Skip to main content

Submanifolds in Lie Sphere Geometry

  • Chapter
Geometry of Hypersurfaces

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1954 Accesses

Abstract

This chapter is an outline of the method for studying submanifolds of Euclidean space R n or the sphere S n in the context of Lie sphere geometry. For Dupin hypersurfaces this has proven to be a valuable approach, since Dupin hypersurfaces occur naturally as envelopes of families of spheres, which can be handled well in Lie sphere geometry. Since the Dupin property is invariant under Lie sphere transformations, this is also a natural setting for classification theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Álvarez Paiva, Contact topology, taut immersions, and Hilbert’s fourth problem, in Differential and Symplectic Topology of Knots and Curves. American Mathematical Society Translations Series 2, vol. 190 (American Mathematical Society, Providence, 1999), pp. 1–21

    Google Scholar 

  2. J.C. Álvarez Paiva, Tautness is invariant under Lie sphere transformations. Preprint (2001). see: http://www.math.poly.edu/\sim$alvarez/pdfs/invariance.pdf

    Google Scholar 

  3. E. Artin, Geometric Algebra ( Wiley-Interscience, New York, 1957)

    Google Scholar 

  4. D.E. Blair, Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics, vol. 509 (Springer, Berlin, 1976)

    Google Scholar 

  5. W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, vol. 3 (Springer, Berlin, 1929)

    Book  MATH  Google Scholar 

  6. G. Bol, Projektive Differentialgeometrie, vol. 3 (Vandenhoeck and Ruprecht, Göttingen, 1967)

    MATH  Google Scholar 

  7. E. Cartan, The Theory of Spinors (Hermann, Paris, 1966). Reprinted by Dover, New York, 1981

    Google Scholar 

  8. T.E. Cecil, On the Lie curvatures of Dupin hypersurfaces. Kodai Math. J. 13, 143–153 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. T.E. Cecil, Lie Sphere Geometry, 2nd edn. (Springer, New York, 2008)

    MATH  Google Scholar 

  10. T.E. Cecil, S.-S. Chern, Tautness and Lie sphere geometry. Math. Ann. 278, 381–399 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Eilenberg, N. Steenrod, Foundations of Algebraic Topology (Princeton University Press, Princeton, 1952)

    MATH  Google Scholar 

  12. J. Hebda, Manifolds admitting taut hyperspheres. Pac. J. Math. 97, 119–124 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Hilbert, S. Cohn-Vossen, Geometry and the Imagination (Chelsea, New York, 1952)

    MATH  Google Scholar 

  14. G.R. Jensen, E. Musso, L. Nicolodi, Surfaces in classical geometries by moving frames (in preparation)

    Google Scholar 

  15. X. Jia, Role of moving planes and moving spheres following Dupin cyclides. Comput. Aided Geom. Design 31, 168–181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Knarr, L. Kramer, Projective planes and isoparametric hypersurfaces. Geom. Dedicata 58, 193–202 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Koike, The quadratic slice theorem and the equiaffine tube theorem for equiaffine Dupin hypersurfaces. Results Math. 47, 69–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Kuiper, Tight embeddings and maps. Submanifolds of geometrical class three in E n, in The Chern Symposium 1979 (Proceedings of International Symposium, Berkeley, 1979) (Springer, Berlin/New York, 1980), pp. 97–145

    Google Scholar 

  19. N. Kuiper, Geometry in total absolute curvature theory, in Perspectives in Mathematics, ed. by Jäger, W. et al. (Birkhäuser, Basel, 1984), pp. 377–392

    Google Scholar 

  20. N. Kuiper, W. Meeks, The total curvature of a knotted torus. J. Differ. Differ. Geom. 26, 371–384 (1987)

    MathSciNet  MATH  Google Scholar 

  21. R. Lilienthal, Besondere Flächen, Encyklopädie der Mathematischen Wissenschaften, vol. III (Teubner, Leipzig, 1902–1927), pp. 269–354

    Google Scholar 

  22. D.H. Lim, W.H. Sohn, Real hypersurfaces in a complex space form with non-commuting operators. Differ. Geom. Appl. 30, 622–630 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Miyaoka, Minimal hypersurfaces in the space form with three principal curvatures. Math. Z. 170, 137–151 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Miyaoka, The linear isotropy group of G 2SO(4), the Hopf fibering and isoparametric hypersurfaces. Osaka J. Math. 30, 179–202 (1993)

    MathSciNet  MATH  Google Scholar 

  25. H.-F. Münzner, Isoparametrische Hyperflächen in Sphären I. Math. Ann. 251, 57–71 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. U. Pinkall, Dupin’sche Hyperflächen in E 4. Manuscr. Math. 51, 89–119 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. U. Pinkall, G. Thorbergsson, Deformations of Dupin hypersurfaces. Proc. Am. Math. Soc. 107, 1037–1043 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. U. Pinkall, G. Thorbergsson, Taut 3-manifolds. Topology 28, 389–401 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. C.M. Riveros, Dupin hypersurfaces with four principal curvatures in R 5 with principal coordinates. Rev. Mat. Complut. 23, 341–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. P.J. Ryan, Homogeneity and some curvature conditions for hypersurfaces. Tôhoku Math. J. 21, 363–388 (1969)

    Article  MATH  Google Scholar 

  31. M. Scherfner, S. Weiss, Towards a proof of the Chern conjecture for isoparametric hypersurfaces in spheres, 33. Süddeutsches Kolloquium über Differentialgeometrie, 1–13, Institut für Diskrete Mathematik und Geometrie. Technische Universität Wien, Vienna (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Thomas E. Cecil and Patrick J. Ryan

About this chapter

Cite this chapter

Cecil, T.E., Ryan, P.J. (2015). Submanifolds in Lie Sphere Geometry. In: Geometry of Hypersurfaces. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3246-7_4

Download citation

Publish with us

Policies and ethics