Skip to main content

Biomedical Advances in Three Dimensions: An Overview of Human Cellular Studies in Space and Spaceflight Analogues

  • Chapter
Effect of Spaceflight and Spaceflight Analogue Culture on Human and Microbial Cells

Abstract

Many of the underlying causes of human disease result from the effects of physical/mechanical forces acting on living cells. However, the constant overriding force of gravity precludes our ability to identify the full spectrum of cellular responses to mechanical forces that dictate the transition between homeostasis and disease. Cell and tissue culture studies in true spaceflight or in the Rotating Wall Vessel (RWV) spaceflight analogue bioreactor offer dynamic approaches to engineer high fidelity, physiologically relevant 3-D tissue models with a vast array of biomedical applications. These organotypic models have furthered our understanding of structure–function relationships and design principles of the cellular microenvironment and cellular biomechanics that are critical in establishment of in vitro models that better recapitulate in vivo responses as compared to conventional flat 2-D cultures, and have complemented and advanced the knowledge being gained from other 3-D cell culture approaches.

The applications of tissue engineering research in true spaceflight and the RWV are as diverse as the number of cell types that can be cultured using these platforms, and hold the potential to help us better understand organogenesis and normal tissue development using cell lines, stem cells, and primary cells, as well as disease pathologies, including infectious disease, immunological disorders, and cancer. Accordingly, these studies have shown tremendous potential to accelerate our understanding of human physiology and susceptibility to disease and hold translational promise to benefit mankind on Earth. In addition, studying the response of mammalian cells to culture under microgravity and microgravity analogue conditions provides the opportunity to unveil underpinning mechanisms regulating spaceflight-induced alterations in human physiology, adaptation during long duration missions, and associated clinical problems for astronauts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cogoli, A., Tschopp, A., & Fuchs-Bislin, P. (1984). Cell sensitivity to gravity. Science, 225(4658), 228–230.

    Article  CAS  PubMed  Google Scholar 

  2. Freed, L. E., Hollander, A. P., Martin, I., Barry, J. R., Langer, R., & Vunjak-Novakovic, G. (1998). Chondrogenesis in a cell-polymer-bioreactor system. Experimental Cell Research, 240(1), 58–65.

    Article  CAS  PubMed  Google Scholar 

  3. Freed, L. E., Langer, R., Martin, I., Pellis, N. R., & Vunjak-Novakovic, G. (1997). Tissue engineering of cartilage in space. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13885–13890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Freed, L. E., & Vunjak-Novakovic, G. (1995). Cultivation of cell-polymer tissue constructs in simulated microgravity. Biotechnology and Bioengineering, 46(4), 306–313.

    Article  CAS  PubMed  Google Scholar 

  5. Carrier, R. L., Papadaki, M., Rupnick, M., Schoen, F. J., Bursac, N., Langer, R., et al. (1999). Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnology and Bioengineering, 64(5), 580–589.

    Article  CAS  PubMed  Google Scholar 

  6. Molnar, G., Schroedl, N. A., Gonda, S. R., & Hartzell, C. R. (1997). Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cellular & Developmental Biology Animal, 33(5), 386–391.

    Article  CAS  Google Scholar 

  7. Pellis, N. R., Goodwin, T. J., Risin, D., McIntyre, B. W., Pizzini, R. P., Cooper, D., et al. (1997). Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cellular & Developmental Biology Animal, 33(5), 398–405.

    Article  CAS  Google Scholar 

  8. Cooper, D., & Pellis, N. R. (1998). Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. Journal of Leukocyte Biology, 63(5), 550–562.

    CAS  PubMed  Google Scholar 

  9. Vandenburgh, H., Chromiak, J., Shansky, J., Del Tatto, M., & Lemaire, J. (1999). Space travel directly induces skeletal muscle atrophy. FASEB Journal, 13(9), 1031–1038.

    CAS  PubMed  Google Scholar 

  10. Alcantara Warren, C., Destura, R. V., Sevilleja, J. E., Barroso, L. F., Carvalho, H., Barrett, L. J., et al. (2008). Detection of epithelial-cell injury, and quantification of infection, in the HCT-8 organoid model of cryptosporidiosis. Journal of Infectious Diseases, 198(1), 143–149.

