Skip to main content

In Situ Thermal, Volumetric and Electrical Properties of Food Matrices Under Elevated Pressure and the Techniques Employed to Measure Them

  • Chapter
  • First Online:
High Pressure Processing of Food

Part of the book series: Food Engineering Series ((FSES))

  • 3569 Accesses

Abstract

This chapter summarizes research efforts in the experimentation and measurement of various in situ thermophysical properties of food and packaging material subjected to combined pressure-thermal treatment. The properties investigated include heat of compression, compressibility, thermal conductivity, specific heat, thermal diffusivity, electrical conductivity, and reaction volume. This information will help to understand the extent of process nonuniformity during pressure treatment, characterize chemical and physical changes, as well as assess the safety and quality of products and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Area of the intensifier piston

a:

Regression model parameter

CH:

Heat of compression (°C/100 MPa)

Cp :

Specific heat (kJ/kg · K or J/kg · K)

I:

Current (A)

k:

Thermal conductivity (W/m · °C)

ke :

Cell constant (m−1)

P:

Pressure (MPa)

Q:

Heat generation (W/m)

r:

The distance between line heat and second thermocouple probe

T:

Temperature (K or °C)

t:

Time (s)

V:

Voltage (V)

α:

Thermal diffusivity (m2/s)

β:

Thermal expansivity (K−1)

ρ:

Density (kg/m3)

σ:

Electrical conductivity (S/m)

ΔT:

Temperature difference (ºC)

0-3:

Empirical model parameter position of the intensifier piston

1:

Start time of heating

2:

End time of heating

atm:

Atmospheric pressure (0.1 MPa)

bf:

Beef

d:

Duration of heat pulse

e:

End time

H:

Heat exchange with the surroundings

i:

Initial

m:

Time from the start of heating to the temperature reaching maximum

p:

Pressure

s:

Start time

wt:

Water

References

  • Abdul Ghani AG, Farid MM (2007) Numerical simulation of solid–liquid food mixture in a high pressure processing unit using computational fluid dynamics. J Food Eng 80:1031–1042

    Article  Google Scholar 

  • Angersbach A, Heinz V, Knorr D (2002) Evaluation of process induced dimensional changes in the membrane structure of biological cells using impedance measurement. Biotechnol Prog 18:597–603

    Article  CAS  Google Scholar 

  • Aparicio C, Otero L, Sanz PD, Guignon B (2011) Specific volume and compressibility measurements of tomato paste at moderately high pressure as a function of temperature. J Food Eng 103:251–257

    Article  Google Scholar 

  • Ardia A, Knorr D, Heinz V (2004) Adiabatic heat modeling for pressure build-up during high-pressure treatment in liquid-food processing. Food Bioprod Process 82:89–95

    Article  Google Scholar 

  • Balasubramaniam VM, Ting EY, Stewart CM, Robbins JA (2004) Recommended laboratory practices for conducting high-pressure microbial inactivation experiments. Innov Food Sci Emerg Technol 5:299–306

    Article  CAS  Google Scholar 

  • Barbosa RD (2003) High pressure and temperature dependence of thermodynamic properties of model food solutions obtained from in situ ultrasonic measurements. Ph. D. Dissertation. University of Florida

    Google Scholar 

  • Balasubramanian S, Balasubramaniam VM (2003) Compression heating influence of pressure transmitting fluids on bacteria inactivation during high pressure processing. Food Res Int 36:661–668

    Article  Google Scholar 

  • Barbosa-Cánovas GV, Rodríguez JJ (2005) Thermodynamic aspects of high hydrostatic pressure food processing. In: Barbosa-Cánovas GV, Tapia MS, Pilar Cano M (eds) Novel food processing technologies. CRC Press, New York, pp 195–199

    Google Scholar 

  • Bauer BA, Knorr D (2004) Electrical conductivity: a new tool for the determination of high hydrostatic pressure-induced starch gelatinization. Innov Food Sci Emerg Technol 5:437–442

    Article  CAS  Google Scholar 

  • Bridgman PW (1909) An experimental determination of certain compressibilities. Proc Am Acad Arts Sci 44:255–279

    Article  CAS  Google Scholar 

  • Bridgman PW (1921) Electrical resistance under pressure, including certain liquid metals. Proc Am Acad Arts Sci 56:61–154

    Article  CAS  Google Scholar 

  • Bridgman PW (1923) The thermal conductivity of liquids under pressure. Proc Am Acad Arts Sci 59:141–169

    Article  CAS  Google Scholar 

  • Bridgman PW (1931) The volume of eighteen liquids as a function of pressure and temperature. Proc Am Acad Arts Sci 66:185–233

    Article  CAS  Google Scholar 

  • Bundy FP (1961) Effect of pressure on emf of thermocouples. J Appl Phys 32:483–488

    Article  CAS  Google Scholar 

  • Cima L, Mir L (2004) Macroscopic characterization of cell electroporation in biological tissue based on electrical measurements. Appl Phys Lett 85:4520–4522

    Article  CAS  Google Scholar 

  • Denys S, Hendrickx ME (1999) Measurement of the thermal conductivity of foods at high pressure. J Food Sci 64:709–713

    Article  CAS  Google Scholar 

  • Denys S, Van Loey AM, Marc Hendrickx ME, Tobback PP (1997) Modeling heat transfer during high-pressure freezing and thawing. Biotechnol Prog 13:416–423

    Article  CAS  Google Scholar 

  • Denys S, Ludikhuyze LR, Van Loey AM, Hendrickx ME (2000a) Modeling conductive heat transfer and process uniformity during batch high-pressure processing of foods. Biotechnol Prog 16:92–101

    Article  CAS  Google Scholar 

  • Denys S, Van Loey A, Hendrickx M (2000b) A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics. Innov Food Sci Emerg Technol 1:5–19

    Article  CAS  Google Scholar 

  • Guignon B, Aparicio C, Sanz PD (2009) Volumetric properties of sunflower and olive oils at temperatures between 15 and 55 °C under pressures up to 350 MPa. High Pressure Res 29:38–45

    Article  CAS  Google Scholar 

  • Guignon B, Aparicio C, Sanz PD (2010) Volumetric properties of pressure-transmitting fluids up to 350 MPa: water, ethanol, ethylene glycol, propylene glycol, castor oil, silicon oil, and some of their binary mixture. J Chem Eng Data 55:3017–3023

    Article  CAS  Google Scholar 

  • Hamann SD (1980) The role of electrostriction in high pressure chemistry. Rev Phys Chem Jpn 50:147–168

    Google Scholar 

  • Hartmann C, Delgado A, Szymczyk J (2003) Convective and diffusive transport effects in a high pressure induced inactivation process of packed food. J Food Eng 59:33–44

    Article  Google Scholar 

  • Houška M, Kubásek M, Strohalm J, Landfeld A, Kamarád J (2004) Warming of olive oil processed by high hydrostatic pressure. High Pressure Res 24:303–308

    Article  Google Scholar 

  • Kestin J, Sengers JV, Kamgar-Parsi B, Levelt Sengers JMH (1984) Thermal properties of fluid H2O. J Phys Chem Ref Data 13:175–183

    Article  CAS  Google Scholar 

  • Knoerzer K, Buckow R, Versteeg C (2010) Adiabatic compression heating coefficients for high-pressure processing – A study of some insulating polymer materials. J Food Eng 98:110–119

    Article  Google Scholar 

  • Knoerzer K, Chapman B (2011) Effect of material properties and processing conditions on the prediction accuracy of a CFD model for simulating high pressure thermal (HPT) processing. J Food Eng 104:404–413

    Article  Google Scholar 

  • Krešić G, Lelas V, Režek Jambrak A, Herceg Z, Rimac Brnčić S (2008) Influence of novel food processing technologies on the rheological and thermal properties of whey proteins. J Food Eng 87:64–73

    Article  Google Scholar 

  • Kuang W, Nelson SO (1998) Low-frequency dielectric properties of biological tissues: a review with some new insights. Trans Am Soc Agric Eng 41:173–184

    Article  Google Scholar 

  • Lawson AW, Lowell R, Jain AL (1959) Thermal conductivity of water at high pressures. J Chem Phys 30:643–647

    Article  CAS  Google Scholar 

  • Lemmon EW, Huber ML, McLinden MO (2010) NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP Version 9.0. National Institute of Standards and Technology, Boulder, CO

    Google Scholar 

  • Linton M, Patterson MF (2000) High pressure processing of foods for microbiological safety and quality. ActaMicrobiol Immunol Hung 47:175–182

    Article  CAS  Google Scholar 

  • Lullien-Pellerin V, Balny C (2002) High pressure as a tool to study some proteins properties: Conformational modification, activity and oligomeric dissociation. Innov Food Sci Emerg Technol 3:209–221

