Skip to main content

Why Is Neuromechanical Modeling of Balance and Locomotion So Hard?

  • Chapter
  • First Online:
Neuromechanical Modeling of Posture and Locomotion

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

A goal and challenge in neuromechanical modeling is to develop validated simulations to predict the effects of neuromotor deficits and therapies on movements. This has been particularly challenging in balance and locomotion because they are inherently unstable, making it difficult to explore model parameters in a way that still coordinates the body in a functional way. Integrating realistic and validated musculoskeletal models with neural control mechanisms is critical to our ability to predict how human robustly move in the environment. Here we briefly review both human locomotion models, which generally focus on modeling the physical dynamics of movement with simplified models of neural control, as well as balance models, which model sensorimotor dynamics and processing with simplified biomechanical models. Combining complex neural and musculoskeletal models increases the redundancy in a model and allows us to study how motor variability and robustness are exploited to produce movements in both healthy and impaired individuals. To advance, the integration of neuromechanical modeling and experimental approaches will be critical in testing specific hypotheses concerning how and why neuromechanical flexibility is both exploited and constrained under various movement contexts. We give a few examples of how the close interplay between models and experiments can reveal neuromechanical principles of movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackermann M, van den Bogert AJ (2010) Optimality principles for model-based prediction of human gait. J Biomech 43:1055–1060

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexandrov AV, Frolov AA, Horak FB, Carlson-Kuhta P, Park S (2005) Feedback equilibrium control during human standing. Biol Cybern 1–14

    Google Scholar 

  • Allen JL, Neptune RR (2012) Three-dimensional modular control of human walking. J Biomech 45:2157–2163

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen JL, Kautz SA, Neptune RR (2013) The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance. Clin Biomech (Bristol Avon) 28:697–704

    Article  Google Scholar 

  • Aoi S, Ogihara N, Funato T, Sugimoto Y, Tsuchiya K (2010) Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biol Cybern 102:373–387

    Article  PubMed  Google Scholar 

  • Aoi S (2015) Neuromusculoskeletal modeling for the adaptive control of posture during locomotion. In: Prilutsky BI, Edwards DH Jr (eds) Neuromechanical modeling of posture and locomotion. Springer, New York (in press)

    Google Scholar 

  • Basmajian JV, De Luca C (1985) Muscles alive. Williams & Wilkins, Baltimore

    Google Scholar 

  • Berger DJ, Gentner R, Edmunds T, Pai DK, d’Avella A (2013) Differences in adaptation rates after virtual surgeries provide direct evidence for modularity. J Neurosci 33:12384–12394

    Article  CAS  PubMed  Google Scholar 

  • Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, New York

    Google Scholar 

  • Bingham JT (2013) The effects of delayed feedback and configuration on stable interactions between the neural and musculoskeletal systems[Thesis]. Type, Georgia Institute of Technology, Atlanta

    Google Scholar 

  • Bingham JT, Ting LH (2013) Stability radius as a method for comparing the dynamics of neuromechanical systems. IEEE Trans Neural Syst Rehabil Eng 21:840–848

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingham JT, Choi JT, Ting LH (2011) Stability in a frontal plane model of balance requires coupled changes to postural configuration and neural feedback control. J Neurophysiol 106:437–448

    Article  PubMed  PubMed Central  Google Scholar 

  • Bizzi E, Cheung VC, d’Avella A, Saltiel P, Tresch M (2008) Combining modules for movement. Brain Res Rev 57:125–133

    Article  CAS  PubMed  Google Scholar 

  • Blickhan R (1989) The spring-mass model for running and hopping. J Biomech 22:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Borzelli D, Berger DJ, Pai DK, d’Avella A (2013) Effort minimization and synergistic muscle recruitment for three-dimensional force generation. Front Comput Neurosci 7:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown TG (1914) On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol 48:18–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan TS, Lloyd DG, Manal K, Besier TF (2004) Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J Appl Biomech 20:367–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunderson N, Bingham J (2015) Better science through predictive modeling: numerical tools for understanding neuromechanical interactions. In: Prilutsky BI, Edwards DH Jr (eds) Neuromechanical modeling of posture and locomotion. Springer, New York (in press)

