Skip to main content

Response of Pseudomonas aeruginosa to Spaceflight and Spaceflight Analogue Culture: Implications for Astronaut Health and the Clinic

  • Chapter
Effect of Spaceflight and Spaceflight Analogue Culture on Human and Microbial Cells

Abstract

Since its first reported isolation from an astronaut in 1970, the opportunistic pathogen Pseudomonas aeruginosa has been a commonly studied microorganism in microgravity and microgravity-analogue conditions. Besides being part of the normal human flora, P. aeruginosa is ubiquitous in the crew’s direct surroundings, including air, water, and surfaces.

This chapter describes the main results from the phenotypic and molecular genetic responses of this clinically important bacterium to the spaceflight environment. Culturing P. aeruginosa in microgravity and/or microgravity-analogue conditions gave rise to an altered biofilm phenotype, increased resistance to environmental stressors and certain antibiotics, enhanced production of virulence factors, and differential gene expression. The RNA-binding protein Hfq was identified as a potential key transcriptional regulator in the microgravity and microgravity-analogue responses of P. aeruginosa, which suggests a conserved response with Salmonella enterica serovar Typhimurium (the first pathogen for which this response was observed in both microgravity and microgravity-analogue culture) and Staphylococcus aureus. Besides the importance of these findings for the risk assessment, prevention, and treatment of infectious diseases during short-term and long-duration spaceflight missions, they entail applications for the clinic. Specifically, the low fluid-shear conditions encountered in microgravity-analogue (and potentially microgravity) conditions are relevant to the microenvironment encountered by P. aeruginosa during mucosal infections, including in the lungs of cystic fibrosis patients.

Further research is needed to evaluate whether the altered behavior of P. aeruginosa in microgravity conditions in combination with the immunocompromised nature of astronauts could lead to a higher risk for infectious diseases. In addition, expanding our knowledge on how the in vivo microenvironmental conditions, including low fluid-shear, affect the disease phenotype of P. aeruginosa could help in the design of novel strategies to prevent and combat this opportunistic pathogen both during spaceflight missions and in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor, G. R. (1974). Recovery of medically important microorganisms from Apollo astronauts. Aerospace Medicine, 45(8), 824–828.

    CAS  PubMed  Google Scholar 

  2. Juergensmeyer, M. A., Juergensmeyer, E. A., & Guikema, J. A. (1999). Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Microgravity Science and Technology, 12(1), 41–47.

    CAS  PubMed  Google Scholar 

  3. McLean, R. J., Cassanto, J. M., et al. (2001). Bacterial biofilm formation under microgravity conditions. FEMS Microbiology Letters, 195(2), 115–119.

    Google Scholar 

  4. Crabbé, A., De Boever, P., et al. (2008). Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. Environmental Microbiology, 10(8), 2098–2110.

    Google Scholar 

  5. Crabbé, A., Pycke, B., et al. (2010). Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environmental Microbiology, 12(6), 1545–1564.

    Google Scholar 

  6. Crabbé, A., Schurr, M. J., et al. (2011). Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Applied and Environmental Microbiology, 77(4), 1221–1230.

    Google Scholar 

  7. Kim, W., Tengra, F. K., et al. (2013). Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PLoS One, 8(4), e62437.

    Google Scholar 

  8. Gessard, C. (1882). Sur les colorations bleue et verte des lignes a pansements. Comptes Rendus de l'Académie des Sciences – Series D, 94, 536–538.

    Google Scholar 

  9. Khan, N. H., Ahsan, M., et al. (2010). Culturability and survival of marine, freshwater and clinical Pseudomonas aeruginosa. Microbes and Environments, 25(4), 266–274.

    Google Scholar 

  10. Kimata, N., Nishino, T., et al. (2004). Pseudomonas aeruginosa isolated from marine environments in Tokyo Bay. Microbial Ecology, 47(1), 41–47.

    Google Scholar 

  11. Stover, C. K., Pham, X. Q., et al. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406(6799), 959–964.

    Google Scholar 

  12. Blanc, D. S., Petignat, C., et al. (1998). Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: A prospective epidemiologic study. Clinical Microbiology and Infection, 4(5), 242–247.

