Advertisement

Practical Nutrition Guidelines for Individuals with Duchenne Muscular Dystrophy

  • Zoe E. DavidsonEmail author
  • Greg Rodden
  • Davi A. G. Mázala
  • Cynthia Moore
  • Carol Papillon
  • Angela J. Hasemann
  • Helen Truby
  • Robert W. Grange
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Appropriate nutrition is a fundamental contributor to the health and quality of life of boys with Duchenne muscular dystrophy (DMD), yet there are few nutrition guidelines. DMD is an X-linked disease caused by mutations in the gene encoding the dystrophin protein resulting in its absence from a number of tissues. Striated and smooth muscles are essential to digestion, and both are dysfunctional in the absence of dystrophin. Obesity and underweight are prevalent within the condition. Nutritional assessment involves determining nutrient needs and reviewing anthropometric and biochemical data, physical findings, nutritional implications of medications, and the client history. The purpose of this chapter is to provide guidance to the members of the multidisciplinary healthcare team, but especially the physician and registered dietitian. Herein, we review existing research and make recommendations for nutritional assessment, including strategies to counter fundamental nutrition concerns for DMD boys. In addition, common nutrient constituents and supplements, reported to alleviate some deleterious aspects of DMD, and potential drug-nutrient interactions are reviewed.

Keywords

Muscle disease Diet Digestion Energy balance Body composition Nutrient constituents Supplements Drug-nutrient interaction 

