Skip to main content

Better Science Through Predictive Modeling: Numerical Tools for Understanding Neuromechanical Interactions

  • Chapter
  • First Online:
Neuromechanical Modeling of Posture and Locomotion

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

  • 1334 Accesses

Abstract

The animal kingdom is filled with amazing examples of coordinated locomotor and balance behavior. The intricate interaction of the neuromechanics of the combined skeletal, muscular, and neural systems that underlie these behaviors only adds to their impressiveness. To wit, the neuromechanics must deal with fantastically nonlinear dynamics, delayed and noisy sensory input, and multiple stability regimes in unpredictable environments. Because of these underlying complex interactions, an integrative systems approach is required to understand the performance of the locomotor and balance behavior that emerges. In this chapter, we propose the use of predictive modeling to facilitate the investigation of neuromechanics using our software platform, Neuromechanic. With this technique the dynamics of constituent neuromechanical systems are modeled and the resulting emergent behaviors studied; holistic behaviors are an output rather than an input for simulation. We describe three ways in which software can aid in a predictive approach to neuromechanical modeling: first, use of tools that emphasize control and optimization for predictive modeling; second, visualization and organization to aid in careful parameterization necessary to account for the variation found in biological specimens; third, building confidence in modeling results through the use of sensitivity analysis. We offer examples of these techniques using Neuromechanic, which is designed to simplify the prototyping of neural control strategies, formulate optimization criteria, visualize key parameters that effect model performance, and succinctly perform sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bai YF, Siu K, Liu CKR (2012) Synthesis of concurrent object manipulation task. Acm Trans Graph 31

    Google Scholar 

  • Bingham JT, Ting LH (2013) Stability radius as a method for comparing the dynamics of neuromechanical systems. IEEE Trans Neural Syst Rehabil Eng 21:840–848

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingham JT, Choi JT, Ting LH (2011) Stability in a frontal plane model of balance requires coupled changes to postural configuration and neural feedback control. J Neurophysiol 106:437–448

    Article  PubMed  PubMed Central  Google Scholar 

  • Brock O, Khatib O (2002) Elastic strips: a framework for motion generation in human environments. Int J Robot Res 21:1031–1052

    Article  Google Scholar 

  • Bunderson NE (2014) Real-time control of an interactive impulsive virtual prosthesis. IEEE Trans Neural Syst Rehabil Eng 22:363–370

    Article  PubMed  Google Scholar 

  • Bunderson NE, Burkholder TJ, Ting LH (2008) Reduction of neuromuscular redundancy for postural force generation using an intrinsic stability criterion. J Biomech 41:1537–1544

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunderson NE, Bingham JT, Sohn MH, Ting LH, Burkholder TJ (2012) Neuromechanic: a computational platform for simulation and analysis of the neural control of movement. Int J Numer Meth BioMed Eng 28:1015–1027

    Article  Google Scholar 

  • Burkholder TJ, Nichols TR (2004) Three-dimensional model of the feline hindlimb. J Morphol 261:118–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Cofer D, Cymbalyuk G, Reid J, Zhu Y, Heitler WJ, Edwards DH (2010) AnimatLab: a 3D graphics environment for neuromechanical simulations. J Neurosci Meth 187:280–288

    Article  Google Scholar 

  • Coros S, Beaudoin P, van de Panne M (2010) Generalized biped walking control. Acm T Graphic 29

    Google Scholar 

  • Davoodi R, Loeb GE (2012) Real-Time animation software for customized training to use motor prosthetic systems. IEEE Trans Neural Syst Rehabil Eng 20:134–142

    Article  PubMed  Google Scholar 

  • Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT et al. (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54:1940–1950

    Article  PubMed  Google Scholar 

  • Erez T, Lowrey K, Tassa Y, Kumar V, Kolev S, Todorov E (2013) An integrated system for real-time model predictive control of humanoid robots. IEEE/RAS International Conference on Humanoid Robot. (ed.), Atlanta GA

    Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    Article  CAS  PubMed  Google Scholar 

  • Geijtenbeek T, van de Panne M, van der Stappen AF (2013) Flexible muscle-based locomotion for bipedal creatures. Acm T Graphic 32

    Google Scholar 

  • Geyer H, Herr H (2010) A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil Eng 18:263–273

    Article  PubMed  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    CAS  PubMed  Google Scholar 

  • Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21:642–653

    Article  PubMed  Google Scholar 

  • Jain S, Ye YT, Liu CK (2009) Optimization-Based interactive motion synthesis. Acm Trans Graphic 28

    Google Scholar 

  • Jo S, Massaquoi SG (2004) A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance. Biol Cybern 91:188–202

    Article  PubMed  Google Scholar 

  • Jo S, Massaquoi SG (2007) A model of cerebrocerebello-spinomuscular interaction in the sagittal control of human walking. Biol Cybern 96:279–307

    Article  PubMed  Google Scholar 

  • Liddell EGT, Sherrington C (1924) Reflexes in response to stretch (myotatic reflexes). Proc R Soc Lond Ser B Biol Sci 96:212–242

    Article  Google Scholar 

  • Markin SN, Klishko AN, Shevtsova NA, Lemay MA, Prilutsky BI, Rybak IA (2010) Afferent control of locomotor CPG: insights from a simple neuromechanical model. Ann N Y Acad Sci 1198:21–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarvestani IK, Kozlov A, Harischandra N, Grillner S, Ekeberg O (2013) A computational model of visually guided locomotion in lamprey. Biol Cybern 107:497–512

    Article  Google Scholar 

  • Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40:28–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thelen DG (2003) Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J Biomech Eng 125:70–77

    Article  PubMed  Google Scholar 

  • Todorov E, Erez T, Tassa Y (2012) MuJoCo: a physics engine for model-based control. 2012 Ieee/Rsj international conference on intelligent robots and systems (Iros), pp 5026–5033

    Google Scholar 

  • Tomita N, Yano M (2007) Bipedal robot controlled by the basal ganglia and brainstem systems adjusting to indefinite environment. 2007 Ieee/Icme international conference on complex medical engineering, vol 1–4, pp 116–121

    Google Scholar 

  • Welch TDJ, Ting LH (2008) A feedback model reproduces muscle activity during human postural responses to support-surface translations. J Neurophysiol 99:1032–1038

    Article  PubMed  Google Scholar 

  • Zajac FE (1989) Muscle and tendon—properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17:359–411

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan E. Bunderson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bunderson, N., Bingham, J. (2016). Better Science Through Predictive Modeling: Numerical Tools for Understanding Neuromechanical Interactions. In: Prilutsky, B., Edwards, D. (eds) Neuromechanical Modeling of Posture and Locomotion. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3267-2_1

Download citation

Publish with us

Policies and ethics