    Article  CAS  Google Scholar 

  • Masterton WL (1954) Partial molal volumes of hydrocarbons in water solution. J Chem Phys 22:1830–1833

    Article  CAS  Google Scholar 

  • Miller FP, Vandome AF, McBrewster J (2009) Mineral-insulated copper-clad cable. Alphascript, Manchester UK, p 1

    Google Scholar 

  • Min S, Sastry SK, Balasubramaniam VM (2007) In situ electrical conductivity measurement of select liquid foods under hydrostatic pressure to 800 MPa. J Food Eng 82:489–497

    Article  Google Scholar 

  • Min S, Sastry S, Balasubramaniam VM (2009) Variable volume piezometer for measurement of volumetric properties of materials under high pressure. High Pressure Res 29:278–289

    Article  CAS  Google Scholar 

  • Min S, Sastry SK, Balasubramaniam VM (2010) Compressibility and density of select liquid and solid foods under pressures up to 700 MPa. J Food Eng 96:568–574

    Article  Google Scholar 

  • Min SK, Samaranayake CP, Sastry SK (2011) In situ measurement of reaction volume and calculation of pH of weak acid buffer solutions under high pressure. J Phys Chem B 115:6564–6571

    Article  CAS  Google Scholar 

  • Murakami EG, Sweat VE, Sastry SK, Kolbe E, Hayakawa K, Datta A (1996a) Recommended design parameters for thermal conductivity probes for nonfrozen food materials. J Food Eng 27:109–123

    Article  Google Scholar 

  • Murakami EG, Sweat VE, Sastry SK, Kolbe E (1996b) Analysis of various design and operating parameters of the thermal conductivity probe. J Food Eng 30:209–225

    Article  Google Scholar 

  • Nesvadba P (2005) Thermal properties of unfrozen foods. In: Rao MA, Rizvi SSH, Datta AK (eds) Engineer properties of foods. CRC Press, New York, pp 161–162

    Google Scholar 

  • Nguyen LT, Rastogi NK, Balasubramaniam VM (2007) Evaluation of the instrumental quality of pressure-assisted thermally processed carrots. J Food Sci 72:E264–E270

    Article  CAS  Google Scholar 

  • Nguyen LT, Balasubramaniam VM (2011) Fundamentals of food processing using high pressure. In: Zhang HQ, Barbosa-Cánovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, Yuan JTC (eds) Nonthermal processing technologies for food. IFT Press, Wiley-Blackwell, Chichester, West Sussex, UK, pp 3–19

    Google Scholar 

  • Nguyen LT, Balasubramaniam VM, Sastry SK (2012) Determination of in-situ thermal conductivity, thermal diffusivity, volumetric specific heat and isobaric specific heat of selected foods under pressure. Int J Food Prop 15:169–187

    Article  CAS  Google Scholar 

  • Norton T, Sun DW (2008) Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technol 1:2–34

    Article  Google Scholar 

  • Otero L, Molina-García AD, Sanz PD (2000) Thermal effect in foods during quasi-adiabatic pressure treatments. Innov Food Sci Emerg Technol 1:119–126

    Article  Google Scholar 

  • Park SH, Balasubramaniam VM, Sastry SK (2012) Estimating pressure induced changes in vegetable tissue using in situ electrical conductivity measurement and instrumental analysis. J Food Eng 114(1):47–56

    Article  Google Scholar 

  • Patazca E, Koutchma T, Balasubramaniam VM (2007) Quasi-adiabatic temperature increase during high pressure processing of selected foods. J Food Eng 80:199–205

    Article  Google Scholar 

  • Potekhin SA, Senin AA, Abdurakhmanov NN, Tiktopulo EI (2009) High pressure stabilization of collagen structure. Biochim Biophys Acta 1794:1151–1158

    Article  CAS  Google Scholar 

  • Prehoda KE, Mooberry ES, Markley JL (1998) Pressure denaturation of proteins: evaluation of compressibility effects. Biochemistry 37:5785–5790

    Article  CAS  Google Scholar 

  • Préstamo G, Arroyo G (1998) High hydrostatic pressure effect on vegetable structure. J Food Sci 5:878–881

    Article  Google Scholar 

  • Quist A, Marshall W, Jolley J (1965) Electrical conductances of aqueous solutions at high temperature and pressure. II. The conductances and ionization constants of sulfuric acid–water solutions from 0–800 and at pressures to 4000 bars. J Phys Chem 69:2726–2735