    Google Scholar 

  13. Pechere, J. C., & Kohler, T. (1999). Patterns and modes of beta-lactam resistance in Pseudomonas aeruginosa. Clinical Microbiology and Infection, 5(Suppl 1), S15–S18.

    Article  CAS  PubMed  Google Scholar 

  14. McGowan, J. E., Jr. (2006). Resistance in nonfermenting gram-negative bacteria: Multidrug resistance to the maximum. American Journal of Infection Control, 34(5 Suppl 1), S29–S37. discussion S64–73.

    Article  PubMed  Google Scholar 

  15. Stevens, A. M., Schuster, M., & Rumbaugh, K. P. (2012). Working together for the common good: Cell-cell communication in bacteria. Journal of Bacteriology, 194(9), 2131–2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams, P., & Camara, M. (2009). Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules. Current Opinion in Microbiology, 12(2), 182–191.

    Article  CAS  PubMed  Google Scholar 

  17. Gambello, M. J., Kaye, S., & Iglewski, B. H. (1993). LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infection and Immunity, 61(4), 1180–1184.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Toder, D. S., Ferrell, S. J., et al. (1994). lasA and lasB genes of Pseudomonas aeruginosa: Analysis of transcription and gene product activity. Infection and Immunity, 62(4), 1320–1327.

    Google Scholar 

  19. Ochsner, U. A., & Reiser, J. (1995). Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 92(14), 6424–6428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hassett, D. J., Ma, J. F., et al. (1999). Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Molecular Microbiology, 34(5), 1082–1093.

    Google Scholar 

  21. Brint, J. M., & Ohman, D. E. (1995). Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. Journal of Bacteriology, 177(24), 7155–7163.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Latifi, A., Winson, M. K., et al. (1995). Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Molecular Microbiology, 17(2), 333–343.

    Google Scholar 

  23. Pearson, J. P., Pesci, E. C., & Iglewski, B. H. (1997). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. Journal of Bacteriology, 179(18), 5756–5767.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Winzer, K., Falconer, C., et al. (2000). The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. Journal of Bacteriology, 182(22), 6401–6411.

    Google Scholar 

  25. Gambello, M. J., & Iglewski, B. H. (1991). Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. Journal of Bacteriology, 173(9), 3000–3009.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pearson, J. P., Gray, K. M., et al. (1994). Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 91(1), 197–201.

    Google Scholar 

  27. Kiratisin, P., Tucker, K. D., & Passador, L. (2002). LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. Journal of Bacteriology, 184(17), 4912–4919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ochsner, U. A., Koch, A. K., et al. (1994). Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 176(7), 2044–2054.

    Google Scholar 

  29. Pearson, J. P., Passador, L., et al. (1995). A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 92(5), 1490–1494.

    Google Scholar 

  30. Gallagher, L. A., McKnight, S. L., et al. (2002). Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. Journal of Bacteriology, 184(23), 6472–6480.

    Google Scholar 

  31. Tashiro, Y., et al. (2013). Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microbes and Environments, 28(1), 13–24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Balasubramanian, D., et al. (2013). A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Research, 41(1), 1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh, P. K., Schaefer, A. L., et al. (2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407(6805), 762–764.

    Google Scholar 

  34. Lam, J., Chan, R., et al. (1980). Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infection and Immunity, 28(2), 546–556.

    Google Scholar 

  35. Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews. Microbiology, 8(9), 623–633.

    CAS  PubMed  Google Scholar 

  36. Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harmsen, M., Yang, L., et al. (2010). An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunology and Medical Microbiology, 59(3), 253–268.

    Google Scholar 

  38. O’Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30(2), 295–304.

    Article  PubMed  Google Scholar 

  39. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284(5418), 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  40. Stapper, A. P., Narasimhan, G., et al. (2004). Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. Journal of Medical Microbiology, 53(Pt 7), 679–690.

    Google Scholar 

  41. Lopez, D., Vlamakis, H., & Kolter, R. (2010). Biofilms. Cold Spring Harbor Perspectives in Biology, 2(7), a000398.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Alhede, M., Kragh, K. N., et al. (2011). Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One, 6(11), e27943.

