Skip to main content

Fruit Preservation and Design of Functional Fruit Products by Vacuum Impregnation

  • Chapter
  • First Online:
Fruit Preservation

Abstract

Vacuum impregnation (VI) can be used to obtain minimally processed fruits, intermediate moisture products, and functional foods, and to improve different food preservation processes. In VI, a porous solid (food) is immersed in a concentrated solution and submitted to a pressure below atmospheric pressure, followed by restoration to atmospheric conditions. Osmotic pressure differences between the solution and the food or chemical potential gradient between the solution and the intracellular fluid act as the driving force for water removal. During impregnation, food acts as a semipermeable membrane in which water is lost mainly due to osmo-diffusion and capillary flow phenomena. VI reduces water activity in foods allows obtaining foods of intermediate moisture content, and it is also used as a pretreatment before drying or freezing to increase quality of final products. Different ingredients can be incorporated into the porous structure of foods to generate compositional changes to improve quality and to achieve stability requirements. Beneficial microorganisms and compounds like minerals, vitamins, and phytochemicals can also be incorporated into the food matrix, which can lead to functional products with improved characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alzamora, S.M., D. Salvatori, M.S. Tapia, A. López-Malo, J. Welti-Chanes, and P. Fito. 2005. Novel functional foods from vegetable matrices impregnated with biologically active compounds. Journal of Food Engineering 67: 205–214.

    Article  Google Scholar 

  • Barat, J.M., A. Chiralt, and P. Fito. 2001. Effect of osmotic solution concentration, temperature and vacuum impregnation pretreatment on osmotic dehydration kinetics of apple slices. Food Science and Technology International 8(5): 451–456.

    Article  Google Scholar 

  • Betoret, N., L. Puente, M.J. Díaz, M.J. Pagán, M.J. García, M.L. Gras, J. Martínez-Monzo, and P. Fito. 2003. Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering 56: 273–277.

    Article  Google Scholar 

  • Betoret, N., J. Martinez-Monzo, P.J. Fito, and P. Fito. 2005. Calcium and iron distribution in fortified vacuum-impregnated fruits determined by electron dispersion X-ray microanalysis. Journal of Food Science 70(1): 26–30.

    Article  Google Scholar 

  • Cheynier, V. 2005. Polyphenols in foods are more complex than often thought. The American Journal of Clinical Nutrition 81: 223S–229S.

    Article  CAS  Google Scholar 

  • Chiralt, A., and P. Fito. 1997. Salting of Manchego type cheese by vacuum impregnation. In Food engineering 2000, ed. P. Fito, E. Ortega, and G. Barbosa, 214–230. New York: Chapman & Hall.

    Google Scholar 

  • Chiralt, A., and P. Talens. 2005. Physical and chemical changes induced by osmotic dehydration in plant tissues. Journal of Food Engineering 67: 167–177.

    Article  Google Scholar 

  • Chiralt, A., P. Fito, J. Barat, A. Andrés, C. Gónzalez-Martínez, I. Escriche, and M.M. Camacho. 2001. Use of vacuum impregnation in food salting process. Journal of Food Engineering 49: 141–151.

    Article  Google Scholar 

  • Degraeve, P., R. Saurel, and Y. Coutel. 2003. Vacuum impregnation pretreatment with pectinmethylesterase to improve firmness of pasteurized fruits. Journal of Food Science 68(2): 716–721.

    Article  CAS  Google Scholar 

  • Fito, P. 1994. Modeling of vacuum osmotic dehydration of food. Journal of Food Engineering 22: 313–328.

    Article  Google Scholar 

  • Fito, P., and A. Chiralt. 1995. An update on vacuum osmotic dehydration. In Food preservation by moisture control, ed. G. Barbosa-Cánovas and J. Welti-Chanes, 351–373. Lancaster, PA: Technomic Publishing.

    Google Scholar 

  • Fito, P., A. Andrés, A. Chiralt, and P. Pardo. 1996. Coupling of hydrodynamic mechanism and deformation-relaxation phenomena during vacuum treatments in solid porous food liquid systems. Journal of Food Engineering 27: 229–240.

