Skip to main content

Chapter 1c Metallic Biomaterials: Titanium and Titanium Alloys

  • Chapter
  • First Online:
Handbook of Biomaterial Properties

Abstract

Comparison of international standards for titanium and titanium alloys (Refs. 1, 2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cverna F, Horesh J, Whittle S, Yuko I (2001) Worldwide guide to equivalent nonferrous metals and alloys, 4th edn. ASM International, Materials Park, OH

    Google Scholar 

  2. Donachie MJ (2000) Titanium: a technical guide, 2nd edn. ASM International, Materials Park, OH

    Google Scholar 

  3. Standard specification for unalloyed titanium, for surgical implant applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700) (2006) ASTM International, West Conshohocken, PA

    Google Scholar 

  4. Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Titanium in medicine: material science, surface science, engineering, biological responses and medical applications, 1st edn. Springer, New York

    Book  Google Scholar 

  5. Zhou YL, Niinomi M, Akahori T (2004) Effects of Ta content on Young’s modulus and tensile properties of binary Ti-Ta alloys for biomedical applications. Mater Sci Eng A 371:283–290

    Article  Google Scholar 

  6. Semlitsch M, Staub F, Weber H (1985) Development of a vital, high-strength titanium aluminium-niobium alloy for surgical implants. In: Proc. fifth European CONF. ON BIOMATERIALS, Paris, 4–6 Sept 1985

    Google Scholar 

  7. Mausli P-A, Steinemann SG, Simpson JP (1984) Properties of surface oxides on titanium and some titanium alloys. In: Proc. of the sixth world conference on titanium, vol 3, pp. 1759–1764

    Google Scholar 

  8. Material properties of titanium and titanium alloys (DIN 17869) (1990) Beuth Veriag, Germany

    Google Scholar 

  9. Microstructure standard for titanium alloy bars, Technical Committee of European Titanium Producers, Publication ETTC2 (1979)

    Google Scholar 

  10. Supra Alloys, Inc. (2013) Aerospace materials specifications for titanium and titanium alloys. http://www.supraalloys.com/specs.php

  11. MatWeb Material Property Data. Titanium, Ti. http://www.matweb.com/search/DataSheet.aspx?MatGUID=66a15d609a3f4c829cb6ad08f0dafc01

  12. Eliaz N (2012) Degradation of implants, 2012th edn. Springer, New York

    Book  Google Scholar 

  13. Titanium alloys—Ti6Al7Nb properties and applications. AZO materials. http://www.azom.com/properties.aspx?ArticleID=2064

  14. MatWeb Material Property Data. Titanium IMI 367 (Ti-6Al-7Nb). http://www.matweb.com/search/datasheet.aspx?matguid=71fff43e6722453c8c9783d017d66977&ckck=1

  15. Breme J, Wadewitz V, Burger K (1988) Verbund Titanlegierungen/Al2O3-Keramik fur dentale Implantate—Entwicklung geeigneter Legierungen. In: Ondracek G (ed) Verbundwerkstoffe—Stoffverbunde. DGM, pp. 123–130

    Google Scholar 

  16. Breme J, Biehl V, Schulte W, d'Hoedt B, Donath K (1993) Development and functionality of isoelastic dental implants of titanium alloys. Biomaterials 14(12):887–892

    Article  Google Scholar 

  17. Akahori T, Niinomi M, Fukui H, Ogawa M, Toda H (2005) Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater Sci Eng C 25:248–254

    Article  Google Scholar 

  18. Kim SE, Jeong HW, Hyun YT, Lee YT, Jung CH, Kim SK, Song JS, Lee JH (2007) Elastic modulus and in vitro biocompatibility of Ti-xNb and Ti-xTa alloys. Met Mater Int 13(2):145–149

