Skip to main content
Book cover

The Kidney pp 175–197Cite as

Glomerular Disease

  • Chapter

Abstract

The interconnected nature of the genitourinary system often leads to concurrent evaluation of primary glomerulotubular diseases and genitourinary conditions. It is not infrequent that medically necessary surgical interventions, like nephrectomy for renal cell carcinoma, uncover primary glomerular diseases that may require nephrology consultation (Salvatore et al., Arch Pathol Lab Med, 2013; 137(4):531–40). Evaluation of the nonneoplastic containing nephrectomy tissue can help predict the risk for progressive renal failure (Bijol et al., Am J Surg Pathol, 2006; 30(5):575–84).

Here we review the basic structure and function of the nephron and the mechanisms for sampling renal parenchyma, and highlight some of the most common glomerular diseases with emphasis on their medical and pathologic considerations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Salvatore SP et al. Nonneoplastic renal cortical scarring at tumor nephrectomy predicts decline in kidney function. Arch Pathol Lab Med. 2013;137(4):531–40.

    Article  CAS  PubMed  Google Scholar 

  2. Bijol V et al. Evaluation of the nonneoplastic pathology in tumor nephrectomy specimens: predicting the risk of progressive renal failure. Am J Surg Pathol. 2006;30(5):575–84.

    Article  PubMed  Google Scholar 

  3. Pollak MR et al. The glomerulus: the sphere of influence. Clin J Am Soc Nephrol. 2014;9(8):1461–9.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Rose BD, Post TW. Clinical physiology of acid–base and electrolyte disorders. 5th ed. New York: McGraw-Hill; 2001.

    Google Scholar 

  5. Curthoys NP, Moe OW. Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol. 2014;9(9):1627–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Levinsky NG, Davidson DG, Berliner RW. Changes in urine concentration during prolonged administration of vasopressin and water. Am J Physiol. 1959;196(2):451–6.

    CAS  PubMed  Google Scholar 

  7. Whittier WL. Complications of the percutaneous kidney biopsy. Adv Chronic Kidney Dis. 2012;19(3):179–87.

    Article  PubMed  Google Scholar 

  8. Laurin L-P, Alain B, Dube M, Leblanc M. Percutaneous renal biopsy. In: Mubarak M, Kazi JI, editors. Topics in renal biopsy and pathology. Rijeka: InTech; 2012.

    Google Scholar 

  9. Walker PD. The renal biopsy. Arch Pathol Lab Med. 2009;133(2):181–8.

    PubMed  Google Scholar 

  10. Jones B et al. Reduced duration of bed rest after percutaneous renal biopsy. Clin Nephrol. 1991;35(1):44–5.

    CAS  PubMed  Google Scholar 

  11. Whittier WL, Korbet SM. Timing of complications in percutaneous renal biopsy. J Am Soc Nephrol. 2004;15(1):142–7.

    Article  PubMed  Google Scholar 

  12. Nomoto Y et al. Modified open renal biopsy: results in 934 patients. Nephron. 1987;45(3):224–8.

    Article  CAS  PubMed  Google Scholar 

  13. Whittier WL, Korbet SM. Renal biopsy: update. Curr Opin Nephrol Hypertens. 2004;13(6):661–5.

    Article  PubMed  Google Scholar 

  14. Mal F et al. Transjugular renal biopsy. Lancet. 1990;335(8704):1512–3.

    Article  CAS  PubMed  Google Scholar 

  15. Navuluri R, Ahmed O. Complications of transjugular biopsies. Semin Intervent Radiol. 2015;32(1):42–8.

    Article  PubMed  Google Scholar 

  16. Moroni G, Ponticelli C. Rapidly progressive crescentic glomerulonephritis: early treatment is a must. Autoimmun Rev. 2014;13(7):723–9.

    Article  PubMed  Google Scholar 

  17. Lee RW, D’Cruz DP. Pulmonary renal vasculitis syndromes. Autoimmun Rev. 2010;9(10):657–60.

    Article  PubMed  Google Scholar 

  18. Jennette JC. Rapidly progressive crescentic glomerulonephritis. Kidney Int. 2003;63(3):1164–77.

    Article  PubMed  Google Scholar 

  19. Kambham N. Crescentic Glomerulonephritis: an update on Pauci-immune and Anti-GBM diseases. Adv Anat Pathol. 2012;19(2):111–24.

    Article  PubMed  Google Scholar 

  20. Chen X, Chen N. Plasma exchange in the treatment of rapidly progressive glomerulonephritis. Contrib Nephrol. 2013;181:240–7.

    Article  PubMed  Google Scholar 

  21. Walters G, Willis NS, Craig JC. Interventions for renal vasculitis in adults. Cochrane Database Syst Rev. 2008;3, CD003232.

