Skip to main content

Structural Changes in Foods Caused by High-Pressure Processing

  • Chapter
  • First Online:

Part of the book series: Food Engineering Series ((FSES))

Abstract

High-pressure processing (HPP) has been mainly applied in the food industry as a post-packaging pasteurization method in order to ensure food safety. In more recent years, HPP has also been extensively considered in relation to the structural changes that HPP treatments induce in food systems. These structural changes are based on the effect of high pressure on the cell structure and on the biopolymers present in food. These changes can lead to diverse food applications such as creation of novel textures, improvement of the water binding, or mediation of gelation processes. This research area has been intensified in the last 15 years and is currently evolving at a rapid pace. Different applications have already described in the literature for different foodstuffs such as processed fruits and vegetables, meat, and dairy products. The present chapter explains the main mechanisms underlying these modifications and summarizes the research carried out in this novel field. HPP provides an ideal tool for structure modifications by means of physical nonthermal processing and can play an important role in future product development and in the production of food ingredients with enhanced functionality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aertsen A, Meersman F, Hendrickx MEG, Vogel RF, Michiels CW (2009) Biotechnology under high pressure: applications and implications. Trends Biotechnol 27:434–441

    Article  CAS  Google Scholar 

  • Bader S, Bez J, Eisner P (2011) Can protein functionalities be enhanced by high-pressure homogenization?—a study on functional properties of lupin proteins. In: 11th international congress on engineering and food (ICEF11). Procedia Food Sci 1:1359–1366

    Google Scholar 

  • Bajovic B, Bolumar T, Heinz V (2012) Quality considerations with high pressure processing of fresh and value added meat products. Meat Sci 92:280–289

    Article  Google Scholar 

  • Balny C (2002) High pressure and protein oligomeric dissociation. High Press Res 22:737–741

    Article  Google Scholar 

  • Balny C, Masson P, Heremans K (2002) High pressure effects on biological macromolecules: from structural changes to alteration of cellular processes. Biochim Biophys Acta Protein Struct Mol Enzymol 1595(1–2):3–10

    Article  CAS  Google Scholar 

  • Basak S, Ramaswamy HS (1998) Effect of high pressure processing on the texture of selected fruits and vegetables. J Texture Stud 29:587–601

    Article  Google Scholar 

  • Beilken SL, Macfarlane JJ, Jones PN (1990) Effect of high pressure during heat treatment on the Wamer-Bratzler shear force values of selected beef muscles. J Food Sci 55:15–18

    Article  Google Scholar 

  • Belitz HD, Grosch W, Schieberle P (2008) Kohlenhydrate in Lehrbuch der Lebensmittelchemie. Springer, Berlin, Heidelberg, pp 252–345

    Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  • Bolumar T, Skibsted LH, Orlien V (2012) Kinetics of the formation of radicals in meat during high pressure processing. Food Chem 134:2114–2120

    Article  CAS  Google Scholar 

  • Boonyaratanakornkit BB, Park CB, Clark DS (2002) Pressure effects on intra- and intermolecular interactions within proteins. Biochim Biophys Acta Protein Struct Mol Enzymol 1595(1–2):235–249

    Article  CAS  Google Scholar 

  • Bouaouinaa H, Desrumauxa A, Loisela C, Legrand J (2006) Functional properties of whey proteins as affected by dynamic high-pressure treatment. Int Dairy J 16:275–284

    Article  Google Scholar 

  • Bouton PE, Ford AL, Harris PV, Macfarlane JJ, O’Shea JM (1977) Pressure–heat treatment of post-rigor muscle: effect on tenderness. J Food Sci 42:132–135

    Article  Google Scholar 

  • Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    Article  Google Scholar 

  • Capellas M, Needs E (2003) Physical properties of yogurt prepared from pressure treated concentrated or fortified milks. Milchwissenschaft-Milk Sci Int 58(1–2):46–48

    CAS  Google Scholar 

  • Chan JTY, Omana DA, Betti M (2011) Application of high pressure processing to improve the functional properties of pale, soft, and exudative (PSE)-like turkey meat. Innov Food Sci Emerg Technol 12(3):216–225

    Article  CAS  Google Scholar 

  • Chapleau N, Mangavel C, Compoint JP, Lamballerie-Anton M (2003) Effect of high-pressure processing on myofibrillar protein structure. J Sci Food Agric 84:66–74

