Skip to main content

Chapter 8 Vocal Folds

  • Chapter
  • First Online:
  • 3066 Accesses

Abstract

Vocal folds are two infoldings of complex tissue housed in the larynx whose vibration, known as phonation, results in voice. To create voice, vocal folds are adducted, effectively closing the glottis or the space between them creating a pressure difference between the top and bottom of the tissue. This pressure difference, combined with Bernoulli forces and tissue elasticity, pushes the vocal folds apart and brings them back together again [1]. This rapid, sustained opening and closing cycle produces vocal fold vibration at various fundamental frequencies ranging from 0 to 300 Hz for normal vocal levels [2]. The vocal folds are multilayer structures that consist of muscle, lamina propria, and epithelium. Fundamental frequency is controlled by laryngeal muscles which alter vocal fold physical properties, such as length and thickness. The extracellular matrix (ECM) of the lamina propria contributes significantly to vocal quality. Disruption of vocal fold vibration and/or quality through muscular dysfunction, airflow disruption, or tissue damage results in disturbance of normal voice production. Vocal fold scarring, a prevalent vocal fold injury, is characterized by pathophysiologic changes to the lamina propria ECM, directly causing a marked decrease in voice quality [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benninger MS, Alessi D, Archer S, Bastian R, Ford C, Koufman J et al (1996) Vocal fold scarring: current concepts and management. Otolaryngol Head Neck Surg 115:474–482

    Article  Google Scholar 

  2. Titze IR (2000) Principles of voice production. National Center for Voice and Speech

    Google Scholar 

  3. Smith E, Gray S, Verdolini K, Lemke J (1995) Effects of voice disorders on quality of life. Otolaryngol Head Neck Surg 113:P121

    Article  Google Scholar 

  4. Butler JE, Hammond TH, Gray SD (2001) Gender-related differences of hyaluronic acid distribution in the human vocal fold. Laryngoscope 111:907–911

    Article  Google Scholar 

  5. Hahn MS, Kobler JB, Zeitels SM, Langer R (2006) Quantitative and comparative studies of the vocal fold extracellular matrix. II: Collagen. Ann Otol Rhinol Laryngol 115:225–232

    Article  Google Scholar 

  6. Gray SD, Titze IR, Alipour F, Hammond TH (2000) Biomechanical and histologic observations of vocal fold fibrous proteins. Ann Otol Rhinol Laryngol 109:77–85

    Article  Google Scholar 

  7. Hahn MS, Kobler JB, Starcher BC, Zeitels SM, Langer R (2006) Quantitative and comparative studies of the vocal fold extracellular matrix. I: Elastic fibers and hyaluronic acid. Ann Otol Rhinol Laryngol 115:156–164

    Article  Google Scholar 

  8. Hansen JK, Thibeault SL (2006) Current understanding and review of the literature: vocal fold scarring. J Voice 20:110–120

    Article  Google Scholar 

  9. Hahn MS, Kobler JB, Zeitels SM, Langer R (2005) Midmembranous vocal fold lamina propria proteoglycans across selected species. Ann Otol Rhinol Laryngol 114:451–462

    Article  Google Scholar 

  10. Kalamajski S, Oldberg A (2010) The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol 29:248–253

    Article  Google Scholar 

  11. Hirano S, Minamiguchi S, Yamashita M, Ohno T, Kanemaru S, Kitamura M (2009) Histologic characterization of human scarred vocal folds. J Voice 23:399–407

    Article  Google Scholar 

  12. Thibeault SL, Klemuk SA, Chen X, Johnson BHQ (2011) In vivo engineering of the vocal fold ECM with injectable HA hydrogels-late effects on tissue repair and biomechanics in a rabbit model. J Voice 25:249–253

    Article  Google Scholar 

  13. Rousseau B, Hirano S, Chan RW, Welham NV, Thibeault SL, Ford CN et al (2004) Characterization of chronic vocal fold scarring in a rabbit model. J Voice 18:116–124

    Article  Google Scholar 

  14. Rousseau B, Hirano S, Scheidt TD, Welham NV, Thibeault SL, Chan RW et al (2003) Characterization of vocal fold scarring in a canine model. Laryngoscope 113:620–627

    Article  Google Scholar 

  15. Tateya T, Tateya I, Sohn JH, Bless DM (2005) Histologic characterization of rat vocal fold scarring. Ann Otol Rhinol Laryngol 114:183–191