    PubMed  Google Scholar 

  22. Greco A et al. Goodpasture’s syndrome: a clinical update. Autoimmun Rev. 2015;14(3):246–53.

    Article  PubMed  Google Scholar 

  23. Pedchenko V et al. Molecular architecture of the Goodpasture autoantigen in anti-GBM nephritis. N Engl J Med. 2010;363(4):343–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Touzot M et al. Rituximab in anti-GBM disease: a retrospective study of 8 patients. J Autoimmun. 2015;60:74–9.

    Article  CAS  PubMed  Google Scholar 

  25. Benoit FL et al. Goodpasture’s syndrome: a clinicopathologic entity. Am J Med. 1964;37:424–44.

    Article  CAS  PubMed  Google Scholar 

  26. De Groot K et al. Randomized trial of cyclophosphamide versus methotrexate for induction of remission in early systemic antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 2005;52(8):2461–9.

    Article  PubMed  Google Scholar 

  27. Davies DJ et al. Segmental necrotising glomerulonephritis with antineutrophil antibody: possible arbovirus aetiology? Br Med J. 1982;285(6342):606.

    Article  CAS  Google Scholar 

  28. Brouwer E et al. Neutrophil activation in vitro and in vivo in Wegener’s granulomatosis. Kidney Int. 1994;45(4):1120–31.

    Article  CAS  PubMed  Google Scholar 

  29. Xiao H et al. The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase antibodies. Am J Pathol. 2005;167(1):39–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kain R, Rees AJ. What is the evidence for antibodies to LAMP-2 in the pathogenesis of ANCA associated small vessel vasculitis? Curr Opin Rheumatol. 2013;25(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  31. Peschel A et al. Autoantibodies to hLAMP-2 in ANCA-negative pauci-immune focal necrotizing GN. J Am Soc Nephrol. 2014;25(3):455–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. de Groot K, Adu D, Savage CO. The value of pulse cyclophosphamide in ANCA-associated vasculitis: meta-analysis and critical review. Nephrol Dial Transplant. 2001;16(10):2018–27.

    Article  PubMed  Google Scholar 

  33. Adu D et al. Controlled trial of pulse versus continuous prednisolone and cyclophosphamide in the treatment of systemic vasculitis. QJM. 1997;90(6):401–9.

    Article  CAS  PubMed  Google Scholar 

  34. Guillevin L et al. A prospective, multicenter, randomized trial comparing steroids and pulse cyclophosphamide versus steroids and oral cyclophosphamide in the treatment of generalized Wegener’s granulomatosis. Arthritis Rheum. 1997;40(12):2187–98.

    Article  CAS  PubMed  Google Scholar 

  35. Harper L et al. Pulse versus daily oral cyclophosphamide for induction of remission in ANCA-associated vasculitis: long-term follow-up. Ann Rheum Dis. 2012;71(6):955–60.

    Article  CAS  PubMed  Google Scholar 

  36. Jones RB et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med. 2010;363(3):211–20.

    Article  CAS  PubMed  Google Scholar 

  37. Stone JH et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363(3):221–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Specks U et al. Efficacy of remission-induction regimens for ANCA-associated vasculitis. N Engl J Med. 2013;369(5):417–27.

    Article  CAS  PubMed  Google Scholar 

  39. Holle JU, Gross WL. Treatment of ANCA-associated vasculitides (AAV). Autoimmun Rev. 2013;12(4):483–6.

    Article  PubMed  Google Scholar 

  40. Donadio JV, Grande JP. IgA nephropathy. N Engl J Med. 2002;347(10):738–48.

    Article  CAS  PubMed  Google Scholar 

  41. Yu HH, Chiang BL. Diagnosis and classification of IgA nephropathy. Autoimmun Rev. 2014;13(4–5):556–9.

    Article  CAS  PubMed  Google Scholar 

  42. Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013;368(25):2402–14.

    Article  CAS  PubMed  Google Scholar 

  43. Lv J et al. Corticosteroid therapy in IgA nephropathy. J Am Soc Nephrol. 2012;23(6):1108–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Rodriguez-Iturbe B. Postinfectious glomerulonephritis. Am J Kidney Dis. 2000;35(1):XLVI–VIII.

    Article  PubMed  Google Scholar 

  45. Nasr SH, Radhakrishnan J, D’Agati VD. Bacterial infection-related glomerulonephritis in adults. Kidney Int. 2013;83(5):792–803.

    Article  CAS  PubMed  Google Scholar 

  46. Joles JA et al. Colloid osmotic pressure in young analbuminemic rats. Am J Physiol. 1989;257(1 Pt 2):F23–8.

    CAS  PubMed  Google Scholar 

  47. Fiorotto M, Coward WA. Pathogenesis of oedema in protein-energy malnutrition: the significance of plasma colloid osmotic pressure. Br J Nutr. 1979;42(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  48. Siddall EC, Radhakrishnan J. The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int. 2012;82(6):635–42.