    Article  Google Scholar 

  • Cheftel JC, Dumay E (1996) Effects of high pressure on dairy proteins: a review. Prog Biotechnol 13:299–308

    Article  CAS  Google Scholar 

  • Cheftel JC, Culioli J (1997) Effects of high pressure on meat: a review. Meat Sci 46(3):211–236

    Article  CAS  Google Scholar 

  • Ciron CIE, Gee VL, Kelly AL, Auty MAE (2010) Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. Int Dairy J 20:314–320

    Article  Google Scholar 

  • Considine T, Patel HA, Anema SG, Singh H, Creamer LK (2007) Interactions of milk proteins during heat and high hydrostatic pressure treatments—a review. Innov Food Sci Emerg Technol 8:1–23

    Article  CAS  Google Scholar 

  • De Roeck A, Sila DN, Duvetter T, Van Loey A, Hendrickx M (2008) Effect of high pressure/high temperature processing on cell wall pectin substances in relation to firmness of carrot tissue. Food Chem 107(3):1225–1235

    Article  Google Scholar 

  • De Roeck A, Duvetter T, Fraeye I, Van der Plancken I, Sila DN, Van Loey A, Hendrickx M (2009) Effect of high pressure/high temperature processing on chemical pectin conversions in relation to fruit and vegetable texture. Food Chem 115:207–213

    Article  Google Scholar 

  • Desobry-Banon S, Richard F, Hardy J (1994) Study of acid and rennet coagulation of high pressurized milk. J Dairy Sci 77:3267–3274

    Article  CAS  Google Scholar 

  • Devi AF, Buckow R, Hemar Y, Kasapis S (2013) Review: Structuring dairy systems through high pressure processing. J Food Eng 114:106–122

    Article  CAS  Google Scholar 

  • Dumay E, Picart L, Regnault S, Thiebaud M (2006) High pressure-low temperature processing of food proteins. Biochim Biophys Acta 1764:599–618

    Article  CAS  Google Scholar 

  • Dumay E, Chevalier-Lucia D, Picart-Palmade L, Benzaria A, Gràcia-Julià A, Blayo C (2012) Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends Food Sci Technol 31(1):13–26

    Article  Google Scholar 

  • Duvetter T, Fraeye I, Van Hoang T, Van Buggenhout S, Verlent I, Smout C et al (2005) Effect of pectinmethylesterase infusion methods and processing techniques on strawberry firmness. J Food Sci 70(6):S383–S388

    Article  CAS  Google Scholar 

  • Famelart MH, Gaucheron F, Mariette F, Le Graet Y, Raulot K, Boyaval E (1997) Acidification of pressure-treated milk. Int Dairy J 7:325–330

    Article  CAS  Google Scholar 

  • Fernandez-Martin F, Cofrades S, Carballo J, Jimenez-Colmenero F (2002) Salt and phosphate effects on the gelling process of pressure/heat treated pork batters. Meat Sci 61:15–23

    Article  CAS  Google Scholar 

  • Galazka VB, Dickinson E, Ledward DA (2000) Influence of high pressure processing on protein solutions and emulsions. Curr Opin Colloid Interface Sci 5:182–187

    Article  CAS  Google Scholar 

  • Grossi A, Soltoft-Jensen J, Knudsen JC, Christensen M, Orlien V (2011) Synergistic cooperation of high pressure and carrot dietary fibre on texture and colour of pork sausages. Meat Sci 89:195–201

    Article  Google Scholar 

  • Grossi A, Gkarane V, Otte JO, Ertbjerg P, Orlien V (2012) High pressure treatment of brine enhanced pork affects endopeptidase activity, protein solubility, and peptide formation. Food Chem 134:1556–1563

    Article  CAS  Google Scholar 

  • Hedin LE (2010) Intra- and intermolecular interactions in proteins. Studies of marginally hydrophobic transmembrane α-helices and protein-protein interactions. Ph.D. Thesis, Department of Biochemistry and Biophysics, Stockholms universitet

    Google Scholar 

  • Heinz V, Knoch A, Lickert T (2009) Product innovation by high pressure processing. New Food 2:43–47

    Google Scholar 

  • Hendrickx MEG, Knorr D (2002) Ultra high pressure treatments of foods, Food engineering series. Kluwer Academic Publishers, New York, London

    Google Scholar 

  • Heremans R, Smeller L (1998) Protein structure and dynamics at high pressure. Biochim Biophys Acta 1386:353–370

    Article  CAS  Google Scholar 

  • Hugas M, Garriga M, Monfort JM (2002) New mild technologies in meat processing: high pressure as a model technology. Meat Sci 62(3):359–371

    Article  CAS  Google Scholar 

  • Huppertz T, Fox PF, de Kruif KG, Kelly AL (2006) High pressure-induced changes in bovine milk proteins: a review. Biochim Biophys Acta 1764:593–598

    Article  CAS  Google Scholar 

  • Iwasaki T, Yamamoto K (2002) Effect of high hydrostatic pressure on chicken myosin subfragment-1. Int J Biol Macromol 30:227–232

    Article  CAS  Google Scholar 

  • Iwasaki T, Yamamoto K (2003) Changes in rabbit skeletal myosin and its subfragments under high hydrostatic pressure. Int J Biol Macromol 33(4–5):215–220

    Article  CAS  Google Scholar 

  • Iwasaki T, Noshiroya K, Saitoh N, Okano K, Yamamoto K (2006) Studies of the effect of hydrostatic pressure pre-treatment on thermal gelation of chicken myofibrils and pork meat patty. Food Chem 95:474–483

    Article  CAS  Google Scholar 

  • Jimenez Colmenero F (2002) Muscle protein gelation by combined use of high pressure/temperature. Trends Food Sci Technol 13(1):22–30

    Article  CAS  Google Scholar 

  • Jungbauer A, Kaar W (2007) Review: Current status of technical protein refolding. J Biotechnol 128:587–596

    Article  CAS  Google Scholar 

  • Kim HS, Kim BY, Baik MY (2012) Application of ultra high pressure (UHP) in starch chemistry. Crit Rev Food Sci Nutr 52(2):123–141

    Article  CAS  Google Scholar 

  • Knorr D, Heinz V, Buckow R (2006) High pressure application for food biopolymers. Biochim Biophys Acta Proteins Proteomics 1764(3):619–631

    Article  CAS  Google Scholar 

  • Kolakowski P, Dumay E, Cheftel JC (2001) Effects of high pressure and low temperature on beta-lactoglobulin unfolding and aggregation. Food Hydrocolloids 15(3):215–232

    Article  CAS  Google Scholar 

  • Kunugi S, Tanaka N (2002) Cold denaturation of proteins under high pressure. Biochim Biophys Acta Protein Struct Mol Enzymol 1595(1–2):329–344

    Article  CAS  Google Scholar 

  • Lampe D, Strijowski U, Heinz V, Bindrich U (2013) Effect of medium hydrostatic pressure on the properties of wheat flour main biopolymers. J Cereal Sci 57:411–417

    Article  CAS  Google Scholar 

  • Lickert T, Badewien M, Vorwold G, Töpfl S, Knoch A, Heinz V (2010) Herstellung neuartig innovativer Fleisch- und Wurstprodukte mittels hoher hydrostatischer Drücke (The production of novel innovative meat products by high hydrostatic pressure). Fleischwirtschaft 6:56–59

    Google Scholar 

  • Lim SY, Swanson BG, Clark S (2008) High hydrostatic pressure modification of whey protein concentrate for improved functional properties. J Dairy Sci 91:1299–1307

    Article  CAS  Google Scholar 

  • Lopez-Fandino R (2006) High pressure-induced changes in milk proteins and possible applications in dairy technology. Int Dairy J 16:1119–1131

    Article  CAS  Google Scholar 

  • Macfarlane JJ (1973) Pre-rigor pressurisation of muscle. Effect of pH, shear value and taste panel assessment. J Food Sci 38:294–298

    Article  CAS  Google Scholar 

  • Marcos B, Kerry JP, Mullen AM (2010) High pressure induced changes on sarcoplasmic protein fraction and quality indicators. Meat Sci 85:115–120

    Article  CAS  Google Scholar 

  • Miyoshi E, Koseki T (2010) Gel formation induced by pressure denaturation of ovalbumin. Nippon Shokuhin Kagaku Kogaku Kaishi 57(6):268–272

    Article  CAS  Google Scholar 

  • Morris VJ (1990) Starch gelation and retrogradation. Trends Food Sci Technol 1:2–6

    Article  CAS  Google Scholar 

  • Ngarize S, Adams A, Howella N (2005) A comparative study of heat and high pressure induced gels of whey and egg albumen proteins and their binary mixtures. Food Hydrocolloids 19:984–996

    Article  CAS  Google Scholar 

  • Nishiwaki T, Ikeuchi Y, Suzuki A (1996) Effects of high pressure treatment on Mg-enhanced ATPase activity of rabbit myofibrils. Meat Sci 43(2):145–155

    Article  CAS  Google Scholar 

  • Oey I, Lille M, Van Loey A, Hendrickx M (2008) Effect of high pressure processing on colour, texture and flavour of fruit and vegetable-based food products: a review. Trends Food Sci Technol 19:320–328

    Article  CAS  Google Scholar 

  • Offer G, Knight P (1988) The structural basis of water-holding in meat: Part 1. General principles and water uptake in meat processing. In: Lawrie R (ed) Developments in meat science, vol 4. Elsevier, London, pp 63–171

    Google Scholar 

  • Orlien V, Petersen HB, Knudsen JC, Skibsted LH (2006a) Whey protein isolate as functional ingredient in high-pressure induced milk gels. Milchwissenschaft 61:6–9

    Google Scholar 

  • Orlien V, Knudsen JC, Colon M, Skibsted LH (2006b) Dynamics of casein micelles in skim milk during and after high pressure treatment. Food Chem 98:513–521

    Article  CAS  Google Scholar 

  • Orlien V (2010) New types of milk-based products by high pressure. New Food 4:25–27

    Google Scholar 

  • Patterson MF (2005) Microbiology of pressure-treated foods: a review. J Appl Microbiol 98:1400–1409

    Article  CAS  Google Scholar 

  • Pei-Ling L, Xiao-Song H, Qun S (2010) Effect of high hydrostatic pressure on starches: a review. Starch 62:615–628

    Article  Google Scholar 

  • Penna ALB, Rao-Gurram S, Barbosa-Canovas GV (2007) Effect of milk treatment on acidification, physicochemical characteristics, and probiotic cell counts in low fat yogurt. Milchwissenschaft-Milk Sci Int 62(1):48–52

    CAS  Google Scholar 

  • Pérez S, Baldwin PM, Gallant DJ (2009) Structural features of starch granules I. In: BeMiller JN, Whistler R (eds) Starch—chemistry and technology. Academic, New York, pp 149–192

    Google Scholar 

  • Polydera AC, Stoforos NG, Taoukis PS (2005) Quality degradation kinetics of pasteurized and high pressure processed fresh Navel orange juice: nutritional parameters and shelf life. Innov Food Sci Emerg Technol 6:1–9

    Article  Google Scholar 

  • Prestamo G, Arroyo G (1998) High hydrostatic pressure effects on vegetable structure. J Food Sci 63(5):878–881

    Article  CAS  Google Scholar 

  • Rastogi NK, Raghavarao KSMS, Balasubramanaiam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47:69–112

    Article  CAS  Google Scholar 

  • Roesch RR, Corredig M (2003) Texture and microstructure of emulsions prepared with soy protein concentrate by high-pressure homogenization. Lebensm Wiss Technol 36:113–124

    Article  CAS  Google Scholar 

  • Rumpold BA (2005) Impact of high hydrostatic pressure on wheat, tapioca, and potato starches. Ph.D. Thesis

    Google Scholar 

  • San Martin-Gonzalez MF, Roach A, Harte F (2009) Rheological properties of corn oil emulsions stabilized by commercial micellar casein and high pressure homogenization. LWT-Food Sci Technol 42:307–311

    Article  CAS  Google Scholar 

  • Sikes AL, Tobin AB, Tume RK (2009) Use of high pressure to reduce cook loss and improve texture of low-salt beef sausage batters. Innov Food Sci Emerg Technol 10(4):405–412

    Article  CAS  Google Scholar 

  • Sikes A, Tornberg E, Tume R (2010) A proposed mechanism of tenderising post-rigor beef using high pressure-heat treatment. Meat Science 84(3):390–399.