    Article  Google Scholar 

  19. Zwicker U (1974) Titan und Titanlegierungen. Springer, New York

    Book  Google Scholar 

  20. Lee W, Lin C (1998) High-temperature deformation behaviour of Ti6Al4V alloy evaluated at high strain-rate compression tests. J Mater Process Technol 75:127–136

    Article  Google Scholar 

  21. Titanium and titanium wrought alloys forgings (hammer and drop forgings)—technical specification (DIN 17864) (1990) Beuth Veriag, Germany

    Google Scholar 

  22. Long M, Rack HJ (2008) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19:1621–1639

    Article  Google Scholar 

  23. Ramsdell JD, Hull ED (1960) Characteristics of cold-rolled and annealed Ti. Bureau of Mines Rep. of Inv. 5656

    Google Scholar 

  24. Breme J, Wadewitz V (1989) Comparison of Ti-Ta, Ti-Nb alloys. J Oral Max Implants 4(2):113–118

    Google Scholar 

  25. Niinomi M (1998) Mechanical properties of biomedical titanium alloys. Mater Sci Eng A243:231–236

    Article  Google Scholar 

  26. Shuh A, Bigoney J, Hönle W, Zeiler G, Holzwarth U, Forst R (2007) Second generation (low modulus) titanium alloys in total hip arthroplasty. Materwiss Werkstofftech 38(12):1003–1007

    Article  Google Scholar 

  27. Stemlitsch M, Staub F, Weber H (1985) Development of a vital, high-strength titanium aluminum-niobium alloy for surgical implants. In: Proc. fifth European conf. on biomaterials, Paris, 4–6 Sept 1985

    Google Scholar 

  28. Breme J, Zhou Y, Groh L (1995) Development of a titanium alloy suitable for an optimized coating with hydroxyapatite. Biomaterials 16:239–244

    Article  Google Scholar 

  29. Titanium and titanium alloy strip, sheet and plate—technical conditions of delivery (DIN 17860) (1990) Beuth Veriag, Germany

    Google Scholar 

  30. Lanagan J (1988) Properties of plasma nitrided titanium alloys. In: Proc. of the sixth world conf. on titanium, vol 4, pp. 1957–1962

    Google Scholar 

  31. Borowy KH, Kramer KH (1984) On the properties of a new titanium alloy (TiA15Fe2.5) as implant material. In: Proc. of the fifth world conf. on Ti, vol 2, pp. 1381–1386

    Google Scholar 

  32. Thull R (1979) Eigenschaften von Metallen, fur orthopadische Implantate und deren Priifung. Orthopädie 7:29

    Google Scholar 

  33. Breme J, Schmidt H-J (1990) Criteria for the bioinertness of metals for osseo-integrated implants. In: ed. Heimke G (ed) Osseo-integrated implants, CRC press, vol 1, pp. 31–80

    Google Scholar 

  34. Semlitsch M, Weber H (1992) Titanlegierungen fur zementlose Huftprothesen. In: Hipp E, Gradinger R, Asherl R (eds) Die zementlose Hiiftprothese. Demeter Verlag, Grafelfingen, pp 18–26

    Google Scholar 

  35. Semlitsch M, Panic B (1994) 15 years of experience with test criteria for fracture-proof anchorage stems of artificial hip joints. In: Buchhorn GH, Willert H-G (eds) Technical principles, design and safety of joint implants. Hogrefe & Huber Publishers, Seattle, pp 23–36

    Google Scholar 

  36. Papakyriacou M, Mayer H, Pypen C, Plenk H Jr, Stanzl-Tschegg S (2000) Effects of surface treatments on high cycle corrosion fatigue of metallic implant materials. Int J Fatigue 22:873–886

    Article  Google Scholar 

  37. Narayan R (2009) Biomedical materials, 2009th edn. Springer, New York

    Book  Google Scholar 

  38. Kunze E (1988) Vergleichende Untersuchungen zum Langzeit-Ermii-dungsverhalten von Hiiftgelenkprothesen an Luft und in NaCl-Losung. Metall 2:140–145