    Article  Google Scholar 

  • Fito, P., A. Chiralt, J. Barat, A. Andrés, J. Martíne-Monzó, and N. Martínez-Navarrete. 2001. Vacuum impregnation for development of new dehydrated products. Journal of Food Engineering 49: 297–302.

    Article  Google Scholar 

  • Fito, P., A. Chiralt, J. Barat, and J. Martínez-Monzó. 2002. Mass transfer and deformation relaxation phenomena in plant tissues. In Engineering and food for the 21st century, ed. J. Welti-Chanes, G. Barbosa-Cánovas, and J. Aguilera, 235–252. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Gong, Z., L. Gao, J. An, M. Zhang, A.S. Mujumdar, and J. Sun. 2010. Effects of predrying and vacuum impregnation with nano-calcium carbonate solution on strawberries, carrots, corn, and blueberries. Drying Technology 28: 36–41.

    Article  CAS  Google Scholar 

  • González-Fésler, M., D. Salvatori, P. Gómez, and S.M. Alzamora. 2008. Convective air drying of apples as affected by blanching and calcium impregnation. Journal of Food Engineering 87: 323–332.

    Article  Google Scholar 

  • Guillemin, A., P. Degraeve, F. Guillon, M. Lahaye, and R. Saurel. 2006. Incorporation of pectinmethylesterase in apple tissue either by soaking or by vacuum-impregnation. Enzyme and Microbial Technology 38: 610–616.

    Article  CAS  Google Scholar 

  • Guillemin, A., F. Guillon, P. Degraeve, C. Rondeau, M.C. Devaux, F. Huber, E. Badel, R. Saurel, and M. Lahaye. 2008. Firming of fruit tissues by vacuum-infusion of pectin methylesterase: Visualisation of enzyme action. Food Chemistry 109: 368–378.

    Article  CAS  Google Scholar 

  • Joshi, A.P.K., H.P.V. Rupasinghe, and N.L. Pitts. 2010. Sensory and nutritional quality of the apple snacks prepared by vacuum impregnation process. Journal of Food Quality 33: 758–767.

    Article  CAS  Google Scholar 

  • Khin, M.M., W. Zhou, and C. Perera. 2005. Development in the combined treatment of coating and osmotic dehydration of food—A review. International Journal of Food Engineering 1: 1–19.

    Article  Google Scholar 

  • Kikuchi, M., H. Koaze, T. Sato, M. Kojima, K. Yamamoto, K. Yasuda, M. Mori, and S. Tsuda. 2011. Ascorbic acid enrichment of whole potato tuber by vacuum-impregnation. Food Chemistry 127(3): 1114–1118.

    Article  Google Scholar 

  • Krasaekoopt, W., and B. Suthanwong. 2008. Vacuum impregnation of probiotics in fruit pieces and their survival during refrigerated storage. Kasetsart Journal: Natural Science 42(4): 723–731.

    Google Scholar 

  • Lin, D.S., S.W. Leonard, C. Lederer, M.G. Traber, and Y. Zhao. 2006. Retention of fortified vitamin E and sensory quality of fresh-cut pears by vacuum impregnation with honey. Journal of Food Science 71(7): S553–S559.

    Article  CAS  Google Scholar 

  • Lockwood, B. 2007. Nutraceuticals, 1–18. London: Pharmaceutical Press.

    Google Scholar 

  • Lombard, G.E., J.C. Oliveira, P. Fito, and A. Andrés. 2008. Osmotic dehydration of pineapple as a pre-treatment for further drying. Journal of Food Engineering 85: 277–284.

    Article  Google Scholar 

  • Marín, Z.T.A., M.R. Cortés, and O.I.C. Montoya. 2010a. Capegooseberry (Physalis peruviana L.) Colombian ecotype, minimally processed inoculated with native strain Lactobacillus plantarum LPBM10 by means of vacuum impregnation technique. Revista Chilena de Nutricion 37(4): 461–472.