    Article  CAS  PubMed  Google Scholar 

  49. Bockenhauer D. Over- or underfill: not all nephrotic states are created equal. Pediatr Nephrol. 2013;28(8):1153–6.

    Article  PubMed  Google Scholar 

  50. Llach F. Hypercoagulability, renal vein thrombosis, and other thrombotic complications of nephrotic syndrome. Kidney Int. 1985;28(3):429–39.

    Article  CAS  PubMed  Google Scholar 

  51. Orth SR, Ritz E. The nephrotic syndrome. N Engl J Med. 1998;338(17):1202–11.

    Article  CAS  PubMed  Google Scholar 

  52. Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet. 1974;2(7880):556–60.

    Article  CAS  PubMed  Google Scholar 

  53. Le Berre L et al. Induction of T regulatory cells attenuates idiopathic nephrotic syndrome. J Am Soc Nephrol. 2009;20(1):57–67.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Hogan J, Radhakrishnan J. The treatment of minimal change disease in adults. J Am Soc Nephrol. 2013;24(5):702–11.

    Article  CAS  PubMed  Google Scholar 

  55. Black DA, Rose G, Brewer DB. Controlled trial of prednisone in adult patients with the nephrotic syndrome. Br Med J. 1970;3(5720):421–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Coggins CH. Adult minimal change nephropathy: experience of the collaborative study of glomerular disease. Trans Am Clin Climatol Assoc. 1986;97:18–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Lange K, Wasserman E, Slobody LB. Prolonged intermittent steroid therapy for nephrosis in children and adults. J Am Med Assoc. 1958;168(4):377–81.

    Article  CAS  PubMed  Google Scholar 

  58. Palmer SC, Nand K, Strippoli GF. Interventions for minimal change disease in adults with nephrotic syndrome. Cochrane Database Syst Rev. 2008;1, CD001537.

    PubMed  Google Scholar 

  59. Pei Y et al. Evidence suggesting under-treatment in adults with idiopathic focal segmental glomerulosclerosis. Regional Glomerulonephritis Registry Study. Am J Med. 1987;82(5):938–44.

    Article  CAS  PubMed  Google Scholar 

  60. Couser WG, Nangaku M. Cellular and molecular biology of membranous nephropathy. J Nephrol. 2006;19(6):699–705.

    CAS  PubMed  Google Scholar 

  61. Stanescu HC et al. Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med. 2011;364(7):616–26.

    Article  CAS  PubMed  Google Scholar 

  62. Beck Jr LH, Salant GJ. Membranous nephropathy: from models to man. J Clin Invest. 2014;124(6):2307–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Mastroianni-Kirsztajn G, Hornig N, Schlumberger W. Autoantibodies in renal diseases – clinical significance and recent developments in serological detection. Front Immunol. 2015;6:221.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Schmiedeke TM et al. Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis. J Exp Med. 1989;169(6):1879–94.

    Article  CAS  PubMed  Google Scholar 

  65. Johnson RJ, Couser WG. Hepatitis B infection and renal disease: clinical, immunopathogenetic and therapeutic considerations. Kidney Int. 1990;37(2):663–76.

    Article  CAS  PubMed  Google Scholar 

  66. Ponticelli C et al. A randomized trial of methylprednisolone and chlorambucil in idiopathic membranous nephropathy. N Engl J Med. 1989;320(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  67. Cattran DC et al. A randomized controlled trial of prednisone in patients with idiopathic membranous nephropathy. N Engl J Med. 1989;320(4):210–5.

    Article  CAS  PubMed  Google Scholar 

  68. Ehrenreich T et al. Treatment of idiopathic membranous nephropathy. N Engl J Med. 1976;295(14):741–6.

    Article  CAS  PubMed  Google Scholar 

  69. Donadio Jr JV et al. Idiopathic membranous nephropathy: the natural history of untreated patients. Kidney Int. 1988;33(3):708–15.

    Article  PubMed  Google Scholar 

  70. Falk RJ et al. Treatment of progressive membranous glomerulopathy. A randomized trial comparing cyclophosphamide and corticosteroids with corticosteroids alone. The Glomerular Disease Collaborative Network. Ann Intern Med. 1992;116(6):438–45.

    Article  CAS  PubMed  Google Scholar 

  71. Ponticelli C et al. A 10-year follow-up of a randomized study with methylprednisolone and chlorambucil in membranous nephropathy. Kidney Int. 1995;48(5):1600–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward R. Gould M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gould, E.R., Burgner, A.M. (2016). Glomerular Disease. In: Hansel, D., Kane, C., Paner, G., Chang, S. (eds) The Kidney. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3286-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3286-3_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3285-6

  • Online ISBN: 978-1-4939-3286-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics