Skip to main content

High-Pressure Processing Uniformity

  • Chapter
  • First Online:
Book cover High Pressure Processing of Food

Part of the book series: Food Engineering Series ((FSES))

Abstract

As pressure is uniform and residence time is fixed, studying nonuniformity of high-pressure process variables comes down to studying temperature uniformity. This book chapter starts from the definition of adiabatic heat of compression to demonstrate that compression heat differences are a basis for the development of temperature heterogeneities in a high-pressure reactor. Since kinetics of change of target attributes of high pressure processing can be temperature dependent, temperature differences might result in process impact differences. There is a need for methods which enable insight in temperature gradients inside the high-pressure reactor. Since direct monitoring of the temperature as a function of time and space under pressure is today still a technical challenge at industrial scale, two alternative methods for temperature documentation under high-pressure conditions are described from principle to application. Finally, this chapter puts forward strategies to improve temperature uniformity under high-pressure processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn J, Balasubramaniam VM, Yousef AE (2007) Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. Int J Food Microbiol 113:321–329

    Article  CAS  Google Scholar 

  • Bridgman PW (1912) Thermodynamic properties of liquid water to 80 degrees and 1200 Pa. Proc Am Acad Arts Sci 48:307–362

    Article  Google Scholar 

  • Buzrul S, Alpas H, Largeteau A, Bozoglu F, Demazeau G (2008) Compression heating of selected pressure transmitting fluids and liquid foods during high hydrostatic pressure treatment. J Food Eng 85:466–472

    Article  CAS  Google Scholar 

  • de Heij W, Van den Berg R, Van Schepdael L, Hoogland H (2005). Sterilisation—only better. New Food, pp. 56–61

    Google Scholar 

  • de Heij W, van Schepdael L, Moezelaar R, Hoogland H, Matser A, van den Berg R (2003) High pressure sterilization: maximizing the benefits of adiabatic heating. Food Technol 57:37–41

    Google Scholar 

  • de Heij W, Van Schepdael L, Van den Berg R, Bartels P (2002) Increasing preservation efficiency and product quality through control of temperature profiles in high pressure applications. Int J High Pressure Res 22:653–657

    Article  Google Scholar 

  • Delgado A, Rauh C, Kowalczyk W, Baars A (2008) Review of modelling and simulation of high pressure treatment of materials of biological origin. Trends Food Sci Technol 19:329–336

    Article  CAS  Google Scholar 

  • Denys S, Hendrickx M (1999) Measurement of the thermal conductivity of foods at high pressure. J Food Sci 64:709–713

    Article  CAS  Google Scholar 

  • Denys S, Van Loey AM, Hendrickx ME (2000) A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics. Innov Food Sci Emerg Technol 1:5–19

    Article  CAS  Google Scholar 

  • Ghani AG, Farid MM (2007) Numerical simulation of solid-liquid food mixture in a high pressure processing unit using computational fluid dynamics. J Food Eng 80:1031–1042

    Article  Google Scholar 

  • Grauwet T, Rauh C, Van der Plancken I, Vervoort L, Hendrickx ME, Delgado A, Van Loey A (2012) Potential and limitations of methods for temperature uniformity mapping in high pressure thermal processing. Trends Food Sci Technol 23:97–110

    Article  CAS  Google Scholar 

  • Grauwet T, Van der Plancken I, Vervoort L, Hendrickx M, Van Loey A (2011) Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator. J Food Eng 105:36–47

    Article  Google Scholar 

  • Grauwet T, Van der Plancken I, Vervoort L, Hendrickx M, Van Loey A (2009) Investigating the potential of Bacillus subtilis α-amylase as a pressure-temperature-time indicator for high hydrostatic pressure pasteurization processes. Biotechnol Prog 4:1184–1193

    Article  Google Scholar 

  • Guan D, Chen H, Hoover DG (2005) Inactivation of Salmonella typhimurium DT 104 in UHT whole milk by high hydrostatic pressure. Int J Food Microbiol 104:145–153

    Article  Google Scholar 

  • Grauwet, T., Van der Plancken, I., Vervoort, L., Hendrickx, M., Van Loey, A. (2010a). Solvent engineering as a tool in enzymatic indicator development for mild high pressure pasteurization processes. Journal of Food Engineering, 97 (3): 301-310.