Abbreviations

BMI

Body mass index

DRI

Daily recommended intake

DXA

Dual-energy X-ray absorptiometry

METs

Metabolic equivalents

NOAEL

No observed adverse effect level

OSL

Observed safety limit

REE

Resting energy expenditure

RD

Registered dietitian

ROS

Reactive oxygen species

UL

Upper limit

References

  1. 1.
    Hoffman EP, Brown Jr RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51(6):919–28.PubMedCrossRefGoogle Scholar
  2. 2.
    Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev. 2002;82(2):291–329.PubMedCrossRefGoogle Scholar
  3. 3.
    Markert CD, Ambrosio F, Call JA, Grange RW. Exercise and Duchenne muscular dystrophy: toward evidence-based exercise prescription. Muscle Nerve. 2011;43(4):464–78.PubMedCrossRefGoogle Scholar
  4. 4.
    Bies RD, Phelps SF, Cortez MD, Roberts R, Caskey CT, Chamberlain JS. Human and murine dystrophin mRNA transcripts are differentially expressed during skeletal muscle, heart, and brain development. Nucleic Acids Res. 1992;20:1725–31.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ferlini A, Neri M, Gualandi F. The medical genetics of dystrophinopathies: Molecular genetic diagnosis and its impact on clinical practice. Neuro Disord. 2013;23:4–14.CrossRefGoogle Scholar
  6. 6.
    Sharma P, Tran T, Stelmack GL, McNeill K, Gosens R, Mutawe MM, Unruh H, Gerthoffer WT, Halayko AJ. Expression of the dystrophin-glycoprotein complex is a marker for human airway smooth muscle phenotype maturation. Am J Physiol Lung Cell Mol Physiol. 2008;294:L57–68.PubMedCrossRefGoogle Scholar
  7. 7.
    Bensen ES, Jaffe KM, Tarr PI. Acute gastric dilatation in Duchenne Muscular Dystrophy: A case report and review of the literature. Arch Phys Med Rehab. 1996;77:512–4.CrossRefGoogle Scholar
  8. 8.
    Boland BJ, Silbert PL, Groover RV, Wollan PC, Silverstein MD. Skeletal, Cardiac and smooth muscle failure in Duchenne muscular dystrophy. Ped Neurol. 1996;14(1):7–12.CrossRefGoogle Scholar
  9. 9.
    Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, DMD Care Considerations Working Group, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9:77–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol. 2010;9(2):177–89.PubMedCrossRefGoogle Scholar
  11. 11.
    Motlagh B, MacDonald JR, Tarnopolsky MA. Nutritional inadequacy in adults with muscular dystrophy. Muscle Nerve. 2005;31(6):713–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Davidson ZE, Truby H. A review of nutrition in Duchenne muscular dystrophy. Journal of human nutrition and dietetics. 2009;22(5):383–93.PubMedCrossRefGoogle Scholar
  13. 13.
    Willig TN, Carlier L, Legrand M, Riviere H, Navarro J. Nutritional assessment in Duchenne muscular dystrophy. Dev Med Child Neurol. 1993;35(12):1074–82.PubMedCrossRefGoogle Scholar
  14. 14.
    McDonald CM, Abresch RT, Carter GT, Fowler Jr WM, Johnson ER, Kilmer DD, et al. Profiles of neuromuscular diseases. Duchenne muscular dystrophy. Am J Phys Med Rehabil. 1995;74(5 Suppl):S70–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Martigne L, Salleron J, Mayer M, Cuisset J-M, Carpentier A, Neve V, et al. Natural evolution of weight status in Duchenne muscular dystrophy: a retrospective audit. Br J Nutr. 2011;105:1486–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Eiholzer U, Boltshauser E, Frey D, Molinari L, Zachmann M. Short stature: a common feature in Duchenne muscular dystrophy. Eur J Pediatr. 1988;147(6):602–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Nagel BHP, Mortier W, Elmlinger M, Wollmann HA, Schmitt K, Ranke MB. Short stature in Duchenne muscular dystrophy: a study of 34 patients. Acta Paediatr. 1999;88(1):62–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Centers for Disease Control and Prevention. Percentile data files with LMS values. 2009; Available from: http://www.cdc.gov/growthcharts/percentile_data_files.htm