    Google Scholar 

  • Bunderson NE, Bingham JT, Sohn MH, Ting LH, Burkholder TJ (2012) Neuromechanic: a computational platform for simulation and analysis of the neural control of movement. Int J Numer Method Biomed Eng 28:1015–1027

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavagna GA, Saibene FP, Margaria R (1964) Mechanical work in running. J Appl Physiol 19:249–256

    CAS  PubMed  Google Scholar 

  • Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 233:R243–R261

    CAS  PubMed  Google Scholar 

  • CDC (2008) Falls among older adults: an overview. Department of Health and Human Services, Centers for Disease Control

    Google Scholar 

  • Chvatal SA, Ting LH (2012) Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking. J Neurosci 32:12237–12250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chvatal SA, Ting LH (2013) Common muscle synergies for balance and walking. Front Comput Neurosci 7:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Chvatal SA, Torres-Oviedo G, Safavynia SA, Ting LH (2011) Common muscle synergies for control of center of mass and force in non-stepping and stepping postural behaviors. J Neurophysiol 106:999–1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA (2010) Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol 103:844–857

    Article  PubMed  Google Scholar 

  • Clark AE, Seth A, Reinbolt JA (2011) Biarticular muscles influence postural responses: implications for treatment of stiff-knee gait. Proceedings of the XIII International Symposium on Computer Simulation in Biomechanics. Leuven, Belgium

    Google Scholar 

  • Cofer D, Cymbalyuk G, Reid J, Zhu Y, Heitler WJ, Edwards DH (2010) AnimatLab: a 3D graphics environment for neuromechanical simulations. J Neurosci Methods 187:280–288

    Article  PubMed  Google Scholar 

  • Collins JJ (1995) The redundant nature of locomotor optimization laws. J Biomech 28:251–267

    Article  CAS  PubMed  Google Scholar 

  • Collins JJ, De Luca CJ (1993) Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp Brain Res 95:308–318

    Article  CAS  PubMed  Google Scholar 

  • Collins SH, Ruina A (2005) A bipedal walking robot with efficient and human-like gait. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 1983–1988

    Google Scholar 

  • Collins SH, Wisse M, Ruina A (2001) A three-dimensional passive-dynamic walking robot with two legs and knees. Int J Rob Res 20:607–615

    Article  Google Scholar 

  • Collins S, Ruina A, Tedrake R, Wisse M (2005) Efficient bipedal robots based on passive-dynamic walkers. Science 307:1082–1085

    Article  CAS  PubMed  Google Scholar 

  • Crowninshield RD, Brand RA (1981) A physiologically based criterion of muscle force prediction in locomotion. J Biomech 14:793–801

    Article  CAS  PubMed  Google Scholar 

  • Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M (2006) Analysis of musculoskeletal systems in the AnyBody modeling System. Simul Model Pract Th 14:1100–1111

    Article  Google Scholar 

  • d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6:300–308

    Article  CAS  Google Scholar 

  • de Rugy A, Loeb GE, Carroll TJ (2012) Muscle coordination is habitual rather than optimal. J Neurosci 32:7384–7391

    Article  PubMed  CAS  Google Scholar 

  • Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S (2000) How animals move: an integrative view. Sci New Ser 288:100–106

    CAS  Google Scholar 

  • Diener HC, Horak FB, Nashner LM (1988) Influence of stimulus parameters on human postural responses. J Neurophysiol 59:1888–1905

    CAS  PubMed  Google Scholar 

  • Dietz V, Sinkjaer T (2007) Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol 6:725–733