    Google Scholar 

  39. RMI-Titanium (1969) Reactive Metals Inc., Niles, OH

    Google Scholar 

  40. Weinberg IG, Hanna IE (1957) An evaluation of the fatigue properties of Ti and Ti-alloys. TML Rep. 77

    Google Scholar 

  41. Mote WM, Frost RB (1958) The engineering properties of commercial Ti-alloys. TML Rep. 92

    Google Scholar 

  42. Weltzin RB, Koves G (1968) Impact fatigue testing of Ti alloys. J Mater 3:469–480

    Google Scholar 

  43. Properties and selection of metals. In: ASM metals handbook, vol 1. ASM International (1961)

    Google Scholar 

  44. Dittmar CB, Bauer GW, Evers D (1957) The effect of microstructural variables and interstitial elements on the fatigue behavior of Ti and commercial Ti alloys, Mallory, Sharen Titanium Corp. AD-110726WADC-TR 56–304, 95

    Google Scholar 

  45. Liitjering G, Gysler A (1984) Fatigue. In: Proc. of the fifth conf. on Ti, pp. 2065–2083

    Google Scholar 

  46. Hempel M, Hillnhagen E (1966) Dauerschwingfestigkeit der technischen Titanlegierungen TiA15Sn2.5 und TiA16V4. Arch Eisenhiittenwesen 37:263–277

    Google Scholar 

  47. Riidinger K, Fischer D (1984) Relationship between primary alpha content, tensile properties and high cycle fatigue behaviour of Ti6Al4V. In: Proc. of the fifth conf. on Ti, pp. 2123–2130

    Google Scholar 

  48. Wagner L, Gerdes C, Liitjering G (1984) Influence of surface treatment on fatigue strength of Ti6Al4V. In: Proc. of the fifth conf. on Ti, vol 4, pp. 2147–2154

    Google Scholar 

  49. Liu HW (1956) Effect of surface finish on the fatigue strength of TiA16V4- alloy. Dept. of Theoretical and Applied Mechanics, University of Illinois, T.U.A.M. Rep. 533

    Google Scholar 

  50. Geis-Gerstorfer J, Weber H, Breme J (1988) Electrochemische Untersuchung auf die Korrosionsbestandigkeit von Implantatlegierungen. Z Zahnarztl Implantol 4(1):31–36

    Google Scholar 

  51. Titanium alloys; chemical composition (DIN 17851) (1990) Beuth Veriag, Germany

    Google Scholar 

  52. Luiz de Assis S, Wolynec S, Costa I (2006) Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta 51:1815–1819

    Article  Google Scholar 

  53. Kesteven J, Kannan MB, Walter R, Khakbaz H, Choe H (2015) Low elastic modulus Ti–Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering. Mater Sci Eng C 46:226–231

    Article  Google Scholar 

  54. Cai Z, Nakajima H, Woldu M, Berglud A, Bergman M, Okabe T (1999) In vitro corrosion resistance of titanium made using different fabrication methods. Biomaterials 20:183–190

    Article  Google Scholar 

  55. Breme J (1988) Titanium and titanium alloys, biomaterials of preference. In: Proc. of the sixth world conf. on Ti, vol 1, pp. 57–68

    Google Scholar 

  56. Fraker AC, Ruff AW et al (1983) Surface preparation and corrosion. Behaviour of titanium alloys for surgical implants. In: Luckey HA, Kubli F (eds) Titanium alloys in surgical implants. ASTM STP796, pp. 206–219

    Google Scholar 

  57. Breme J, Wadewitz V, Ecker D (1986) Untersuchungen zum Einfluf* des Geftigezustandes auf das Korrosionverhalten der Implantatlegierung TiA15Fe2.5. Z./Zahnarztl. Implantologie, Bd. II 32–37