  19. 19.
    Davidson ZE, Ryan MM, Kornberg AJ, Sinclair K, Cairns A, Walker KZ, et al. Observations of body mass index in Duchenne muscular dystrophy: a longitudinal study. Eur J Clin Nutr. 2014;68(8):892–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Bianchi ML, Biggar D, Bushby K, Rogol AD, Rutter MM, Tseng B. Endocrine aspects of Duchenne muscular dystrophy. Neuromuscul Disord. 2011;21(4):298–303.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuczmarski R, Odgen C, Grummer-Strawn L, Flegal K, Guo S, Wei R, et al. CDC growth charts: United States. Advance data from vital and health statistics; No 314. Hyattsville, MD: National Center for Health Statistics; 2000.Google Scholar
  22. 22.
    Gauld LM, Kappers J, Carlin JB, Robertson CF. Height prediction from ulna length. Developmental Medicine & Child Neurology. 2004;46(7):475–80.CrossRefGoogle Scholar
  23. 23.
    Pessolano FA, Suarez AA, Monteiro SG, Mesa L, Dubrovsky A, Roncoroni AJ, et al. Nutritional assessment of patients with neuromuscular diseases. Am J Phys Med Rehabil. 2003;82:182–5.PubMedGoogle Scholar
  24. 24.
    Elliott SA, Davidson ZE, Davies PS, Truby H. Accuracy of Parent-Reported Energy Intake and Physical Activity Levels in Boys With Duchenne Muscular Dystrophy. Nutr Clin Pract. 2014. doi: 10.1177/0884533614546696.PubMedGoogle Scholar
  25. 25.
    National Research Council. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Washington, DC: The National Academies Press; 2005.Google Scholar
  26. 26.
    Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington, DC: The National Academies Press; 1997.Google Scholar
  27. 27.
    Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: The National Academies Press; 1998.Google Scholar
  28. 28.
    Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington, DC: The National Academies Press; 2000.Google Scholar
  29. 29.
    National Research Council. Dietary reference intakes for vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: The National Academies Press; 2001.Google Scholar
  30. 30.
    National Research Council. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Washington, DC: The National Academies Press; 2005.Google Scholar
  31. 31.
    Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: The National Academies Press; 2011.Google Scholar
  32. 32.
    Levine JA. Measurement of energy expenditure. Pub Hlth Nut. 2005;8:1123–32.Google Scholar
  33. 33.
    St-Onge M. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure. Journal of Clinical Sleep Medicine. 2013;9(1):73–80.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Elliott SA, Davidson ZE, Davies PSW, Truby H. A Bedside Measure of Body Composition in Duchenne Muscular Dystrophy. Pediatr Neurol. 2014. doi: 10.1016/j.pediatrneurol.2014.08.008.Google Scholar
  35. 35.
    Elliott SA, Davidson ZE, Davies PS, Truby H. Predicting resting energy expenditure in boys with Duchenne muscular dystrophy. Eur J Paediatr Neurol. 2012;16(6):631–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39 Suppl 1:5–41.PubMedGoogle Scholar
  37. 37.
    Whitney E, Rolfes SR, Crowe T, Cameron-Smith D, Walsh A. Understanding Nutrition: Australia and New. Zealandth ed. Melbourne: Cengage Learning; 2014.Google Scholar
  38. 38.
    Diamanti A, Panetta F, Tentolini A. Efficacy and safety of gastrostomy feeding in Duchenne muscular dystrophy. Clin Nutr. 2011;30(2):263.PubMedCrossRefGoogle Scholar
  39. 39.
    Goldstein M, Meyer S, Freund HR. Effects of overfeeding in children with muscle dystrophies. JPEN J Parenter Enteral Nutr. 1989;13(6):603–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Martigne L, Seguy D, Pellegrini N, Orlikowski D, Cuisset JM, Carpentier A, et al. Efficacy and tolerance of gastrostomy feeding in Duchenne muscular dystrophy. Clin Nutr. 2010;29(1):60–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Matsuo K, Palmer JB. Anatomy and Physiology of feeding and swallowing – normal and abnormal. Phys Med REhabil Clin N Amer. 2008;19(4):691–707.CrossRefGoogle Scholar