    Article  Google Scholar 

  • ———. 2010b. Sensory evaluation of cape gooseberry (Physalis peruviana L.) Colombian ecotype impregnated with native strain Lactobacillus plantarum LPBM10 and commercial strain Lactobacillus casei ATCC 393. Vitae 17(1): 21–28.

    Google Scholar 

  • Martínez-Monteagudo, S., F. Salais-Fierro, J.R. Perez-Carrillo, A. Valdez-Fragoso, J. Welti-Chanes, and H. Mújica-Paz. 2006. Impregnation and infiltration kinetics of isotonic solution in whole jalapeño pepper using a vacuum pulse. Journal of Food Science 71(3): 125–131.

    Article  Google Scholar 

  • Martínez-Navarrete, N., A. Andrés-Grau, A. Chiralt-Boix, and P. Fito-Maupoey. 1999. Termodinámica y Cinéticas de Sistemas Alimento Entorno, 331. Valencia, Spain: Servicio de Publicaciones.

    Google Scholar 

  • Monnerat, S.M., T.R.M. Pizzi, M.A. Mauro, and F.C. Menegalli. 2010. Osmotic dehydration of apples in sugar/salt solutions: Concentration profiles and effective diffusion coefficients. Journal of Food Engineering 100: 604–612.

    Article  CAS  Google Scholar 

  • Moraga, M.J., G. Moraga, P.J. Fito, and N. Martínez-Navarrete. 2009. Effect of vacuum impregnation with calcium lactate on the osmotic dehydration kinetics and quality of osmodehydrated grapefruit. Journal of Food Engineering 90: 372–379.

    Article  Google Scholar 

  • Moreno, J., G. Bugueño, V. Velasco, G. Petzold, and G. Tabilo-Munizaga. 2004. Osmotic dehydration and vacuum impregnation on physicochemical properties of Chilean papaya (Carica candamarcensis). Journal of Food Science 69(3): 102–106.

    Google Scholar 

  • Mújica-Paz, H., A. Valdez-Fragoso, A. López-Malo, E. Palou, and J. Welti-Chanes. 2003a. Impregnation and osmotic dehydration of some fruits: Effect of the vacuum pressure and syrup concentration. Journal of Food Engineering 57: 305–314.

    Article  Google Scholar 

  • ———. 2003b. Impregnation properties of some fruits at vacuum pressure. Journal of Food Engineering 56: 307–314.

    Article  Google Scholar 

  • Occhino, E., I. Hernando, E. Llorca, L. Neri, and P. Pittia. 2011. Effect of vacuum impregnation treatments to improve quality and texture of zucchini (Cucurbita pepo, L). Procedia Food Science 1: 829–835.

    Article  Google Scholar 

  • Ortíz, C.F., D.M. Salvatori, and S.M. Alzamora. 2003. Fortification of mushroom with calcium by vacuum impregnation. Latin American Applied Research 33: 281–287.

    Google Scholar 

  • Ostos, A.S.L., M.A.C. Díaz, and M.H. Suarez. 2012. Evaluation process in different conditions of mango fortification (Tommy Atkins) with calcium by vacuum impregnation. Revista Chilena de Nutricion 39(2): 181–190.

    Article  Google Scholar 

  • Restrepo, A.M., M. Cortés, and B.A. Rojano. 2010. Enhancement of the antioxidant capacity of strawberries (Fragaria ananassa Duch.) by incorporation of vitamin E using the vacuum impregnation technique. Vitae 17(2): 135–140.

    Google Scholar 

  • Roa, V., M.S. Tapia, and F. Millán. 2001. Mass balances in porous foods impregnation. Journal of Food Science 66(9): 1332–1336.

    Article  CAS  Google Scholar 

  • Rózek, A., I. Achaerandio, C. Güell, F. López, and M. Ferrando. 2009. Grape phenolic impregnation by osmotic treatment: Influence of osmotic agent on mass transfer and product characteristics. Journal of Food Engineering 94: 59–68.