    Article  PubMed  Google Scholar 

  • Erdemir A, McLean S, Herzog W, van den Bogert AJ (2007) Model-based estimation of muscle forces exerted during movements. Clin Biomech (Bristol Avon) 22:131–154

    Article  Google Scholar 

  • Full RJ, Koditschek DE (1999) Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202(Pt 23):3325–32

    CAS  PubMed  Google Scholar 

  • Gawthrop P, Loram I, Lakie M (2009) Predictive feedback in human simulated pendulum balancing. Biol Cybern 101:131–146

    Article  PubMed  Google Scholar 

  • Geyer H, Seyfarth A, Blickhan R (2006) Compliant leg behaviour explains basic dynamics of walking and running. Proc Biol Sci 273:2861–2867

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall AL, Peterson CL, Kautz SA, Neptune RR (2011) Relationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis. Clin Biomech (Bristol Avon) 26:509–515

    Article  CAS  PubMed Central  Google Scholar 

  • Henry SM, Fung J, Horak FB (2001) Effect of stance width on multidirectional postural responses. J Neurophysiol 85:559–570

    CAS  PubMed  Google Scholar 

  • Higginson JS, Zajac FE, Neptune RR, Kautz SA, Delp SL (2006) Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J Biomech 39:1769–1777

    Article  CAS  PubMed  Google Scholar 

  • Hoy MG, Zernicke RF (1986) The role of intersegmental dynamics during rapid limb oscillations. J Biomech 19:867–877

    Article  CAS  PubMed  Google Scholar 

  • Insperger T, Milton J, Stepan G (2013) Acceleration feedback improves balancing against reflex delay. J R Soc Interface 10:20120763

    Article  PubMed  PubMed Central  Google Scholar 

  • Jo S, Massaquoi SG (2004) A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance. Biol Cybern 91:188–202

    Article  PubMed  Google Scholar 

  • Jo S, Massaquoi SG (2007) A model of cerebrocerebello-spinomuscular interaction in the sagittal control of human walking. Biol Cybern 96:279–307

    Article  PubMed  Google Scholar 

  • Kuo AD (1995) An optimal control model for analyzing human postural balance. IEEE Trans Biomed Eng 42:87–101

    Article  CAS  PubMed  Google Scholar 

  • Kuo AD (2005) An optimal state estimation model of sensory integration in human postural balance. J Neural Eng 2:S235–S249

    Article  PubMed  Google Scholar 

  • Kuo AD, Zajac FE (1993) Human standing posture: multi-joint movement strategies based on biomechanical constraints. Prog Brain Res 97:349–358

    Article  CAS  PubMed  Google Scholar 

  • Kurtzer I, Pruszynski JA, Herter TM, Scott SH (2006) Primate upper limb muscles exhibit activity patterns that differ from their anatomical action during a postural task. J Neurophysiol 95:493–504

    Article  PubMed  Google Scholar 

  • Kutch JJ, Valero-Cuevas FJ (2011) Muscle redundancy does not imply robustness to muscle dysfunction. J Biomech 44:1264–1270

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu MQ, Anderson FC, Schwartz MH, Delp SL (2008) Muscle contributions to support and progression over a range of walking speeds. J Biomech 41:3243–3252

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloyd DG, Besier TF (2003) An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 36:765–776

    Article  PubMed  Google Scholar 

  • Lockhart DB, Ting LH (2007) Optimal sensorimotor transformations for balance. Nat Neurosci 10:1329–1336

    Article  CAS  PubMed  Google Scholar 

  • Loeb GE (2012) Optimal isn’t good enough. Biol Cybern 106:757–765

    Article  PubMed  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2005) Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius. J Physiol 564:295–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri M, Clark AE, Reinbolt JA (2012) The use of a platform for dynamic simulation of movement: application to balance recovery. Proceedings of the American Society of Biomechanics. Gainesville, FL