  42. 42.
    Aloysius A, Born P, Kinali M, Davis T, Pane M, Mercuri E. Swallowing difficulties in Duchenne muscular dystrophy: Indications for feeding assessment and outcome of videofluroscopic swallow studies. Eur J of Paed Neurol. 2008;12:239–45.CrossRefGoogle Scholar
  43. 43.
    van den Engel-Hoek L, Erasmus CE, Hendriks JCM, Geurts ACH, Klein WM, Sigrid Pillen S, Sie Bert LT, de Swart BJM JM, de Groot IJM. Oral muscles are progressively affected in Duchenne muscular dystrophy: implications for dysphagia treatment. J Neurol. 2013;260:1295–303.PubMedCrossRefGoogle Scholar
  44. 44.
    van den Engel-Hoek L, Erasmus CE, van Hulst KCM, Arvedson JC, de Groot IJM, de Swart BJM. Children With Central and Peripheral Neurologic Disorders Have Distinguishable Patterns of Dysphagia on Videofluoroscopic Swallow Study. J Child Neurol doi:. 2013. doi: 10.1177/0883073813501871.Google Scholar
  45. 45.
    Barohn RJ, Levine EJ, Olson JO, Mendell JR. Gastric hypomotility in Duchenne’s muscular dystrophy. N Engl J Med. 1988;319(1):15–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Borrelli O, Salvia G, Mancini V, Santoro L, Tagliente F, Romeo EF, et al. Evolution of Gastric Electrical Features and Gastric Emptying in Children with Duchenne and Becker Muscular Dystrophy. Am J Gastroenterol. 2005;100(3):695–702.PubMedCrossRefGoogle Scholar
  47. 47.
    Leon SH, Schuffler MD, Kettler M, CA R. Chronic intestinal pseudoobstruction as a complication of Duchenne’s muscular dystrophy. Gastroent. 1986;90(2):455–9.CrossRefGoogle Scholar
  48. 48.
    Mendell JR, Griggs RC, Moxley 3rd RT, Fenichel GM, Brooke MH, Miller JP, Dodson WE. Clinical investigation in Duchenne muscular dystrophy: IV. Double-blind controlled trial of leucine. Muscle Nerve. 1984;7(7):535–41. doi: 10.1002/mus.880070704.PubMedCrossRefGoogle Scholar
  49. 49.
    Stewart PM, Walser M, Drachman DB. Branched-chain ketoacids reduce muscle protein degradation in Duchenne muscular dystrophy. Muscle Nerve. 1982;5(3):197–201. doi: 10.1002/mus.880050304.PubMedCrossRefGoogle Scholar
  50. 50.
    Mok E, Eleouet-Da Violante C, Daubrosse C, Gottrand F, Rigal O, Fontan JE, et al. Oral glutamine and amino acid supplementation inhibit whole-body protein degradation in children with Duchenne muscular dystrophy. Am J Clin Nutr. 2006;83(4):823–8.PubMedGoogle Scholar
  51. 51.
    Mok E, Letellier G, Cuisset JM, Denjean A, Gottrand F, Alberti C, Hankard R. Lack of functional benefit with glutamine versus placebo in Duchenne muscular dystrophy: a randomized crossover trial. PLoS One. 2009;4(5), e5448. doi: 10.1371/journal.pone.0005448.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kley RA, Tarnopolsky MA, Vorgerd M. Creatine for treating muscle disorders. Cochrane Database Syst Rev. 2013;6, CD004760. doi: 10.1002/14651858.CD004760.pub4.Google Scholar
  53. 53.
    Walter MC, Lochmuller H, Reilich P, Klopstock T, Huber R, Hartard M, et al. Creatine monohydrate in muscular dystrophies: A double-blind, placebo-controlled clinical study. Neurology. 2000;54(9):1848–50.PubMedCrossRefGoogle Scholar
  54. 54.
    Tarnopolsky MA, Mahoney DJ, Vajsar J, Rodriguez C, Doherty TJ, Roy BD, Biggar D. Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology. 2004;62(10):1771–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Louis M, Lebacq J, Poortmans JR, Belpaire-Dethiou MC, Devogelaer JP, Van Hecke P, et al. Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve. 2003;27(5):604–10. doi: 10.1002/mus.10355.PubMedCrossRefGoogle Scholar
  56. 56.
    Banerjee B, Sharma U, Balasubramanian K, Kalaivani M, Kalra V, Jagannathan NR. Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: a randomized, placebo-controlled 31P MRS study. Magn Reson Imaging. 2010;28(5):698–707. doi: 10.1016/j.mri.2010.03.008.PubMedCrossRefGoogle Scholar