    Google Scholar 

  43. Kim, W., Tengra, F. K., et al. (2003). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology, 48(6), 1511–1524.

    Google Scholar 

  44. Boles, B. R., Thoendel, M., & Singh, P. K. (2005). Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Molecular Microbiology, 57(5), 1210–1223.

    Article  CAS  PubMed  Google Scholar 

  45. Friedman, L., & Kolter, R. (2004). Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. Journal of Bacteriology, 186(14), 4457–4465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jackson, K. D., Starkey, M., et al. (2004). Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. Journal of Bacteriology, 186(14), 4466–4475.

    Google Scholar 

  47. Matsukawa, M., & Greenberg, E. P. (2004). Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. Journal of Bacteriology, 186(14), 4449–4456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haussler, S., Ziegler, I., et al. (2003). Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. Journal of Medical Microbiology, 52(Pt 4), 295–301.

    Google Scholar 

  49. Sarkisova, S., Patrauchan, M. A., et al. (2005). Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. Journal of Bacteriology, 187(13), 4327–4337.

    Google Scholar 

  50. Ma, L., Jackson, K. D., et al. (2006). Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. Journal of Bacteriology, 188(23), 8213–8221.

    Google Scholar 

  51. Smith, E. E., Buckley, D. G., et al. (2006). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proceedings of the National Academy of Sciences of the United States of America, 103(22), 8487–8492.

    Google Scholar 

  52. Yamamoto, K., Haruta, S., et al. (2010). Determinative factors of competitive advantage between aerobic bacteria for niches at the air-liquid interface. Microbes and Environments, 25(4), 317–320.

    Google Scholar 

  53. Yamamoto, K., Arai, H., et al. (2011). Trade-off between oxygen and iron acquisition in bacterial cells at the air-liquid interface. FEMS Microbiology Ecology, 77(1), 83–94.

    Google Scholar 

  54. Yamamoto, K., Arai, H., et al. (2012). Involvement of flagella-driven motility and pili in Pseudomonas aeruginosa colonization at the air-liquid interface. Microbes and Environments, 27(3), 320–323.

    Google Scholar 

  55. Pressler, T., Bohmova, C., et al. (2011). Chronic Pseudomonas aeruginosa infection definition: EuroCareCF Working Group report. Journal of Cystic Fibrosis, 10(Suppl 2), S75–S78.

    Google Scholar 

  56. Evans, L. R., & Linker, A. (1973). Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. Journal of Bacteriology, 116(2), 915–924.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mathee, K., Ciofu, O., et al. (1999). Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: A mechanism for virulence activation in the cystic fibrosis lung. Microbiology, 145(Pt 6), 1349–1357.

    Google Scholar 

  58. Govan, J. R., & Fyfe, J. A. (1978). Mucoid Pseudomonas aeruginosa and cystic fibrosis: Resistance of the mucoid from to carbenicillin, flucloxacillin and tobramycin and the isolation of mucoid variants in vitro. Journal of Antimicrobial Chemotherapy, 4(3), 233–240.

    Article  CAS  PubMed  Google Scholar 

  59. Speert, D. P., Farmer, S. W., et al. (1990). Conversion of Pseudomonas aeruginosa to the phenotype characteristic of strains from patients with cystic fibrosis. Journal of Clinical Microbiology, 28(2), 188–194.

    Google Scholar 

  60. Terry, J. M., Pina, S. E., & Mattingly, S. J. (1991). Environmental conditions which influence mucoid conversion Pseudomonas aeruginosa PAO1. Infection and Immunity, 59(2), 471–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Martin, D. W., Holloway, B. W., & Deretic, V. (1993). Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. Journal of Bacteriology, 175(4), 1153–1164.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. DeVries, C. A., & Ohman, D. E. (1994). Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. Journal of Bacteriology, 176(21), 6677–6687.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Balasubramanian, D., Kong, K. F., et al. (2011). Co-regulation of {beta}-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa. Journal of Medical Microbiology, 60(Pt 2), 147–156.

    Google Scholar 

  64. Balloy, V., et al. (2007). The role of flagellin versus motility in acute lung disease caused by Pseudomonas aeruginosa. Journal of Infectious Diseases, 196(2), 289–296.