    Article  PubMed  Google Scholar 

  11. Long, J. P., Pierson, S., & Hughes, J. H. (1998). Rhinovirus replication in HeLa cells cultured under conditions of simulated microgravity. Aviation, Space, and Environmental Medicine, 69(9), 851–856.

    CAS  PubMed  Google Scholar 

  12. Nickerson, C. A., Goodwin, T. J., Terlonge, J., Ott, C. M., Buchanan, K. L., Uicker, W. C., et al. (2001). Three-dimensional tissue assemblies: Novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis. Infection and Immunity, 69(11), 7106–7120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., Freed, L. E., et al. (2000). Modulation of the mechanical properties of tissue engineered cartilage. Biorheology, 37(1–2), 141–147.

    CAS  PubMed  Google Scholar 

  14. Rhee, H. W., Zhau, H. E., Pathak, S., Multani, A. S., Pennanen, S., Visakorpi, T., et al. (2001). Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cellular & Developmental Biology Animal, 37(3), 127–140.

    Article  CAS  Google Scholar 

  15. Obradovic, B., Martin, I., Padera, R. F., Treppo, S., Freed, L. E., & Vunjak-Novakovic, G. (2001). Integration of engineered cartilage. Journal of Orthopaedic Research, 19(6), 1089–1097.

    Article  CAS  PubMed  Google Scholar 

  16. Lappa, M. (2003). Organic tissues in rotating bioreactors: Fluid-mechanical aspects, dynamic growth models, and morphological evolution. Biotechnology and Bioengineering, 84(5), 518–532.

    Article  CAS  PubMed  Google Scholar 

  17. Levenberg, S., Rouwkema, J., Macdonald, M., Garfein, E. S., Kohane, D. S., Darland, D. C., et al. (2005). Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 23(7), 879–884.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, R., Xu, J., Juliette, L., Castilleja, A., Love, J., Sung, S. Y., et al. (2005). Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Seminars in Cancer Biology, 15(5), 353–364.

    Article  CAS  PubMed  Google Scholar 

  19. Boonyaratanakornkit, J. B., Cogoli, A., Li, C. F., Schopper, T., Pippia, P., Galleri, G., et al. (2005). Key gravity-sensitive signaling pathways drive T cell activation. FASEB Journal, 19(14), 2020–2022.

    CAS  PubMed  Google Scholar 

  20. Marolt, D., Augst, A., Freed, L. E., Vepari, C., Fajardo, R., Patel, N., et al. (2006). Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials, 27(36), 6138–6149.

    Article  CAS  PubMed  Google Scholar 

  21. Ohyabu, Y., Kida, N., Kojima, H., Taguchi, T., Tanaka, J., & Uemura, T. (2006). Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor. Biotechnology and Bioengineering, 95(5), 1003–1008.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, X., Li, S. H., Lou, L. M., & Chen, Z. R. (2013). The effect of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells. Molecular Biotechnology, 54(2), 331–336.

    Article  CAS  PubMed  Google Scholar 

  23. Sakai, S., Mishima, H., Ishii, T., Akaogi, H., Yoshioka, T., Ohyabu, Y., et al. (2009). Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage. Journal of Orthopaedic Research, 27(4), 517–521.

    Article  PubMed  Google Scholar 

  24. Sung, S. Y., Hsieh, C. L., Law, A., Zhau, H. E., Pathak, S., Multani, A. S., et al. (2008). Coevolution of prostate cancer and bone stroma in three-dimensional coculture: Implications for cancer growth and metastasis. Cancer Research, 68(23), 9996–10003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crabbe, A., Sarker, S. F., Van Houdt, R., Ott, C. M., Leys, N., Cornelis, P., et al. (2010). Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model. Cellular Microbiology, 13, 469–481.

    Article  PubMed  Google Scholar 

  26. Brinley, A. A., Theriot, C. A., Nelman-Gonzalez, M., Crucian, B., Stowe, R. P., Barrett, A. D., et al. (2013). Characterization of Epstein-Barr virus reactivation in a modeled spaceflight system. Journal of Cellular Biochemistry, 114(3), 616–624.