  57. 57.
    Escolar DM, Buyse G, Henricson E, Leshner R, Florence J, Mayhew J, CINRG Group, et al. CINRG randomized controlled trial of creatine and glutamine in Duchenne muscular dystrophy. Ann Neurol. 2005;58(1):151–5. doi: 10.1002/ana.20523.PubMedCrossRefGoogle Scholar
  58. 58.
    Paulson DJ, Hoganson GE, Traxler J, Sufit R, Peters H, Shug AL. Ketogenic effects of carnitine in patients with muscular dystrophy and cytochrome oxidase deficiency. Biochem Med Metab Biol. 1988;39(1):40–7.Google Scholar
  59. 59.
    Escobar-Cedillo RE, Tintos-Hernández JA, Martínez-Castro G, de Oca-Sánchez BM, Rodríguez-Jurado R, Miranda-Duarte A, Lona-Pimentel S, et al. L-carnitine suplemmentation in Duchenne muscular dystroph steroidnaive patients: a pilot study. Curr Top Nutraceut Res. 2013;11(3):97.Google Scholar
  60. 60.
    Folkers K, Simonsen R. Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochim Biophys Acta. 1995;1271:281–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Buyse GM, Goemans N, van den Hauwe M, Thijs D, de Groot IJ, Schara U, Ceulemans B, Meier T, Mertens L. Idebenone as a novel, therapeutic approach for Duchenne muscular dystrophy: results from a 12 month, double-blind, randomized placebo-controlled trial. Neuromuscul Disord. 2011;21:396–405.PubMedCrossRefGoogle Scholar
  62. 62.
    Eriksen EF, Díez-Pérez A, Boonen S. Update on long-term treatment with bisphosphonates for postmenopausal osteoporosis: a systematic review. Bone. 2014;58:126–35.Google Scholar
  63. 63.
    Partridge TA. The mdx mouse model as a surrogate for Duchenne muscular dystrophy. FEBS J. 2013;280(17):4177–86.Google Scholar
  64. 64.
    Voisin V, Sebrie C, Matecki S, Yu H, Gillet B, Ramonatxo M, De la Porte S. L-arginine improves dystrophic phenotype in mdx mice. Neurobiol Dis. 2005;20(1):123–30. doi: 10.1016/j.nbd.2005.02.010.PubMedCrossRefGoogle Scholar
  65. 65.
    Hnia K, Gayraud J, Hugon G, Ramonatxo M, De La Porte S, Matecki S, Mornet D. L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. Am J Pathol. 2008;172(6):1509–19. doi: 10.2353/ajpath.2008.071009.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wehling-Henricks M, Jordan MC, Gotoh T, Grody WW, Roos KP, Tidball JG. Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS One. 2010;5(5), e10763. doi: 10.1371/journal.pone.0010763.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Vianello S, Yu H, Voisin V, Haddad H, He X, Foutz AS, de la Porte S. Arginine butyrate: a therapeutic candidate for Duchenne muscular dystrophy. FASEB J. 2013;27(6):2256–69. doi: 10.1096/fj.12-215723.PubMedCrossRefGoogle Scholar
  68. 68.
    Vianello S, Consolaro F, Bich C, Cancela JM, Roulot M, Lanchec E, et al. Low doses of arginine butyrate derivatives improve dystrophic phenotype and restore membrane integrity in DMD models. FASEB J. 2014;28(6):2603–19. doi: 10.1096/fj.13-244798.PubMedCrossRefGoogle Scholar
  69. 69.
    Mok E, Constantin B, Favreau F, Neveux N, Magaud C, Delwail A, Hankard R. l-Glutamine administration reduces oxidized glutathione and MAP kinase signaling in dystrophic muscle of mdx mice. Pediatr Res. 2008;63(3):268–73. doi: 10.1203/PDR.0b013e318163a259.PubMedCrossRefGoogle Scholar
  70. 70.
    De Luca A, Pierno S, Liantonio A, Cetrone M, Camerino C, Fraysse B, et al. Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1. J Pharmacol Exp Ther. 2003;304(1):453–63. doi: 10.1124/jpet.102.041343.PubMedCrossRefGoogle Scholar
  71. 71.
    Cozzoli A, Rolland JF, Capogrosso RF, Sblendorio VT, Longo V, Simonetti S, et al. Evaluation of potential synergistic action of a combined treatment with alpha-methyl-prednisolone and taurine on the mdx mouse model of Duchenne muscular dystrophy. Neuropathol Appl Neurobiol. 2011;37(3):243–56. doi: 10.1111/j.1365-2990.2010.01106.x.PubMedCrossRefGoogle Scholar