    Article  CAS  PubMed  Google Scholar 

  65. Arora, S. K., et al. (2001). A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 98(16), 9342–9347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Engel, J. N. (2003). Molecular pathogenesis of acute Pseudomonas aeruginosa infections. In A. Hauser & J. Rello (Eds.), Severe infections caused by Pseudomonas Aeruginosa (pp. 201–230). New York: Kluwer Academic/Plenum Press.

    Chapter  Google Scholar 

  67. Morihara, K. (1964). Production of elastase and proteinase by Pseudomonas aeruginosa. Journal of Bacteriology, 88, 745–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. McIver, K. S., Kessler, E., & Ohman, D. E. (2004). Identification of residues in the Pseudomonas aeruginosa elastase propeptide required for chaperone and secretion activities. Microbiology, 150(Pt 12), 3969–3977.

    Article  CAS  PubMed  Google Scholar 

  69. Azghani, A. O. (1996). Pseudomonas aeruginosa and epithelial permeability: Role of virulence factors elastase and exotoxin A. American Journal of Respiratory Cell and Molecular Biology, 15(1), 132–140.

    Article  CAS  PubMed  Google Scholar 

  70. de Bentzmann, S., Polette, M., et al. (2000). Pseudomonas aeruginosa virulence factors delay airway epithelial wound repair by altering the actin cytoskeleton and inducing overactivation of epithelial matrix metalloproteinase-2. Laboratory Investigation, 80(2), 209–219.

    Google Scholar 

  71. Horvat, R. T., Clabaugh, M., et al. (1989). Inactivation of human gamma interferon by Pseudomonas aeruginosa proteases: Elastase augments the effects of alkaline protease despite the presence of alpha 2-macroglobulin. Infection and Immunity, 57(6), 1668–1674.

    Google Scholar 

  72. Leidal, K. G., Munson, K. L., et al. (2003). Metalloproteases from Pseudomonas aeruginosa degrade human RANTES, MCP-1, and ENA-78. Journal of Interferon and Cytokine Research, 23(6), 307–318.

    Google Scholar 

  73. Parmely, M., Gale, A., et al. (1990). Proteolytic inactivation of cytokines by Pseudomonas aeruginosa. Infection and Immunity, 58(9), 3009–3014.

    Google Scholar 

  74. Theander, T. G., Kharazmi, A., et al. (1988). Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases. Infection and Immunity, 56(7), 1673–1677.

    Google Scholar 

  75. Schad, P. A., Bever, R. A., et al. (1987). Cloning and characterization of elastase genes from Pseudomonas aeruginosa. Journal of Bacteriology, 169(6), 2691–2696.

    Google Scholar 

  76. Kessler, E., Safrin, M., et al. (1993). Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. Journal of Biological Chemistry, 268(10), 7503–7508.

    Google Scholar 

  77. Kessler, E. (1995). beta-lytic endopeptidases. Methods in Enzymology, 248, 740–756.

    Article  CAS  PubMed  Google Scholar 

  78. Kessler, E., & Ohman, D. E. (1998). Staphylolysin. In A. J. Barrett, N. D. Rawlings, & J. F. Woessner (Eds.), Handbook of proteolytic enzymes (1st ed., pp. 1476–1478). London: Academic.

    Google Scholar 

  79. Kessler, E., Safrin, M., et al. (1997). Inhibitors and specificity of Pseudomonas aeruginosa LasA. Journal of Biological Chemistry, 272(15), 9884–9889.

    Google Scholar 

  80. Abdel-Mawgoud, A. M., Lepine, F., & Deziel, E. (2010). Rhamnolipids: Diversity of structures, microbial origins and roles. Applied Microbiology and Biotechnology, 86(5), 1323–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Johnson, M. K., & Boese-Marrazzo, D. (1980). Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infection and Immunity, 29(3), 1028–1033.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Jensen, P. O., Bjarnsholt, T., et al. (2007). Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology, 153(Pt 5), 1329–1338.

    Google Scholar 

  83. McClure, C. D., & Schiller, N. L. (1992). Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. Journal of Leukocyte Biology, 51(2), 97–102.

