Alicyclobacillus acidoterrestris spores exposed to high hydrostatic pressure in apple juice. High Pressure Research 33 (1): 73–82.

    Article  CAS  Google Scholar 

  • Sokołowska, B., S. Skąpska, M. Fonberg-Broczek, J. Niezgoda, M. Rutkowska, M. Chotkiewicz, et al. 2013b. The effect of high hydrostatic pressure on the survival of Saccharomyces cerevisiae in model suspensions and beetroot juice. High Pressure Research 33 (1): 165–171.

    Article  CAS  Google Scholar 

  • Sokołowska, B., S. Skapska, J. Niezgoda, M. Rutkowska, A. Dekowska, and S.J. Rzoska. 2014. Inactivation and sublethal injury of Escherichia coli and Listeria innocua by high hydrostatic pressure in model suspensions and beetroot juice. High Pressure Research 34 (1): 147–155.

    Article  CAS  Google Scholar 

  • Splittstoesser, D.F., C.Y. Lee, and J.J. Churey. 1998. Control of Alicyclobacillus in the juice industry. Dairy, Food and Environmental Sanitation 18: 585–587.

    Google Scholar 

  • Stahl, W., and H. Sies. 2003. Antioxidant activity of carotenoids. Molecular Aspects of Medicine 24 (6): 345–351.

    Article  CAS  PubMed  Google Scholar 

  • Stang, M., H. Schuchmann, and H. Schubert. 2001. Emulsification in high-pressure homogenizers. Engineering in Life Sciences 1 (4): 151–157.

    Article  CAS  Google Scholar 

  • Sun, N., S. Lee, and K.B. Song. 2002. Effect of high-pressure treatment on the molecular properties of mushroom polyphenoloxidase. Food Science and Technology 35 (4): 315–318.

    CAS  Google Scholar 

  • Suthanthangjai, W., P. Kajda, and I. Zabetakis. 2005. The effect of high hydrostatic pressure on the anthocyanins of raspberry (Rubus idaeus). Food Chemistry 90 (1): 193–197.

    Article  CAS  Google Scholar 

  • Tejada-Ortigoza, V., Z. Escobedo-Avellaneda, A. Valdez-Fragoso, H. Mújica-Paz, and J. Welti-Chanes. 2015. Combined effect of high hydrostatic pressure and mild heat treatments on pectin methylesterase (PME) inactivation in comminuted orange. Journal of the Science of Food and Agriculture 95 (12): 2438–2444.

    Article  CAS  Google Scholar 

  • Terefe, N.S., K. Matthies, L. Simons, and C. Versteeg. 2009. Combined high pressure-mild temperature processing for optimal retention of physical and nutritional quality of strawberries (Fragaria× ananassa). Innovative Food Science & Emerging Technologies 10 (3): 297–307.

    Article  CAS  Google Scholar 

  • Terefe, N.S., Y.H. Yang, K. Knoerzer, R. Buckow, and C. Versteeg. 2010. High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Science & Emerging Technologies 11 (1): 52–60.

    Article  CAS  Google Scholar 

  • Timmermans, R.A.H., H.C. Mastwijk, J.J. Knol, M.C.J. Quataert, L. Vervoort, I. Van der Plancken, et al. 2011. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes. Innovative Food Science & Emerging Technologies 12 (3): 235–243.

    Article  Google Scholar 

  • Tola, Y.B., and H.S. Ramaswamy. 2014. Combined effects of high pressure, moderate heat and pH on the inactivation kinetics of Bacillus licheniformis spores in carrot juice. Food Research International 62: 50–58.

    Article  CAS  Google Scholar 

  • Tonello, C. 2011. Case studies on high-pressure processing of foods. In Nonthermal Processing Technologies for Food, ed. H.Q. Zhang, G.V. Barbosa-Cánovas, V.M.B. Balasubramaniam, C.P. Dunne, D.F. Farkas, and J.T.C. Yuan, 36–50. New Delhi: Wiley-Blackwell/IFT Press.

    Chapter  Google Scholar 

  • Torres, B., B.K. Tiwari, A. Patras, P.J. Cullen, N. Brunton, and C.P. O’Donnell. 2011. Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innovative Food Science & Emerging Technologies 12 (2): 93–97.

    Article  CAS  Google Scholar 

  • Tribst, A.A.L., M.A. Franchi, P.R. de Massaguer, and M. Cristianini. 2011. Quality of mango nectar processed by high-pressure homogenization with optimized heat treatment. Journal of Food Science 76 (2): M106–M110.

    Article  CAS  PubMed  Google Scholar 

  • USFDA. (2014). Kinetics of Microbial Inactivation for Alternative Food Processing Technologies—High Pressure Processing. Retrieved September 28, 2016, from http://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProcesses/ucm101456.htm.

  • Valdramidis, V.P., W.D. Graham, A. Beattie, M. Linton, A. McKay, A.M. Fearon, and M.F. Patterson. 2009. Defining the stability interfaces of apple juice: implications on the optimisation and design of high hydrostatic pressure treatment. Innovative Food Science & Emerging Technologies 10 (4): 396–404.

    Article  CAS  Google Scholar 

  • Van den Broeck, I., L.R. Ludikhuyze, A.M. Van Loey, and M.E. Hendrickx. 2000. Inactivation of orange pectinesterase by combined high pressure and temperature treatments: a kinetic study. Journal of Agricultural and Food Chemistry 48 (5): 1960–1970.

    Article  PubMed  CAS  Google Scholar 

  • Varela-Santos, E., A. Ochoa-Martinez, G. Tabilo-Munizaga, J.E. Reyes, M. Pérez-Won, V. Briones-Labarca, and J. Morales-Castro. 2012. Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innovative Food Science & Emerging Technologies 13: 13–22.