  72. 72.
    Buetler TM, Renard M, Offord EA, Schneider H, Ruegg UT. Green tea extract decreases muscle necrosis in mdx mice and protects against reactive oxygen species. Am J Clin Nutr. 2002;75(4):749–53.PubMedGoogle Scholar
  73. 73.
    Call JA, Voelker KA, Wolff AV, McMillan RP, Evans NP, Hulver MW, Grange RW. Endurance capacity in maturing mdx mice is markedly enhanced by combined voluntary wheel running and green tea extract. J Appl Physiol (1985). 2008;105(3):923–32. doi: 10.1152/japplphysiol.00028.2008.PubMedCentralCrossRefGoogle Scholar
  74. 74.
    Evans NP, Call JA, Bassaganya-Riera J, Robertson JL, Grange RW. Green tea extract decreases muscle pathology and NF-kappaB immunostaining in regenerating muscle fibers of mdx mice. Clin Nutr. 2010;29(3):391–8. doi: 10.1016/j.clnu.2009.10.001.PubMedCrossRefGoogle Scholar
  75. 75.
    Mauricio AF, Minatel E, Santo Neto H, Marques MJ. Effects of fish oil containing eicosapentaenoic acid and docosahexaenoic acid on dystrophic mdx mice. Clin Nutr. 2013;32(4):636–42.Google Scholar
  76. 76.
    Carvalho SC, Apolinario LM, Matheus SM, Santo Neto H, Marques MJ. EPA protects against muscle damage in the mdx mouse model of Duchenne muscular dystrophy by promoting a shift from the M1 to M2 macrophage phenotype. J Neuroimmunol. 2013;264(1-2):41–7. doi: 10.1016/j.jneuroim.2013.09.007.PubMedCrossRefGoogle Scholar
  77. 77.
    Oh J, Kang H, Kim HJ, Lee JH, Choi KG, Park KD. The effect of L-carnitine supplementation on the dystrophic muscle and exercise tolerance of muscular dystrophy (mdx) mice. J Korean Neurolog Assoc. 2005;23:519–27.Google Scholar
  78. 78.
    Gordon BS, Delgado-Diaz DC, Carson J, Fayad R, Wilson LB, Kostek MC. Resveratrol improves muscle function but not oxidative capacity in young mdx mice. Can J Physiol Pharmacol. 2014;92(3):243–51. doi: 10.1139/cjpp-2013-0350.PubMedCrossRefGoogle Scholar
  79. 79.
    Kostek MC, Gordon BS, Diaz DCD. Resveratrol affects inflammation and muscle function in mdx mice. FASEB J. 2011;25(1_MeetingAbstracts):lb597.Google Scholar
  80. 80.
    Hori YS, Kuno A, Hosoda R, Tanno M, Miura T, Shimamoto K, Horio Y. Resveratrol ameliorates muscular pathology in the dystrophic mdx mouse, a model for Duchenne muscular dystrophy. J Pharmacol Exp Ther. 2011;338(3):784–94. doi: 10.1124/jpet.111.183210.PubMedCrossRefGoogle Scholar
  81. 81.
    Whitehead NP, Pham C, Gervasio OL, Allen DG. N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol. 2008;586(7):2003–14. doi: 10.1113/jphysiol.2007.148338.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    de Senzi Moraes Pinto R, Ferretti R, Moraes LH, Neto HS, Marques MJ, Minatel E. N-acetylcysteine treatment reduces TNF-alpha levels and myonecrosis in diaphragm muscle of mdx mice. Clin Nutr. 2013;32(3):472–5. doi: 10.1016/j.clnu.2012.06.001.PubMedCrossRefGoogle Scholar
  83. 83.
    Buyse GM, Van der Mieren G, Erb M, D’hooge J, Herijgers P, Verbeken E, Jara A, Bergh AVD, Mertens L, Courdier-Fruh I, Barzaghi P, Meier T. Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance. European Heart Journal. 2009;30(1):116–24.PubMedCrossRefGoogle Scholar
  84. 84.
    Ballard FJ, Tomas FM, Stern LM. Increased turnover of muscle contractile proteins in Duchenne muscular dystrophy as assessed by 3-methylhistidine and creatinine excretion. Clin Sci (Lond). 1979;56(4):347–52.CrossRefGoogle Scholar
  85. 85.
    Hankard R, Mauras N, Hammond D, Haymond M, Darmaun D. Is glutamine a ‘conditionally essential’ amino acid in Duchenne muscular dystrophy? Clin Nutr. 1999;18(6):365–9. doi: 10.1054/clnu.1999.0054.PubMedCrossRefGoogle Scholar
  86. 86.