    Google Scholar 

  • Grauwet, T., Van der Plancken, I., Vervoort, L., Hendrickx, M., Van Loey A. (2010b). Mapping temperature uniformity in industrial-scale HP equipment using enzymatic pressure-temperature-time indicators. Journal of Food Engineering, 98 (1): 93-102

    Google Scholar 

  • Grauwet, T., Van der Plancken, I., Vervoort, L., Hendrickx, M., Van Loey A. (2010c). Protein-based indicator system for detection of temperature differences in high pressure high temperature processing. Food Research International, 43 (1): 862-871

    Google Scholar 

  • Hartmann C, Delgado A (2002a) The influence of transport phenomena during high pressure processing of packed food on the uniformity of enzyme inactivation. Biotechnol Bioeng 82:725–735

    Article  Google Scholar 

  • Hartmann C, Marthmann K, Delgado A (2006) Mechanical stresses in cellular structures under high hydrostatic pressure. Innov Food Sci Emerg Technol 7:1–12

    Article  Google Scholar 

  • Hartmann C, Schuhholz J-P, Kitsubun P, Chapleau N, Le Bail A, Delgado A (2004) Experimental and numerical analysis of the thermofluiddynamics in a high-pressure autoclave. Innov Food Sci Emerg Technol 5:399–411

    Article  Google Scholar 

  • Hartmann C, Delgado A (2003) The influence of transport phenomena during high-pressure processing of packed food on the uniformity of enzyme inactivation. Biotechnol Bioeng 82:725–735

    Article  CAS  Google Scholar 

  • Hartmann C, Delgado A (2002b) Numerical simulation of convective and diffusive transport effects on a high-pressure-induced inactivation process. Biotechnol Bioeng 79:94–104

    Article  CAS  Google Scholar 

  • Hartmann, C. & Delgado, A. (2003). The influence of transport phenomena during high pressure processing of packed food on the uniformity of enzyme inactivation. Biotechnology and Bioengineering, 82: 725-735

    Google Scholar 

  • Hendrickx, M., Maesmans, G., De Cordt, S., Noronha, J., Van Loey, A. & Tobback, P. (1995). Evaluation of the integrated time-temperature effect in thermal processing of foods. Critical Reviews in Food Science and Nutrition, 35: 231-262.

    Google Scholar 

  • Hite BH (1899) The effect of pressure in the preservation of milk. Bull W Virginia Univ Agric Exp Station 58:15–35

    Google Scholar 

  • Hoogland H, de Heij W, Van Schepdael L (2001) High pressure sterilization: novel technology, new products, new opportunities. New Food, pp. 21–26

    Google Scholar 

  • Juliano P, Knoerzer K, Fryer PJ, Versteeg C (2009) C. botulinum inactivation kinetics implemented in a computational model of a high pressure sterilization process. Biotechnol Prog 25:163–175

    Article  CAS  Google Scholar 

  • Knoerzer K, Buckow R, Versteeg C (2010a) Adiabatic compression heating coefficients for high pressure processing—a study of some insulating polymer materials. J Food Eng 98:110–119

    Article  Google Scholar 

  • Knoerzer K, Juliano P, Gladman S, Versteeg C, Fryer PJ (2007) A computational model for temperature and sterility distributions in a pilot-scale high-pressure high-temperature process. Am Inst Chem Eng 53:2996–3010

    Article  CAS  Google Scholar 

  • Knoerzer K, Smith R, Juliano P, Kelly M, Steele R, Sanguansri P, Versteeg C (2010b) The Thermo-Egg: a combined novel engineering and reverse logic approach for determining temperatures at high pressure. Food Eng Rev 2:216–225. doi:10.1007/s12393-010-9025-1

    Article  Google Scholar 

  • Koutchma T, Guo B, Patazca E, Parisi B (2005) High pressure-high temperature sterilization: From kinetic analysis to process verification. J Food Process Eng 28:610–629

    Article  Google Scholar 

  • Landfeld A, Matser AM, Strohalm J, Oey I, Van der Plancken I, Grauwet T, Hendrickx M, Moates GK, Furfaro ME, Waldron KK, Betz M, Halama R, Houska M (2011) Can qualitatively similar temperature-histories be obtained in different pilot HP units? Innov Food Sci Emerg Technol 12:226–234

    Article  Google Scholar 

  • Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Ganzle MG (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72:3476–3481

    Article  CAS  Google Scholar 

  • Minerich PL, Labuza TP (2003) Development of a pressure indicator for high hydrostatic pressure processing of foods. Innov Food Sci Emerg Technol 4:235–243

    Article  Google Scholar 

  • Otero L, Molina-Garcia AD, Sanz PD (2000) Thermal effect in foods during quasi-adiabatic pressure treatments. Innov Food Sci Emerg Technol 1:119–126

    Article  Google Scholar 

  • Otero L, Ramos AM, de Elvira C, Sanz PD (2007) A model to design high-pressure processes towards an uniform temperature distribution. J Food Eng 78:1463–1470

    Article  Google Scholar 

  • Otero L, Sanz PD (2003) Modelling heat transfer in high pressure food processing: a review. Innov Food Sci Emerg Technol 4:121–134

    Article  Google Scholar 

  • Patazca E, Koutchma T, Balasubramaniam VM (2007) Quasi-adiabatic temperature increase during high pressure processing of selected foods. J Food Eng 80:199–205