    Article  CAS  PubMed  Google Scholar 

  27. David, J., Sayer, N. M., & Sarkar-Tyson, M. (2014). The use of a three-dimensional cell culture model to investigate host-pathogen interactions of Francisella tularensis in human lung epithelial cells. Microbes and Infection, 16(9), 735–745.

    Article  PubMed  Google Scholar 

  28. Barrila, J., Sarkar, S. F., Hansmeier, N., Briones, N., Park, J., Ott, C. M., et al. (2015). Microgravity uniquely alters the host-pathogen interaction between human intestinal epithelial cells and Salmonella enterica serovar Typhimurium. In 115th American Society for Microbiology General Meeting. New Orleans, LA.

    Google Scholar 

  29. Nelson, C. M., & Bissell, M. J. (2005). Modeling dynamic reciprocity: Engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Seminars in Cancer Biology, 15(5), 342–352.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu, R., Boudreau, A., & Bissell, M. J. (2009). Tissue architecture and function: Dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Reviews, 28(1–2), 167–176.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ingber, D. E. (2003). Mechanobiology and diseases of mechanotransduction. Annals of Medicine, 35(8), 564–577.

    Article  PubMed  Google Scholar 

  32. Ingber, D. (1999). How cells (might) sense microgravity. FASEB Journal, 13(Suppl), S3–S15.

    CAS  PubMed  Google Scholar 

  33. Barrila, J., Radtke, A. L., Crabbe, A., Sarker, S. F., Herbst-Kralovetz, M. M., Ott, C. M., et al. (2010). Organotypic 3D cell culture models: Using the rotating wall vessel to study host-pathogen interactions. Nature Reviews Microbiology, 8(11), 791–801.

    Article  CAS  PubMed  Google Scholar 

  34. Duray, P. H., Hatfill, S. J., & Pellis, N. R. (1997). Tissue culture in microgravity. Science and Medicine, 4(3), 46–55.

    CAS  PubMed  Google Scholar 

  35. Radtke, A. L., Wilson, J. W., Sarker, S., & Nickerson, C. A. (2010). Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells. PLoS One, 5(12), e15750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Weirdt, R., Crabbe, A., Roos, S., Vollenweider, S., Lacroix, C., van Pijkeren, J. P., et al. (2012). Glycerol supplementation enhances L. reuteri’s protective effect against S. Typhimurium colonization in a 3-D model of colonic epithelium. PLoS One, 7(5), e37116.

    Google Scholar 

  37. O’Connor, K. C. (1999). Three-dimensional cultures of prostatic cells: Tissue models for the development of novel anti-cancer therapies. Pharmaceutical Research, 16(4), 486–493.

    Article  PubMed  Google Scholar 

  38. Margolis, L., Hatfill, S., Chuaqui, R., Vocke, C., Emmert-Buck, M., Linehan, W. M., et al. (1999). Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor. Journal of Urology, 161(1), 290–297.

    Article  CAS  PubMed  Google Scholar 

  39. O’Connor, K. C., Enmon, R. M., Dotson, R. S., Primavera, A. C., & Clejan, S. (1997). Characterization of autocrine growth factors, their receptors and extracellular matrix present in three-dimensional cultures of DU 145 human prostate carcinoma cells grown in simulated microgravity. Tissue Engineering, 3(2), 161–171.

    Article  Google Scholar 

  40. Zhau, H. E., Goodwin, T. J., Chang, S. M., Baker, T. L., & Chung, L. W. (1997). Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: Evaluation of androgen-induced growth and PSA expression. In Vitro Cellular & Developmental Biology Animal, 33(5), 375–380.

    Article  CAS  Google Scholar 

  41. Sambandam, Y., Townsend, M. T., Pierce, J. J., Lipman, C. M., Haque, A., Bateman, T. A., et al. (2014). Microgravity control of autophagy modulates osteoclastogenesis. Bone, 61, 125–131.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Capulli, M., Rufo, A., Teti, A., & Rucci, N. (2009). Global transcriptome analysis in mouse calvarial osteoblasts highlights sets of genes regulated by modeled microgravity and identifies a “mechanoresponsive osteoblast gene signature”. Journal of Cellular Biochemistry, 107(2), 240–252.