    Google Scholar 

  • Markin SN, Klishko AN, Shevtsova NA, Lemay MA, Prilutsky BI, Rybak IA (2015) A neuromechanical model of spinal control of locomotion. In: Prilutsky BI, Edwards DH Jr (eds) Neuromechanical modeling of posture and locomotion. Springer, New York (in press)

    Google Scholar 

  • Martelli S, Calvetti D, Somersalo E, Viceconti M, Taddei F (2013) Computational tools for calculating alternative muscle force patterns during motion: a comparison of possible solutions. J Biomech 46:2097–2100

    Article  PubMed  Google Scholar 

  • Maurer C, Peterka RJ (2005) A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neurophysiol 93:189–200

    Article  PubMed  Google Scholar 

  • McGeer T (1990a) Passive dynamic walking. Int J Rob Res 9:62–82

    Article  Google Scholar 

  • McGeer T (1990b) Passive walking with knees. Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1640–1645, Cincinnati, OH

    Google Scholar 

  • McKay JL, Ting LH (2008) Functional muscle synergies constrain force production during postural tasks. J Biomech 41:299–306

    Article  PubMed  Google Scholar 

  • McKay JL, Ting LH (2012) Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts. PLoS Comput Biol 8:e1002465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKay JL, Burkholder TJ, Ting LH (2007) Biomechanical capabilities influence postural control strategies in the cat hindlimb. J Biomech 40:2254–2260

    Article  PubMed  Google Scholar 

  • McKay JL, Welch TD, Vidakovic B, Ting LH (2013) Statistically significant contrasts between EMG waveforms revealed using wavelet-based functional ANOVA. J Neurophysiol 109:591–602

    Article  PubMed  Google Scholar 

  • McLean SG, Su A, van den Bogert AJ (2003) Development and validation of a 3-D model to predict knee joint loading during dynamic movement. J Biomech Eng 125:864–874

    Article  CAS  PubMed  Google Scholar 

  • McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J Biomech 23(Suppl 1):65–78

    Article  PubMed  Google Scholar 

  • Milner-Brown H, Stein R (1975) The relation between the surface electromyogram and muscular force. J Physiol 246:549–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochon S, McMahon TA (1980) Ballistic walking. J Biomech 13:49–57

    Article  CAS  PubMed  Google Scholar 

  • Morasso PG, Schieppati M (1999) Can muscle stiffness alone stabilize upright standing? J Neurophysiol 82:1622–1626

    CAS  PubMed  Google Scholar 

  • Muller H, Sternad D (2004) Decomposition of variability in the execution of goal-oriented tasks: three components of skill improvement. J Exp Psychol Hum Percept Perform 30:212–233

    Article  PubMed  Google Scholar 

  • Nataraj R, Audu ML, Kirsch RF, Triolo RJ (2010) Comprehensive joint feedback control for standing by functional neuromuscular stimulation-a simulation study. IEEE Trans Neural Syst Rehabil Eng 18:646–657

    Article  PubMed  PubMed Central  Google Scholar 

  • Nataraj R, Audu ML, Kirsch RF, Triolo RJ (2012a) Center of mass acceleration feedback control for standing by functional neuromuscular stimulation: a simulation study. J Rehabil Res Dev 49:279–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Nataraj R, Audu ML, Triolo RJ (2012b) Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation. J Neuroeng Rehabil 9:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Neptune RR, Kautz SA, Zajac FE (2001) Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech 34:1387–1398

    Article  CAS  PubMed  Google Scholar 

  • Neptune RR, Clark DJ, Kautz S (2009) Modular control of human walking: a simulation study. J Biomech 42:1282–1287

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogihara N, Yamazaki N (2001) Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biol Cybern 84:1–11

    Article  CAS  PubMed  Google Scholar 

  • Park S, Horak FB, Kuo AD (2004) Postural feedback responses scale with biomechanical constraints in human standing. Exp Brain Res 154:417–427

    Article  PubMed  Google Scholar 

  • Paul C, Bellotti M, Jezernik S, Curt A (2005) Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury. Biol Cybern 93:153–170