    Article  Google Scholar 

  • Ramaswamy HS, Shao Y, Zhu S (2009) High-pressure destruction kinetics of Clostridium sporogenes ATCC11437 spores in milk at elevated quasi-isothermal conditions. J Food Eng 96:249–257. doi:10.1016/j.foodeng.2009.07.019

    Article  Google Scholar 

  • Rasanayagam V, Balasubramaniam VM, Ting EY, Siezer CE, Bush C, Anderson C (2003) Compression heating of selected fatty food materials during high pressure processing. J Food Sci 68:254–259

    Article  CAS  Google Scholar 

  • Rauh C, Baars A, Delgado A (2009) Uniformity of enzyme inactivation in a short-time high-pressure process. J Food Eng 91:154–163

    Article  CAS  Google Scholar 

  • Rauh C, Baars A, Delgado A (2006) Analysis of inhomogeneous thermofluiddynamical processes in short time high pressure treatment of liquid foods. In: Proceedings of the fourth international conference on high pressure bioscience and biotechnology, Tsukuba, Japan, pp. 186–191

    Google Scholar 

  • Rauh C, Delgado A (2010) Analytical considerations and dimensionless analysis for a description of particle interactions in high pressure processes. High Pressure Res 30:567–573

    Article  CAS  Google Scholar 

  • Rauh C, Delgado A (2011) Limitations of mathematical modelling and numerical simulation of industrial and laboratory high pressure processes. High Pressure Res 31:126–130

    Article  Google Scholar 

  • Shao Y, Songming Z, Ramaswamy HS, Marcotte M (2008) Compression heating and temperature control for high-pressure destruction of bacterial spores: an experimental method for kinetics evaluation. Food Bioprocess Technol 22:273–283

    Google Scholar 

  • Song KB, Al-Salaymeh A, Jovanovic J, Rauh C, Delgado A (2010) Experimental in-situ investigations of turbulence under high pressure. Ann N Y Acad Sci 1189:24–33

    Article  Google Scholar 

  • Song KB, Jovanovic J, Rauh C, Delgado A (2008a) An experimental in situ investigation on fluid flow during high pressure process using LDA and HWA. Presented at 79th annual meeting of the international association of applied mathematics and mechanics (GAMM), Bremen, Germany, 31 Mar–4 Apr 2008

    Google Scholar 

  • Song KB, Rauh C, Delgado A (2008b) Experimental in-situ investigations on free jet under high pressure by means of LDA and HWA. Presented at Fachtagung “Lasermethoden in der Strömungsmesstechnik”, Karlsruhe, Germany, 9–11 Sept 2008

    Google Scholar 

  • Song KB, Regulski W, Jovanovic J, Rauh C, Delgado A (2009) In situ investigation of the turbulent-laminar transition of temperature fluctuations during pressure building up to 300 MPa. High Pressure Res 29:739–745

    Article  CAS  Google Scholar 

  • Van Loey, A., Hendrickx, M., De Cordt, S., Haentjens, T. & Tobback, P. (1996). Quantitative evaluation of thermal processes using time-temperature integrators. Trends in Food Science & Technology, 7: 16-26

    Google Scholar 

  • Van der Plancken, I., Grauwet, T., Oey, I., Van Loey, A. & Hendrickx, M. (2008). Impact evaluation of high pressure treatment on foods: considerations on the development of pressure-temperature-time integrators (pTTIs). Trends in Food Science & Technology, 19: 337-348

    Google Scholar 

  • Van der Plancken I, Verbeyst L, De Vleeschouwer K, Grauwet T, Heinio R-L, Husband FA, Lille M, Mackie AR, Van Loey A, Viljanen K, Hendrickx ME (2012) (Bio)chemical reactions during high pressure/high temperature processing affect safety and quality of plant-based Foods. Trends Food Sci Technol 23:28–38

    Article  Google Scholar 

  • Torrecilla JS, Otero L, Sanz PD (2004) A neural network approach for thermal/pressure food processing. J Food Eng 62:89–95

    Article  Google Scholar 

  • Torrecilla JS, Otero L, Sanz PD (2005) Artificial neural networks: a promising tool to design and optimize high-pressure food processes. J Food Eng 69:299–306

    Article  Google Scholar 

  • Werner M, Baars A, Werner F, Eder C, Delgado A (2007) Thermal conductivity of aqueous sugar solutions under high pressure. Int J Thermophys 28:1161–1180

    Article  CAS  Google Scholar 

  • Zemansky, M.W. (1957). In: Heat and Thermodynamics. McGraw-Hill Book Company, New York. 248-253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara Grauwet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grauwet, T., Van der Plancken, I., Vervoort, L., Hendrickx, M., Van Loey, A. (2016). High-Pressure Processing Uniformity. In: Balasubramaniam, V., Barbosa-Cánovas, G., Lelieveld, H. (eds) High Pressure Processing of Food. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3234-4_13

Download citation

Publish with us

Policies and ethics