    Article  CAS  Google Scholar 

  • Velázquez-Estrada, R.M., M.M. Hernández-Herrero, C.E. Rüfer, B. Guamis-López, and A.X. Roig-Sagués. 2013. Influence of ultra high pressure homogenization processing on bioactive compounds and antioxidant activity of orange juice. Innovative Food Science & Emerging Technologies 18: 89–94.

    Article  CAS  Google Scholar 

  • Verbeyst, L., I. Oey, I. Van der Plancken, M. Hendrickx, and A. Van Loey. 2010. Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chemistry 123 (2): 269–274.

    Article  CAS  Google Scholar 

  • Verbeyst, L., K. Van Crombruggen, I. Van der Plancken, M. Hendrickx, and A. Van Loey. 2011. Anthocyanin degradation kinetics during thermal and high pressure treatments of raspberries. Journal of Food Engineering 105 (3): 513–521.

    Article  CAS  Google Scholar 

  • Weemaes, C.A., L.R. Ludikhuyze, I. Van den Broeck, and M.E. Hendrickx. 1998b. Kinetics of combined pressure-temperature inactivation of avocado polyphenoloxidase. Biotechnology and Bioengineering 60 (3): 292–300.

    Article  CAS  PubMed  Google Scholar 

  • Weemaes, C., L. Ludikhuyze, I. Broeck, and M. Hendrickx. 1998a. High pressure inactivation of polyphenoloxidases. Journal of Food Science 63 (5): 873–877.

    Article  CAS  Google Scholar 

  • Welti-Chanes, J., C.E. Ochoa-Velasco, and J.A. Guerrero-Beltrán. 2009. High-pressure homogenization of orange juice to inactivate pectinmethylesterase. Innovative Food Science & Emerging Technologies 10 (4): 457–462.

    Article  CAS  Google Scholar 

  • Wolbang, C.M., J.L. Fitos, and M.T. Treeby. 2008. The effect of high pressure processing on nutritional value and quality attributes of Cucumis melo L. Innovative Food Science & Emerging Technologies 9 (2): 196–200.

    Article  CAS  Google Scholar 

  • Wolbang, C.M., D.P. Singh, S.R. Sykes, J.K. McInerney, A.R. Bird, and M.T. Treeby. 2010. Influence of pre-and postharvest factors on β-carotene content, its in vitro bioaccessibility, and antioxidant capacity in melons. Journal of Agricultural and Food Chemistry 58 (3): 1732–1740.

    Article  CAS  PubMed  Google Scholar 

  • Woolf, A.B., R. Wibisono, J. Farr, I. Hallett, L. Richter, I. Oey, et al. 2013. Effect of high pressure processing on avocado slices. Innovative Food Science & Emerging Technologies 18: 65–73.

    Article  CAS  Google Scholar 

  • Yaldagard, M., S.A. Mortazavi, and F. Tabatabaie. 2008. The principles of ultra high pressure technology and its application in food processing/preservation: A review of microbiological and quality aspects. African Journal of Biotechnology 7 (16): 2739–2767.

    CAS  Google Scholar 

  • Yamamoto, K., M. Matsubara, S. Kawasaki, M.L. Bari, and S. Kawamoto. 2005. Modeling the pressure inactivation dynamics of Escherichia coli. Brazilian Journal of Medical and Biological Research 38 (8): 1253–1257.

    Article  CAS  PubMed  Google Scholar 

  • Yen, G.C., and H.T. Lin. 1996. Comparison of high pressure treatment and thermal pasteurization effects on the quality and shelf life of guava puree. International Journal of Food Science and Technology 31 (2): 205–213.

    Article  CAS  Google Scholar 

  • Yu, Y., Y. Lin, Y. Zhan, J. He, and S. Zhu. 2013. Effect of high pressure processing on the stability of anthocyanin, ascorbic acid and color of Chinese bayberry juice during storage. Journal of Food Engineering 119 (3): 701–706.

    Article  CAS  Google Scholar 

  • Yu, Y., Y. Xu, J. Wu, G. Xiao, M. Fu, and Y. Zhang. 2014. Effect of ultra-high pressure homogenisation processing on phenolic compounds, antioxidant capacity and anti-glucosidase of mulberry juice. Food Chemistry 153: 114–120.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., S. Wang, F. Liu, P. Dong, W. Huang, L. Xiong, and X. Liao. 2013. Comparing the effects of high hydrostatic pressure and thermal pasteurization combined with nisin on the quality of cucumber juice drinks. Innovative Food Science & Emerging Technologies 17: 27–36.

    Article  CAS  Google Scholar 

  • Zhao, L., Y. Wang, S. Wang, H. Li, W. Huang, and X. Liao. 2014. Inactivation of naturally occurring microbiota in cucumber juice by pressure treatment. International Journal of Food Microbiology 174: 12–18.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, M., D.W. Schaffner, and G.M. Aragão. 2013. Modeling the inactivation kinetics of Bacillus coagulans spores in tomato pulp from the combined effect of high pressure and moderate temperature. LWT-Food Science and Technology 53 (1): 107–112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amauri Rosenthal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosenthal, A., Pokhrel, P.R., da Rocha Ferreira, E.H., Tiburski, J.H., Barbosa-Cánovas, G.V., Welti-Chanes, J. (2018). High Pressure Processing of Fruit Products. In: Rosenthal, A., Deliza, R., Welti-Chanes, J., Barbosa-Cánovas, G. (eds) Fruit Preservation. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3311-2_13

Download citation

Publish with us

Policies and ethics