    Google Scholar 

  58. Gagg C (1988) Corrosion characteristics of Til5V3Cr3Sn3Al (Til5-3) alloy in a physiological environment

    Google Scholar 

  59. Mareci D, Ungureanu G, Aelenei DM, Mirza Rosca JC (2007) Electrochemical characteristics of titanium based biomaterials in artificial saliva. Mater Corros 58(11):848–856

    Article  Google Scholar 

  60. Wadewitz V, Breme J (1989) Titan-Legierungen fur dentale Implantate. Z Zahnarztl Implantol V:116–120

    Google Scholar 

  61. Maurer A, Brown SA, Merrit K (1992) Effects of surface treatments on fretting corrosion of Ti6A14V. In: Proc. of the fourth world biomaterials congress, p. 200

    Google Scholar 

  62. Streicher RM, Weber H, Schon R, Semlitsch M (1991) Wet behaviour of different ceramic surfaces in comparison to TiN and OHD treated Ti6A14V alloy paired with polyethylene. In: Vincenzini P (ed) Ceramics in substitutive and reconstructive surgery. Elsevier, Amsterdam, pp 197–205

    Google Scholar 

  63. Fellah M, Assala O, Labaïz M, Dekhil L, Iost A (2013) Friction and wear behavior of Ti-6Al-4V and Ti-6Al-7Nb biomaterial alloy. J Biomater Nanobiotechnol 4:374–384

    Article  Google Scholar 

  64. Hu Y-S, Dai D-H, Dong Y-L (1988) The ion nitriding of titanium materials and its applications. In: Proc. of the sixth world confer, on titanium, vol 4, pp. 1801–1804

    Google Scholar 

  65. Mears DC (1977) Metals in medicine and surgery. Int Met Rev, Review 218, 119–155

    Google Scholar 

  66. Hildebrand HF (1993) Biologische Aspekte beim Einsatz von Implantatwerkstoffen. DGM Hochschulseminar, Saarbriicken, Germany

    Google Scholar 

  67. Easter TL, Graham RM, Jacobs JJ, Black J, LaBerge M (1994) Clinical performance of Ti6A14V femoral components: wear mechanisms vs. surface profile. In: Proc. of the 20th annual meeting of the society for biomaterials, p. 185

    Google Scholar 

  68. Ebel B (1990) Zur Biokompatibilitat von Implantatwerkstoffen. KfK 4476

    Google Scholar 

  69. Tautzenberger P, Stockel D (1987) Vergleich der Eigenschaften von Thermobimetallen und Memory-Elementen, 1, 26–32

    Google Scholar 

  70. Nitinol Technical Properties. Johnson Matthey Medical Components (2015) http://jmmedical.com/resources/221/Nitinol-Technical-Properties.html

  71. Thompson SA (2000) An overview of nickel-titanium alloys used in dentistry. Int Endod J 33:297–310

    Article  Google Scholar 

  72. Trépanier C, Tabrizian M, Yahia L, Bilodeau L, Piron DL (1997) Effect of modification of oxide layer on NiTi stent corrosion resistance; Nitinol: Freemont, CA. http://www.nitinol.com/media/reference-library/033.pdf

  73. Rocher P, El Medawar L, Hornez JC, Traisnel M, Breme J, Hildebrand HF (2004) Biocorrosion and cytocompatibility assessment of NiTi shape memory alloys. Scr Mater 50:255–260

    Article  Google Scholar 

  74. El Medawar L, Rocher P, Hornez JC, Traisnel M, Breme J, Hildenbrand HF (2002) Electrochemical and cytocompatibility assessment of NiTiNOL memory shape alloy for orthodontic use. Biomol Eng 19(2–6):153–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Gawalt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Breme, H., Biehl, V., Reger, N., Gawalt, E. (2016). Chapter 1c Metallic Biomaterials: Titanium and Titanium Alloys. In: Murphy, W., Black, J., Hastings, G. (eds) Handbook of Biomaterial Properties. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3305-1_16

Download citation

Publish with us

Policies and ethics