    Article  PubMed  Google Scholar 

  • Perry J (1992) Gait analysis: normal and pathological function. Slack Incorporated, Thorofare, NJ

    Google Scholar 

  • Peterka RJ (2000) Postural control model interpretation of stabilogram diffusion analysis. Biol Cybern 82:335–343

    Article  CAS  PubMed  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118

    CAS  PubMed  Google Scholar 

  • Peterka RJ (2015) Model-based interpretations of experimental data related to the control of balance during stance and gait in humans. In: Prilutsky BI, Edwards DH Jr (eds) Neuromechanical modeling of posture and locomotion. Springer, New York (in press)

    Google Scholar 

  • Peterson CL, Kautz SA, Neptune RR (2011) Muscle work is increased in pre-swing during hemiparetic walking. Clin Biomech (Bristol Avon) 26:859–866

    Article  PubMed Central  Google Scholar 

  • Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Raasch CC, Zajac FE (1999) Locomotor strategy for pedaling: muscle groups and biomechanical functions. J Neurophysiol 82:515–525

    CAS  PubMed  Google Scholar 

  • Roth E, Sponberg S, Cowan NJ (2014) A comparative approach to closed-loop computation. Curr Opin Neurobiol 25:54–62

    Article  CAS  PubMed  Google Scholar 

  • Safavynia SA, Ting LH (2013a) Long-latency muscle activity reflects continuous, delayed sensorimotor feedback of task-level and not joint-level error. J Neurophysiol 110:1278–1290

    Article  PubMed  PubMed Central  Google Scholar 

  • Safavynia SA, Ting LH (2013b) Sensorimotor feedback based on task-relevant error robustly predicts temporal recruitment and multidirectional tuning of muscle synergies. J Neurophysiol 109:31–45

    Article  PubMed  Google Scholar 

  • Sartori M, Reggiani M, Farina D, Lloyd DG (2012) EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS One 7:e52618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartori M, Gizzi L, Lloyd DG, Farina D (2013) A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives. Front Comput Neurosci 7:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  CAS  PubMed  Google Scholar 

  • Scrivens JE, Ting LH, Deweerth SP (2006) Effects of stance width on control gain in standing balance. Conf Proc IEEE Eng Med Biol Soc 1:4055–4057

    CAS  PubMed  Google Scholar 

  • Shao Q, Bassett DN, Manal K, Buchanan TS (2009) An EMG-driven model to estimate muscle forces and joint moments in stroke patients. Comput Biol Med 39:1083–1088

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverman AK, Neptune RR (2012) Muscle and prosthesis contributions to amputee walking mechanics: a modeling study. J Biomech 45:2271–2278

    Article  PubMed  Google Scholar 

  • Simpson CS, Sohn MH, Allen JL, Ting LH (2015) Feasible muscle activation ranges based on inverse dynamics analyses of human walking. J Biomech 48:2990–2997

    Google Scholar 

  • Sohn MH, McKay JL, Ting LH (2013) Defining feasible bounds on muscle activation in a redundant biomechanical task: practical implications of redundancy. J Biomech 46:1363–1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasan M, Ruina A (2006) Computer optimization of a minimal biped model discovers walking and running. Nature 439:72–75

    Article  CAS  PubMed  Google Scholar 

  • Stapley PJ, Ting LH, Hulliger M, Macpherson JM (2002) Automatic postural responses are delayed by pyridoxine-induced somatosensory loss. J Neurosci 22:5803–5807

    CAS  PubMed  Google Scholar 

  • Steele KM, van der Krogt MM, Schwartz MH, Delp SL (2012) How much muscle strength is required to walk in a crouch gait? J Biomech 45:2564–2569

    Article  PubMed  PubMed Central  Google Scholar 

  • Steele KM, Seth A, Hicks JL, Schwartz MH, Delp SL (2013) Muscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait. Gait Posture 38:86–91