    CAS  PubMed  Google Scholar 

  84. Read, R. C., Roberts, P., et al. (1992). Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. Journal of Applied Physiology, 72(6), 2271–2277.

    Google Scholar 

  85. Burger, M. M., Glaser, L., & Burton, R. M. (1963). The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. Journal of Biological Chemistry, 238, 2595–2602.

    CAS  PubMed  Google Scholar 

  86. Deziel, E., Lepine, F., et al. (2003). rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology, 149(Pt 8), 2005–2013.

    Google Scholar 

  87. Haba, E., Pinazo, A., et al. (2003). Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnology and Bioengineering, 81(3), 316–322.

    Google Scholar 

  88. Caiazza, N. C., Shanks, R. M., & O’Toole, G. A. (2005). Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. Journal of Bacteriology, 187(21), 7351–7361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dietrich, L. E., Teal, T. K., et al. (2008). Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science, 321(5893), 1203–1206.

    Google Scholar 

  90. Wilson, R., Sykes, D. A., et al. (1988). Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infection and Immunity, 56(9), 2515–2517.

    Google Scholar 

  91. Paroutis, P., Touret, N., & Grinstein, S. (2004). The pH of the secretory pathway: Measurement, determinants, and regulation. Physiology (Bethesda), 19, 207–215.

    Article  CAS  Google Scholar 

  92. Karlsson, K. A. (2001). Pathogen-host protein-carbohydrate interactions as the basis of important infections. Advances in Experimental Medicine and Biology, 491, 431–443.

    Article  CAS  PubMed  Google Scholar 

  93. Glick, J., & Garber, N. (1983). The intracellular localization of Pseudomonas aeruginosa lectins. Journal of General Microbiology, 129(10), 3085–3090.

    CAS  PubMed  Google Scholar 

  94. Tielker, D., Hacker, S., et al. (2005). Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology, 151(Pt 5), 1313–1323.

    Google Scholar 

  95. Bajolet-Laudinat, O., Girod-de Bentzmann, S., et al. (1994). Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture. Infection and Immunity, 62(10), 4481–4487.

    Google Scholar 

  96. Laughlin, R. S., Musch, M. W., et al. (2000). The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Annals of Surgery, 232(1), 133–142.

    Google Scholar 

  97. Sonawane, A., Jyot, J., & Ramphal, R. (2006). Pseudomonas aeruginosa LecB is involved in pilus biogenesis and protease IV activity but not in adhesion to respiratory mucins. Infection and Immunity, 74(12), 7035–7039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Valentin-Hansen, P., Eriksen, M., & Udesen, C. (2004). The bacterial Sm-like protein Hfq: A key player in RNA transactions. Molecular Microbiology, 51(6), 1525–1533.

    Article  CAS  PubMed  Google Scholar 

  99. Majdalani, N., Vanderpool, C. K., & Gottesman, S. (2005). Bacterial small RNA regulators. Critical Reviews in Biochemistry and Molecular Biology, 40(2), 93–113.

    Article  CAS  PubMed  Google Scholar 

  100. Sonnleitner, E., Hagens, S., et al. (2003). Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microbial Pathogenesis, 35(5), 217–228.

    Google Scholar 

  101. Passador, L., Cook, J. M., et al. (1993). Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science, 260(5111), 1127–1130.

    Google Scholar 

  102. Suh, S. J., Silo-Suh, L., et al. (1999). Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. Journal of Bacteriology, 181(13), 3890–3897.

    Google Scholar 

  103. Chugani, S. A., Whiteley, M., et al. (2001). QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 98(5), 2752–2757.

    Google Scholar 

  104. Gallagher, L. A., & Manoil, C. (2001). Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. Journal of Bacteriology, 183(21), 6207–6214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Usher, L. R., Lawson, R. A., et al. (2002). Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: A potential mechanism of persistent infection. Journal of Immunology, 168(4), 1861–1868.

    Google Scholar 

  106. Erb-Downward, J. R., Thompson, D. L., et al. (2011). Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One, 6(2), e16384.