    Article  CAS  Google Scholar 

  • Quist A, Marshall W (1968) Electrical conductances of aqueous sodium chloride solutions from 0–800 and at pressure to 4000 bars. J Phys Chem 72:684–702

    Article  CAS  Google Scholar 

  • Ramaswamy R, Balasubramaniam VM, Sastry SK (2007) Thermal conductivity of selected liquid foods at elevated pressures up to 700 MPa. J Food Eng 83:444–451

    Article  Google Scholar 

  • Ramaswamy R, Balasubramaniam VM (2007) Effect of polarity and molecular structure of selected liquids on their heat of compression during high pressure processing. High Pressure Res 27(2):299–307

    Article  CAS  Google Scholar 

  • Rasanayagam V, Balasubramaniam VM, Ting E, Sizer CE, Bush C, Anderson C (2003) Compression heating of selected fatty food materials during high-pressure processing. J Food Sci 68:254–259

    Article  CAS  Google Scholar 

  • Rastogi NK, Raghavarao KS, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Critical reviews in food science and nutrition 47:69–112

    Article  CAS  Google Scholar 

  • Reidy GA, Rippen AL (1971) Methods for determining thermal conductivity in foods. Trans ASME 11:248–254

    Google Scholar 

  • Scaife WG (1974) The natural electrical conductivity of organic liquids subjected to hydrostatic pressures. J Phys D Appl Phys 7:647–652

    Article  CAS  Google Scholar 

  • Schiefelbein S, Fried N, Rhoads K, Sadoway D (1998) A high accuracy calibration free technique for measuring the electrical conductivity of liquids. Rev Sci Instrum 69:3308–3313

    Article  CAS  Google Scholar 

  • Schwhecker, A., V.M. Balasubramaniam, G. Sadler, M.A. Pascall, and C. Adhikari. (2003). Influence of high pressure processing on selected polymeric materials and on the migration of a pressure transmitting fluid. Packaging Technology and Science. 15(5), 255–262

    Google Scholar 

  • Sherman WF, Stadtmuller AA (1987) Experimental techniques in high-pressure research. John Wiley & Sons, New York, pp 267–268

    Google Scholar 

  • Sweat VE, Haugh CG (1974) A thermal conductivity probe for small food samples. Trans ASAE 17:56–58

    Article  Google Scholar 

  • Terry RE, Ruoff AL (1972) Improved electrical leads for high pressure systems. Rev Sci Instrum 43:1379–1380

    Article  CAS  Google Scholar 

  • Ting E, Balasubramaniam VM, Raghubeer E (2002) Determining thermal effects in high-pressure processing. Food Technol 56:31–35

    Google Scholar 

  • USDA ARS, US Department of Agriculture, Agricultural Research Service (2006) USDA national nutrient database for standard reference, release 19. Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl

  • Wagner W, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–595

    Article  CAS  Google Scholar 

  • Zhu S, Ramaswamy HS, Marcotte M, Chen C, Shao Y, Le bail A (2007) Evaluation of thermal properties of food materials at high pressures using a dual-needle line-heat-source method. J Food Sci 72:E49–E56

    Article  CAS  Google Scholar 

  • Zhu S, Marcotte M, Ramaswamy H, Shao Y, Le-Bail A (2008) Evaluation and comparison of thermal conductivity of food materials at high pressure. Food Bioprod Process 86:147–153

    Article  CAS  Google Scholar 

Download references

Acknowledgment

References to commercial products or trade names are made with the understanding that no endorsement or discrimination by The Ohio State University is implied. Financial support from the USDA National Institute for Food and Agriculture HATCH project OHO01323, Ohio Agricultural Development Corporation (OARDC), and Center for Advanced Processing and Packaging Studies and the food industry is gratefully acknowledged. References to commercial products or trade names are made with the understanding that no endorsement or discrimination by The Ohio State University is implied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Balasubramaniam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Park, S.H., Nguyen, L.T., Min, S., Balasubramaniam, V.M., Sastry, S.K. (2016). In Situ Thermal, Volumetric and Electrical Properties of Food Matrices Under Elevated Pressure and the Techniques Employed to Measure Them. In: Balasubramaniam, V., Barbosa-Cánovas, G., Lelieveld, H. (eds) High Pressure Processing of Food. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3234-4_6

Download citation

Publish with us

Policies and ethics