    Article  Google Scholar 

  16. Caton T, Thibeault SL, Klemuk S, Smith ME (2007) In reference to viscoelasticity of hyaluronan and nonhyaluronan based vocal fold injectables: implications for mucosal versus muscle use—Reply. Laryngoscope 117:1506–1508

    Article  Google Scholar 

  17. Chan RW, Titze IR (1998) Viscosities of implantable biomaterials in vocal fold augmentation surgery. Laryngoscope 108:725–731

    Article  Google Scholar 

  18. Chan RW, Titze IR (1999) Viscoelastic shear properties of human vocal fold mucosa: measurement methodology and empirical results. J Acoust Soc Am 106:2008–2021

    Article  Google Scholar 

  19. Alipour F, Vigmostad S (2012) Measurement of vocal folds elastic properties for continuum modeling. J Voice 26:9

    Article  Google Scholar 

  20. Alipour F, Berry DA, Titze IR (2000) A finite-element model of vocal-fold vibration. J Acoust Soc Am 108:3003–3012

    Article  Google Scholar 

  21. Rosa MD, Pereira JC, Grellet M, Alwan A (2003) A contribution to simulating a three-dimensional larynx model using the finite element method. J Acoust Soc Am 114:2893–2905

    Article  Google Scholar 

  22. Thibeault SL, Gray SD, Bless DM, Chan RW, Ford CN (2002) Histologic and rheologic characterization of vocal fold scarring. J Voice 16:96–104

    Article  Google Scholar 

  23. Thibeault SL, Duflo S (2008) Inflammatory cytokine responses to synthetic extracellular matrix injection to the vocal fold lamina propria. Ann Otol Rhinol Laryngol 117:221–226

    Google Scholar 

  24. Borzacchiello A, Mayol L, Garskog O, Dahlqvist A, Ambrosio L (2005) Evaluation of injection augmentation treatment of hyaluronic acid based materials on rabbit vocal folds viscoelasticity. J Mater Sci Mater Med 16:553–557

    Article  Google Scholar 

  25. Shu XZ, Liu Y, Prestwich GD (2011) Modified macromolecules and methods of making and using thereof

    Google Scholar 

  26. Duflo S, Thibeault SL, Li WH, Shu XZ, Prestwich GD (2006) Vocal fold tissue repair in vivo using a synthetic extracellular matrix. Tissue Eng 12:2171–2180

    Article  Google Scholar 

  27. Dahlqvist A, Garskog O, Laurent C, Hertegard S, Ambrosio L, Borzacchiello A (2004) Viscoelasticity of rabbit vocal folds after injection augmentation. Laryngoscope 114:138–142

    Article  Google Scholar 

  28. Hertegard S, Hallen L, Laurent C, Lindstrom E, Olofsson K, Testad P et al (2002) Cross-linked hyaluronan used as augmentation substance for treatment of glottal insufficiency: safety aspects and vocal fold function. Laryngoscope 112:2211–2219

    Article  Google Scholar 

  29. Shu XZ, Liu YC, Palumbo FS, Lu Y, Prestwich GD (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25:1339–1348

    Article  Google Scholar 

  30. Hansen JK, Thibeault SL, Walsh JF, Shu XZ, Prestwich GD (2005) In vivo engineering of the vocal fold extracellular matrix with injectable hyaluronic acid hydrogels: early effects on tissue repair and biomechanics in a rabbit model. Ann Otol Rhinol Laryngol 114:662–670

    Article  Google Scholar 

  31. Hallen L, Johansson C, Laurent C (1999) Cross-linked hyaluronan (hylan B gel): a new injectable remedy for treatment of vocal fold insufficiency—an animal study. Acta Otolaryngol 119:107–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Thibeault .

Editor information

Editors and Affiliations

Additional Reading

Additional Reading

Miri AK. Mechanical characterization of vocal fold tissue: a review study. J Voice 2014; 28:657–67.

Caton T, Thibeault SL, Klemuk S, Smith ME. In reference to viscoelasticity of hyaluronan and nonhyaluronan based vocal fold injectables: Implications for mucosal versus muscle use—Reply. Laryngoscope 2007, 117(8): 1506–1508.

Chan RW, Titze IR. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics. Journal of the Acoustical Society of America 2006; 119:2351–62.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gaston, J., Thibeault, S.L. (2016). Chapter 8 Vocal Folds. In: Murphy, W., Black, J., Hastings, G. (eds) Handbook of Biomaterial Properties. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3305-1_35

Download citation

Publish with us

Policies and ethics