    Radley-Crabb HG, Marini JC, Sosa HA, Castillo LI, Grounds MD, Fiorotto ML. Dystropathology increases energy expenditure and protein turnover in the mdx mouse model of duchenne muscular dystrophy. PLoS One. 2014;9(2), e89277. doi: 10.1371/journal.pone.0089277.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Blomstrand E, Eliasson J, Karlsson HK, Kohnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006;136(1 Suppl):269S–73.PubMedGoogle Scholar
  88. 88.
    Kimball SR, Jefferson LS. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr. 2006;136(1 Suppl):227S–31.PubMedGoogle Scholar
  89. 89.
    Davoodi J, Markert CD, Voelker KA, Hutson SM, Grange RW. Nutrition strategies to improve physical capabilities in Duchenne muscular dystrophy. Phys Med Rehabil Clin N Am. 2012;23(1):187–99. doi: 10.1016/j.pmr.2011.11.010. xii-xiii.PubMedCrossRefGoogle Scholar
  90. 90.
    Chaubourt E, Fossier P, Baux G, Leprince C, Israel M, De La Porte S. Nitric oxide and l-arginine cause an accumulation of utrophin at the sarcolemma: a possible compensation for dystrophin loss in Duchenne muscular dystrophy. Neurobiol Dis. 1999;6(6):499–507. doi:10.1006/nbdi.1999.0256.Google Scholar
  91. 91.
    Haenggi T, Fritschy JM. Role of dystrophin and utrophin for assembly and function of the dystrophin glycoprotein complex in non-muscle tissue. Cell Mol Life Sci. 2006;63(14):1614–31. doi: 10.1007/s00018-005-5461-0.PubMedCrossRefGoogle Scholar
  92. 92.
    Love DR, Hill DF, Dickson G, Spurr NK, Byth BC, Marsden RF, Davies KE. An autosomal transcript in skeletal muscle with homology to dystrophin. Nature. 1989;339(6219):55–8. doi: 10.1038/339055a0.PubMedCrossRefGoogle Scholar
  93. 93.
    Mizuno Y, Nonaka I, Hirai S, Ozawa E. Reciprocal expression of dystrophin and utrophin in muscles of Duchenne muscular dystrophy patients, female DMD-carriers and control subjects. J Neurol Sci. 1993;119(1):43–52.PubMedCrossRefGoogle Scholar
  94. 94.
    Rafael JA, Tinsley JM, Potter AC, Deconinck AE, Davies KE. Skeletal muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin deficient mice. Nat Genet. 1998;19(1):79–82. doi: 10.1038/ng0598-79.PubMedCrossRefGoogle Scholar
  95. 95.
    Shao A, Hathcock JN. Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul Toxicol Pharmacol. 2008;50(3):376–99. doi: 10.1016/j.yrtph.2008.01.004.PubMedCrossRefGoogle Scholar
  96. 96.
    Mattei E, Corbi N, Di Certo MG, Strimpakos G, Severini C, Onori A, Passananti C. Utrophin up-regulation by an artificial transcription factor in transgenic mice. PLoS One. 2007;2(8), e774. doi: 10.1371/journal.pone.0000774.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Tinsley JM, Fairclough RJ, Storer R, Wilkes FJ, Potter AC, Squire SE, et al. Daily treatment with SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLoS One. 2011;6(5), e19189. doi: 10.1371/journal.pone.0019189.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Perrine SP, Hermine O, Small T, Suarez F, O’Reilly R, Boulad F, Faller DV. A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies. Blood. 2007;109(6):2571–8. doi: 10.1182/blood-2006-01-024703.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hankard RG, Hammond D, Haymond MW, Darmaun D. Oral glutamine slows down whole body protein breakdown in Duchenne muscular dystrophy. Pediatr Res. 1998;43(2):222–6. doi: 10.1203/00006450-199804001-01321.
  100. 100.
    Garlick PJ. Assessment of the safety of glutamine and other amino acids. J Nutr. 2001;131(9 Suppl):2556S–61.PubMedGoogle Scholar
  101. 101.
    Pulido SM, Passaquin AC, Leijendekker WJ, Challet C, Wallimann T, Ruegg UT. Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells. FEBS Lett. 1998;439(3):357–62.PubMedCrossRefGoogle Scholar
  102. 102.
    Felber S, Skladal D, Wyss M, Kremser C, Koller A, Sperl W. Oral creatine supplementation in Duchenne muscular dystrophy: a clinical and 31P magnetic resonance spectroscopy study. Neurol Res. 2000;22(2):145–50.PubMedCrossRefGoogle Scholar
  103. 103.