    Google Scholar 

  107. Bruce, R. J., Ott, C. M., et al. (2005). Microbial surveillance of potable water sources of the International Space Station. SAE Transactions, 114(1), 283–292.

    Google Scholar 

  108. Novikova, N., De Boever, P., et al. (2006). Survey of environmental biocontamination on board the International Space Station. Research in Microbiology, 157(1), 5–12.

    Google Scholar 

  109. La Duc, M. T., Kern, R., & Venkateswaran, K. (2004). Microbial monitoring of spacecraft and associated environments. Microbial Ecology, 47(2), 150–158.

    Article  PubMed  Google Scholar 

  110. Novikova, N. D. (2004). Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microbial Ecology, 47(2), 127–132.

    Article  CAS  PubMed  Google Scholar 

  111. Ball, J. R., & Evans, C. H., Jr. (Eds.). (2001). Safe passage: Astronaut care for exploration missions (p. 105). Washington: National Academy Press.

    Google Scholar 

  112. Gu, J. D., Roman, M., et al. (1998). The role of microbial biofilms in deterioration of space station candidate materials. International Biodeterioration and Biodegradation, 41(1), 25–33.

    Google Scholar 

  113. Zaloguyev, S. N., & Viktorov, A. N. (1985). Results of microbiological studies performed during the use of Salyut-6 Space Station. Kosmicheskaya Biologiya i Aviakosmicheskaya Meditsina, 3, 64–66.

    Google Scholar 

  114. Viktorov, A. N. (1992). Microflora of cabins of manned space objects and the problem of biological damage to the structural materials used in them. Biologiya Aviakosmicheskaia i Ekologicheskaia Meditsina, 26(3), 41–48.

    CAS  Google Scholar 

  115. Schuerger, A. C. (1998). Microbial contamination of advanced life support (ALS) systems poses a moderate threat to the long-term stability of space-based bioregenerative systems. Life Support & Biosphere Science, 5(3), 325–337.

    CAS  Google Scholar 

  116. Crucian, B., Stowe, R., et al. (2013). Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. Journal of Clinical Immunology, 33(2), 456–465.

    Google Scholar 

  117. Gueguinou, N., Huin-Schohn, C., et al. (2009). Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? Journal of Leukocyte Biology, 86(5), 1027–1038.

    Google Scholar 

  118. Battista, N., Meloni, M. A., et al. (2012). 5-Lipoxygenase-dependent apoptosis of human lymphocytes in the International Space Station: Data from the ROALD experiment. FASEB Journal, 26(5), 1791–1798.

    Google Scholar 

  119. Sonnenfeld, G. (2005). The immune system in space, including Earth-based benefits of space-based research. Current Pharmaceutical Biotechnology, 6(4), 343–349.

    Article  CAS  PubMed  Google Scholar 

  120. Driscoll, J. A., Brody, S. L., & Kollef, M. H. (2007). The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs, 67(3), 351–368.

    Article  CAS  PubMed  Google Scholar 

  121. Funada, H., & Matsuda, T. (1998). Changes in the incidence and etiological patterns of bacteremia associated with acute leukemia over a 25-year period. Internal Medicine, 37(12), 1014–1018.

    Article  CAS  PubMed  Google Scholar 

  122. Chatzinikolaou, I., Abi-Said, D., et al. (2000). Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: Retrospective analysis of 245 episodes. Archives of Internal Medicine, 160(4), 501–509.

    Google Scholar 

  123. Wei, L. X., Zhou, J. N., et al. (2003). Lymphocyte reduction induced by hindlimb unloading: Distinct mechanisms in the spleen and thymus. Cell Research, 13(6), 465–471.

    Google Scholar 

  124. Aviles, H., Belay, T., et al. (2003). Increased susceptibility to Pseudomonas aeruginosa infection under hindlimb-unloading conditions. Journal of Applied Physiology, 95(1), 73–80.

    Google Scholar 

  125. Beeson, J. G., Rogerson, S. J., et al. (2000). Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria. Nature Medicine, 6(1), 86–90.

    Google Scholar 

  126. Friedman, M. H., & Giddens, D. P. (2005). Blood flow in major blood vessels-modeling and experiments. Annals of Biomedical Engineering, 33(12), 1710–1713.