    Article  Google Scholar 

  • Rózek, A., J.V. García-Pérez, F. López, C. Güell, and M. Ferrando. 2010. Infusion of grape phenolics into fruits and vegetables by osmotic treatment: Phenolic stability during air drying. Journal of Food Engineering 99: 142–150.

    Article  Google Scholar 

  • Salvatori, D., A. Andrés, A. Chiralt, and P. Fito. 1998. The response of some properties of fruits to vacuum impregnation. Journal of Food Process Engineering 21: 59–73.

    Article  Google Scholar 

  • Schulze, B., S. Peth, E.M. Hubbermann, and K. Schwarz. 2012. The influence of vacuum impregnation on the fortification of apple parenchyma with quercetin derivatives in combination with pore structures X-ray analysis. Journal of Food Engineering 109: 380–387.

    Article  CAS  Google Scholar 

  • Shi, J., and M. Le Maguer. 2002. Osmotic dehydration of foods: Mass transfer and modeling aspects. Food Reviews International 18(4): 305–335.

    Article  Google Scholar 

  • Tapas, A.R., D.M. Sakarkar, and R.B. Kakde. 2008. Flavonoids as nutraceuticals: A review. Tropical Journal of Pharmaceutical Research 7(3): 1089–1099.

    Article  Google Scholar 

  • Tapia, M.S., and A. Carmona. 2008. Uso de la impregnación a vacío y de películas comestibles en el desarrollo de un alimento funcional a base de papaya (Carica papaya) c.v Maradol. Memorias del Instituto de Biología Experimental 5: 110–114.

    Google Scholar 

  • Tapia de Daza, M.S., S.M. Alzamora, and J. Welti-Chanes. 1996. Combination of preservation factors applied to minimal processing of foods. Critical Reviews in Food Science and Nutrition 36: 629–659.

    Article  CAS  Google Scholar 

  • Tomás-Barberán, F., and J.C. Espín. 2001. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture 81: 853–876.

    Article  Google Scholar 

  • Tripoli, E., M. La Guadia, S. Giammanco, D. Di Majo, and M. Diammanco. 2007. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chemistry 104: 466–479.

    Article  CAS  Google Scholar 

  • Ursachi, C., R. Segal, and C. Muresan. 2009. Vacuum impregnation pretreatment of fresh cut vegetable. Acta Technica Corviniensis – Bulletin of Engineering 20: 17–20.

    Google Scholar 

  • Watanabe, Y., K. Yoshimoto, Y. Okada, and M. Nomura. 2011. Effect of impregnation using sucrose solution on stability of anthocyanin in strawberry jam. LWT – Food Science and Technology 44: 891–895.

    Article  CAS  Google Scholar 

  • Wildman, R.E.C. 2001a. Classifying nutraceuticals. In Handbook of nutraceuticals and functional foods, ed. R.E.C. Wildman, 13–30. Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • ———. 2001b. Nutraceuticals. In Handbook of nutraceuticals and functional foods, ed. R.E.C. Wildman, 1–12. Boca Raton FL: CRC Press.

    Google Scholar 

  • Xie, J., and Y. Zhao. 2004. Use of vacuum impregnation to develop high quality and nutritionally fortified frozen strawberries. Journal of Food Processing and Preservation 28: 117–132.

    Article  Google Scholar 

  • Zhao, Y., and J. Xie. 2004. Practical applications of vacuum impregnation in fruit and vegetable processing. Trends in Food Science & Technology 15(9): 434–451.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors acknowledge the financial support from Tecnológico de Monterrey (Research Chair Funds CAT-200 and CDB081) and postdoctoral position CONACYT-Tecnológico de Monterrey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Welti-Chanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Escobedo-Avellaneda, Z., García-García, R., Valdez-Fragoso, A., Mújica-Paz, H., Welti-Chanes, J. (2018). Fruit Preservation and Design of Functional Fruit Products by Vacuum Impregnation. In: Rosenthal, A., Deliza, R., Welti-Chanes, J., Barbosa-Cánovas, G. (eds) Fruit Preservation. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3311-2_12

Download citation

Publish with us

Policies and ethics