    Article  PubMed  Google Scholar 

  • Sutherland DH (1984) Gait disorders in childhood and adolescence. Williams & Wilkins, Baltimore

    Google Scholar 

  • Taga G (1995a) A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait. Biol Cybern 73:97–111

    Article  CAS  PubMed  Google Scholar 

  • Taga G (1995b) A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints. Biol Cybern 73:113–121

    Article  CAS  PubMed  Google Scholar 

  • Thelen DG, Anderson FC, Delp SL (2003) Generating dynamic simulations of movement using computed muscle control. J Biomech 36:321–328

    Article  PubMed  Google Scholar 

  • Ting LH, Chvatal SA (2010) Decomposing muscle activity in motor tasks: methods and interpretation. In: Danion F, Latash ML (eds) Motor control: theories, experiments, and applications. Oxford, pp. 102–138.

    Google Scholar 

  • Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophysiol 93:609–613

    Article  PubMed  Google Scholar 

  • Ting LH, van Antwerp KW, Scrivens JE, McKay JL, Welch TD, Bingham JT et al (2009) Neuromechanical tuning of nonlinear postural control dynamics. Chaos 19:026111

    Article  PubMed  PubMed Central  Google Scholar 

  • Ting LH, Chvatal SA, Safavynia SA, McKay JL (2012) Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement. Int J Numer Method Biomed Eng 28:1003–1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Todorov E, Jordan MI (2003) A minimal intervention principle for coordinated movement. Adv Neural Inf Process Syst 15:27–34

    Google Scholar 

  • Torres-Oviedo G, Ting LH (2007) Muscle synergies characterizing human postural responses. J Neurophysiol 98:2144–2156

    Article  PubMed  Google Scholar 

  • Torres-Oviedo G, Ting LH (2010) Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. J Neurophysiol 103:3084–3098

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Kooij H, Jacobs R, Koopman B, Grootenboer H (1999) A multisensory integration model of human stance control. Biol Cybern 80:299–308

    Article  PubMed  Google Scholar 

  • van der Kooij H, van Asseldonk E, van der Helm FC (2005) Comparison of different methods to identify and quantify balance control. J Neurosci Methods 145:175–203

    Article  PubMed  Google Scholar 

  • Walter J, Kinney AL, Banks SA, D’Lima D, Besier TF, Lloyd DG et al (2014) Muscle synergies may improve optimization prediction of knee contact forces during walking. J Biomech Eng 136:1054–1060

    Google Scholar 

  • Welch TD, Ting LH (2008) A feedback model reproduces muscle activity during human postural responses to support-surface translations. J Neurophysiol 99:1032–1038

    Article  PubMed  Google Scholar 

  • Welch TD, Ting LH (2009) A feedback model explains the differential scaling of human postural responses to perturbation acceleration and velocity. J Neurophysiol 101:3294–3309

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter DA (2009) Biomechanics and motor control of human movement. Wiley, Hoboken, New Jersey

    Google Scholar 

  • Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K (1998) Stiffness control of balance in quiet standing. J Neurophysiol 80:1211–1221

    CAS  PubMed  Google Scholar 

  • Wisse M, Feliksdal G, Van Frankkenhuyzen J, Moyer B (2007) Passive-based walking robot. IEEE Rob Autom Mag 14:52–62

    Article  Google Scholar 

  • Zajac FE, Neptune RR, Kautz SA (2002) Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16:215–232

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Duarte M (1999) Instant equilibrium point and its migration in standing tasks: rambling and trembling components of the stabilogram. Motor Control 3:28–38

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena H. Ting PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allen, J., Ting, L. (2016). Why Is Neuromechanical Modeling of Balance and Locomotion So Hard?. In: Prilutsky, B., Edwards, D. (eds) Neuromechanical Modeling of Posture and Locomotion. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3267-2_7

Download citation

Publish with us

Policies and ethics