    Article  PubMed  Google Scholar 

  127. Guo, P., Weinstein, A. M., & Weinbaum, S. (2000). A hydrodynamic mechanosensory hypothesis for brush border microvilli. American Journal of Physiology. Renal Physiology, 279(4), F698–F712.

    CAS  PubMed  Google Scholar 

  128. Goeres, D. M., Hamilton, M. A., et al. (2009). A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor. Nature Protocols, 4(5), 783–788.

    Google Scholar 

  129. Blake, J. (1973). A note on mucus shear rates. Respiration Physiology, 17(3), 394–399.

    Article  CAS  PubMed  Google Scholar 

  130. Fonseca, A. P., & Sousa, J. C. (2007). Effect of shear stress on growth, adhesion and biofilm formation of Pseudomonas aeruginosa with antibiotic-induced morphological changes. International Journal of Antimicrobial Agents, 30(3), 236–241.

    Article  CAS  PubMed  Google Scholar 

  131. Purevdorj, B., Costerton, J. W., & Stoodley, P. (2002). Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 68(9), 4457–4464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stoodley, P., Lewandowski, Z., et al. (1999). Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology. Biotechnology and Bioengineering, 65(1), 83–92.

    Google Scholar 

  133. Lecuyer, S., Rusconi, R., et al. (2011). Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa. Biophysical Journal, 100(2), 341–350.

    Google Scholar 

  134. Zhang, W., Sileika, T., & Packman, A. I. (2013). Effects of fluid flow conditions on interactions between species in biofilms. FEMS Microbiology Ecology, 84(2), 344–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pereira, M. O., Kuehn, M., et al. (2002). Effect of flow regime on the architecture of a Pseudomonas fluorescens biofilm. Biotechnology and Bioengineering, 78(2), 164–171.

    Google Scholar 

  136. Sriramulu, D. D., Lunsdorf, H., et al. (2005). Microcolony formation: A novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. Journal of Medical Microbiology, 54(Pt 7), 667–676.

    Google Scholar 

  137. Kim, W., Tengra, F. K., et al. (2013). Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability. BMC Microbiology, 13(1), 241.

    Google Scholar 

  138. Wilson, J. W., Ott, C. M., et al. (2007). Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16299–16304.

    Google Scholar 

  139. Wilson, J. W., Ott, C. M., et al. (2008). Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLoS One, 3(12), e3923.

    Google Scholar 

  140. Castro, S. L., Nelman-Gonzalez, M., et al. (2011). Low fluid shear culture of Staphylococcus aureus induces attachment-independent biofilm formation and represses hfq expression. Applied and Environmental Microbiology, 77(18), 6368–6378.

    Google Scholar 

  141. Wilson, J. W., Ramamurthy, R., et al. (2002). Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13807–13812.

    Google Scholar 

  142. Guadarrama, S., Pulcini, E., et al. (2005). Pseudomonas aeruginosa growth and production of Exotoxin A in static and modeled microgravity environments. Gravitational and Space Biology Bulletin, 18(2), 85–86.

    Google Scholar 

  143. England, L. S., Gorzelak, M., & Trevors, J. T. (2003). Growth and membrane polarization in Pseudomonas aeruginosa UG2 grown in randomized microgravity in a high aspect ratio vessel. Biochimica et Biophysica Acta, 1624(1–3), 76–80.

    Article  CAS  PubMed  Google Scholar 

  144. Ciofu, O., Mandsberg, L. F., et al. (2012). Phenotypes selected during chronic lung infection in cystic fibrosis patients: Implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunology and Medical Microbiology, 65(2), 215–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Crabbé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crabbé, A., Ledesma, M.A., Mark Ott, C., Nickerson, C.A. (2016). Response of Pseudomonas aeruginosa to Spaceflight and Spaceflight Analogue Culture: Implications for Astronaut Health and the Clinic. In: Nickerson, C., Pellis, N., Ott, C. (eds) Effect of Spaceflight and Spaceflight Analogue Culture on Human and Microbial Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3277-1_12

Download citation

Publish with us

Policies and ethics