    Article  CAS  PubMed  Google Scholar 

  43. Qiu, Q. Q., Ducheyne, P., & Ayyaswamy, P. S. (2001). 3D bone tissue engineered with bioactive microspheres in simulated microgravity. In Vitro Cellular & Developmental Biology Animal, 37(3), 157–165.

    Article  CAS  Google Scholar 

  44. Martin, I., Shastri, V. P., Padera, R. F., Yang, J., Mackay, A. J., Langer, R., et al. (2001). Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. Journal of Biomedical Materials Research, 55(2), 229–235.

    Article  CAS  PubMed  Google Scholar 

  45. Gueguinou, N., Huin-Schohn, C., Bascove, M., Bueb, J. L., Tschirhart, E., Legrand-Frossi, C., et al. (2009). Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? Journal of Leukocyte Biology, 86(5), 1027–1038.

    Article  CAS  PubMed  Google Scholar 

  46. Unsworth, B. R., & Lelkes, P. I. (1998). Growing tissues in microgravity. Nature Medicine, 4(8), 901–907.

    Article  CAS  PubMed  Google Scholar 

  47. Freed, L. E., & Vunjak-Novakovic, G. (2002). Spaceflight bioreactor studies of cells and tissues. Advances in Space Biology and Medicine, 8, 177–195.

    Article  CAS  PubMed  Google Scholar 

  48. Vunjak-Novakovic, G., Searby, N., De Luis, J., & Freed, L. E. (2002). Microgravity studies of cells and tissues. Annals of the New York Academy of Sciences, 974, 504–517.

    Article  PubMed  Google Scholar 

  49. Wolf, D. A., & Schwarz, R. P. (1991). Analysis of gravity-induced particle motion and fluid perfusion flow in the NASA-designed rotating zero-head space tissue culture vessel.

    Google Scholar 

  50. Nickerson, C. A., & Ott, C. M. (2004). A new dimension in modeling infectious disease. ASM News, 70(4), 169–175.

    Google Scholar 

  51. Hjelm, B. E., Berta, A. N., Nickerson, C. A., Arntzen, C. J., & Herbst-Kralovetz, M. M. (2010). Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biology of Reproduction, 82(3), 617–627.

    Article  CAS  PubMed  Google Scholar 

  52. Durand, R. E., & Olive, P. L. (2001). Resistance of tumor cells to chemo- and radiotherapy modulated by the three-dimensional architecture of solid tumors and spheroids. Methods in Cell Biology, 64, 211–233.

    Article  CAS  PubMed  Google Scholar 

  53. Carterson, A. J., Honer zu Bentrup, K., Ott, C. M., Clarke, M. S., Pierson, D. L., Vanderburg, C. R., et al. (2005). A549 lung epithelial cells grown as three-dimensional aggregates: Alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infection and Immunity, 73(2), 1129–1140.

    Google Scholar 

  54. Carvalho, H. M., Teel, L. D., Goping, G., & O’Brien, A. D. (2005). A three-dimensional tissue culture model for the study of attach and efface lesion formation by enteropathogenic and enterohaemorrhagic Escherichia coli. Cellular Microbiology, 7(12), 1771–1781.

    Article  CAS  PubMed  Google Scholar 

  55. Duray, P. H., Yin, S. R., Ito, Y., Bezrukov, L., Cox, C., Cho, M. S., et al. (2005). Invasion of human tissue ex vivo by Borrelia burgdorferi. Journal of Infectious Diseases, 191(10), 1747–1754.

    Article  PubMed  Google Scholar 

  56. Goodwin, T. J., Jessup, J. M., & Wolf, D. A. (1992). Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. Vitro Cellular & Developmental Biology, 28A(1), 47–60.

    Article  CAS  Google Scholar 

  57. Guo, P., Weinstein, A. M., & Weinbaum, S. (2000). A hydrodynamic mechanosensory hypothesis for brush border microvilli. American Journal of Physiology Renal Physiology, 279(4), F698–F712.

    CAS  PubMed  Google Scholar 

  58. Hughes, J. H., & Long, J. P. (2001). Simulated microgravity impairs respiratory burst activity in human promyelocytic cells. In Vitro Cellular & Developmental Biology Animal, 37(4), 209–215.