    Google Scholar 

  • Sila DN, Smout C, Elliot F, Van Loey A, Hendrickx M (2006) Non-enzymatic depolymerization of carrot pectin: toward a better understanding of carrot texture during thermal processing. J Food Sci 71(1):E1–E7

    Article  CAS  Google Scholar 

  • Sila DN, Duvetter T, De Roeck A, Verlenta I, Smout C, Moates GH, Hills BP, Waldron KK, Hendrickx M, Van Loey A (2008) Texture changes of processed fruits and vegetables: potential use of high-pressure processing. Trends Food Sci Technol 19:309–319

    Article  CAS  Google Scholar 

  • Souza CM, Boler DD, Clark DL, Kutzler LW, Holmer SF, Summerfield JW, Cannon JE, Smit NR, McKeith FK, Killefer J (2011) The effects of high pressure processing on pork quality, palatability, and further processed products. Meat Sci 87:419–427

    Article  CAS  Google Scholar 

  • Sun XD, Holley RA (2010) High hydrostratic pressure effects on the texture of meat and meat products. J Food Sci 75:R17–R23

    Article  CAS  Google Scholar 

  • Suzuki A, Watanabe M, Iwamura K, Ikeuchi Y, Saito M (1990) Effect of high pressure treatment on the ultrastructure and myofibrillar protein of beef skeletal muscle (food and nutrition). Agric Biol Chem 54(12):3085–3091

    Article  CAS  Google Scholar 

  • Tedford L-A, Smith D, Schaschke CJ (1999) High pressure processing effects on the molecular structure of ovalbumin, lysozyme and β-lactoglobulin. Food Res Int 32:101–106

    Article  CAS  Google Scholar 

  • Tester RF, Karkalas J, Qi X (2004) Starch—composition, fine structure and architecture. J Cereal Sci 24:151–165

    Article  Google Scholar 

  • Tintchev F, Bindrich U, Toepfl S, Strijowski U, Heinz V, Knorr D (2013) High hydrostatic pressure/temperature modeling of frankfurter batters. Meat Sci 94:376–387

    Article  CAS  Google Scholar 

  • Tonello C (2010) High pressure processing of seafood. In: Second European fish and seafood conference. Health and the consumer, sustainability, seafood processing technology and non-destructive quality measurement, Stavanger, Norway, 9–10 Mar 2010.

    Google Scholar 

  • Van der Plancken I, Van Loey A, Hendrickx MEG (2005) Changes in sulfhydryl content of egg white proteins due to heat and pressure treatment. J Agric Food Chem 14:5726–5733

    Article  Google Scholar 

  • Venir E, Marchesini G, Biasutti M, Innocente N (2010) Dynamic high pressure-induced gelation in milk protein model systems. J Dairy Sci 93:483–494

    Article  CAS  Google Scholar 

  • Verlent I, Hendrickx M, Rovere P, Moldenaers P, Van Loey A (2006) Rheological properties of tomato-based products after thermal and high-pressure treatment. J Food Sci 71(3):S243–S248

    Article  CAS  Google Scholar 

  • Wang X-S, Tang C-H, Li B-S, Yang X-Q, Li L, Ma C-Y (2008) Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates. Food Hydrocolloids 22:560–567

    Article  CAS  Google Scholar 

  • Yamamoto K, Yoshikawa K, Okada S (1993) Detailed action mechanism of dextrin dextranase from Acetobacter capsulatus ATCC 11894. Biosci Biotechnol Biochem 57:47–50

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Tomas Bolumar expresses his sincere gratitude to Thomas Lickert from the German Institute of Food Technologies and Vibeke Orlien from the Department of Food Science (University of Copenhagen) for providing supporting materials for this book chapter. Dana Middendorf wants to acknowledge the support of the German Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn), project AiF 16007 N. X-ray diffraction patterns and radial distribution measurements of starch were carried out by Goethe University, Frankfurt Main at the Department of Biochemistry, Chemistry, and Pharmacy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Bolumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bolumar, T., Middendorf, D., Toepfl, S., Heinz, V. (2016). Structural Changes in Foods Caused by High-Pressure Processing. In: Balasubramaniam, V., Barbosa-Cánovas, G., Lelieveld, H. (eds) High Pressure Processing of Food. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3234-4_23

Download citation

Publish with us

Policies and ethics