    Article  CAS  Google Scholar 

  59. Ingram, M., Techy, G. B., Saroufeem, R., Yazan, O., Narayan, K. S., Goodwin, T. J., et al. (1997). Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cellular & Developmental Biology Animal, 33(6), 459–466.

    Article  CAS  Google Scholar 

  60. Jessup, J. M., Frantz, M., Sonmez-Alpan, E., Locker, J., Skena, K., Waller, H., et al. (2000). Microgravity culture reduces apoptosis and increases the differentiation of a human colorectal carcinoma cell line. In Vitro Cellular & Developmental Biology Animal, 36(6), 367–373.

    Article  CAS  Google Scholar 

  61. Long, J. P., Pierson, S., & Hughes, J. H. (1999). Suppression of Epstein-Barr virus reactivation in lymphoblastoid cells cultured in simulated microgravity. In Vitro Cellular & Developmental Biology Animal, 35(1), 49–54.

    Article  CAS  Google Scholar 

  62. Margolis, L. B., Fitzgerald, W., Glushakova, S., Hatfill, S., Amichay, N., Baibakov, B., et al. (1997). Lymphocyte trafficking and HIV infection of human lymphoid tissue in a rotating wall vessel bioreactor. AIDS Research and Human Retroviruses, 13(16), 1411–1420.

    Article  CAS  PubMed  Google Scholar 

  63. Pei, M., He, F., Kish, V. L., & Vunjak-Novakovic, G. (2008). Engineering of functional cartilage tissue using stem cells from synovial lining: A preliminary study. Clinical Orthopaedics and Related Research, 466(8), 1880–1889.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sainz, B., Jr., TenCate, V., & Uprichard, S. L. (2009). Three-dimensional Huh7 cell culture system for the study of hepatitis C virus infection. Virology Journal, 6, 103.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schwarz, R. P., Goodwin, T. J., & Wolf, D. A. (1992). Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity. Journal of Tissue Culture Methods, 14(2), 51–57.

    Article  CAS  PubMed  Google Scholar 

  66. Smith, Y. C., Grande, K. K., Rasmussen, S. B., & O’Brien, A. D. (2006). Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infection and Immunity, 74(1), 750–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Straub, T. M., Honer zu Bentrup, K., Orosz-Coghlan, P., Dohnalkova, A., Mayer, B. K., Bartholomew, R. A., et al. (2007). In vitro cell culture infectivity assay for human noroviruses. Emerging Infectious Diseases, 13(3), 396–403.

    Google Scholar 

  68. Honer zu Bentrup, K., Ramamurthy, R., Ott, C. M., Emami, K., Nelman-Gonzalez, M., Wilson, J. W., et al. (2006). Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes and Infection, 8(7), 1813–1825.

    Google Scholar 

  69. Lamarca, H. L., Ott, C. M., Honer Zu Bentrup, K., Leblanc, C. L., Pierson, D. L., Nelson, A. B., et al. (2005). Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion. Placenta, 26(10), 709–720.

    Article  CAS  PubMed  Google Scholar 

  70. Myers, T. A., Nickerson, C. A., Kaushal, D., Ott, C. M., Honer zu Bentrup, K., Ramamurthy, R., et al. (2008). Closing the phenotypic gap between transformed neuronal cell lines in culture and untransformed neurons. Journal of Neuroscience Methods, 174(1), 31–41.

    Google Scholar 

  71. Schmeichel, K. L., & Bissell, M. J. (2003). Modeling tissue-specific signaling and organ function in three dimensions. Journal of Cell Science, 116(Pt 12), 2377–2388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Griffith, L. G., & Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology, 7(3), 211–224.

    Article  CAS  PubMed  Google Scholar 

  73. Weigelt, B., & Bissell, M. J. (2008). Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Seminars in Cancer Biology, 18(5), 311–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ingber, D. E. (1998). The architecture of life. Scientific American, 278(1), 48–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheryl A. Nickerson PhD or C. Mark Ott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nickerson, C.A., Mark Ott, C. (2016). Biomedical Advances in Three Dimensions: An Overview of Human Cellular Studies in Space and Spaceflight Analogues. In: Nickerson, C., Pellis, N., Ott, C. (eds) Effect of Spaceflight and Spaceflight Analogue Culture on Human and Microbial Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3277-1_4

Download citation

Publish with us

Policies and ethics