    Payne ET, Yasuda N, Bourgeois JM, Devries MC, Rodriguez MC, Yousuf J, Tarnopolsky MA. Nutritional therapy improves function and complements corticosteroid intervention in mdx mice. Muscle Nerve. 2006;33(1):66–77. doi: 10.1002/mus.20436.PubMedCrossRefGoogle Scholar
  104. 104.
    Persky AM, Brazeau GA. Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev. 2001;53(2):161–76.PubMedGoogle Scholar
  105. 105.
    Koshy KM, Griswold E, Schneeberger EE. Interstitial nephritis in a patient taking creatine. N Engl J Med. 1999;340(10):814–5. doi: 10.1056/NEJM199903113401017.PubMedCrossRefGoogle Scholar
  106. 106.
    Schaffer SW, Jong CJ, Ramila KC, Azuma J, Azuma J. Physiological roles of taurine in heart and muscle. J Biomed Sci. 2010;17 Suppl 1:S2. doi: 10.1186/1423-0127-17-S1-S2.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Schuller-Levis GB, Gordon RE, Wang C, Park E. Taurine reduces lung inflammation and fibrosis caused by bleomycin. Adv Exp Med Biol. 2003;526:395–402.PubMedCrossRefGoogle Scholar
  108. 108.
    Wright CE, Tallan HH, Lin YY, Gaull GE. Taurine: biological update. Annu Rev Biochem. 1986;55:427–53. doi: 10.1146/annurev.bi.55.070186.002235.PubMedCrossRefGoogle Scholar
  109. 109.
    McIntosh L, Granberg KE, Briere KM, Anderson JE. Nuclear magnetic resonance spectroscopy study of muscle growth, mdx dystrophy and glucocorticoid treatments: correlation with repair. NMR Biomed. 1998;11(1):1–10.PubMedCrossRefGoogle Scholar
  110. 110.
    Griffin JL, Williams HJ, Sang E, Clarke K, Rae C, Nicholson JK. Metabolic profiling of genetic disorders: a multitissue (1)H nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue. Anal Biochem. 2001;293(1):16–21. doi: 10.1006/abio.2001.5096.PubMedCrossRefGoogle Scholar
  111. 111.
    De Luca A, Pierno S, Camerino DC. Electrical properties of diaphragm and EDL muscles during the life of dystrophic mice. Am J Physiol. 1997;272(1 Pt 1):C333–40.PubMedGoogle Scholar
  112. 112.
    Matsuda H, Kinoshita K, Sumida A, Takahashi K, Fukuen S, Fukuda T, Azuma J. Taurine modulates induction of cytochrome P450 3A4 mRNA by rifampicin in the HepG2 cell line. Biochim Biophys Acta. 2002;1593(1):93–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Bakker AJ, Berg HM. Effect of taurine on sarcoplasmic reticulum function and force in skinned fast-twitch skeletal muscle fibres of the rat. J Physiol. 2002;538(Pt 1):185–94.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992;72(1):101–63.PubMedGoogle Scholar
  115. 115.
    Borum PR. Carnitine. Annu Rev Nutr. 1983;3:233–59. doi: 10.1146/annurev.nu.03.070183.001313.PubMedCrossRefGoogle Scholar
  116. 116.
    Rebouche CJ. Carnitine. In: Shils ME, Ross AC, Caballero B, Cousins RJ, editors. 10 ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 2006.Google Scholar
  117. 117.
    Le Borgne F, Guyot S, Logerot M, Beney L, Gervais P, Demarquoy J. Exploration of lipid metabolism in relation with plasma membrane properties of Duchenne muscular dystrophy cells: influence of L-carnitine. PLoS One. 2012;7(11), e49346. doi: 10.1371/journal.pone.0049346.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Borum PR, Broquist HP, Roelops RJ. Muscle carnitine levels in neuromuscular disease. J Neurol Sci. 1977;34(2):279–86.PubMedCrossRefGoogle Scholar
  119. 119.
    Berthillier G, Eichenberger D, Carrier HN, Guibaud P, Got R. Carnitine metabolism in early stages of Duchenne muscular dystrophy. Clin Chim Acta. 1982;122(3):369–75.PubMedCrossRefGoogle Scholar
  120. 120.
    Ragusa RJ, Chow CK, Porter JD. Oxidative stress as a potential pathogenic mechanism in an animal model of Duchenne muscular dystrophy. Neuromuscul Disord. 1997;7(6-7):379–86.PubMedCrossRefGoogle Scholar
  121. 121.
    Rando TA. Oxidative stress and the pathogenesis of muscular dystrophies. Am J Phys Med Rehabil. 2002;81(11 Suppl):S175–186. doi: 10.1097/01.PHM.0000029774.56528.A6.PubMedCrossRefGoogle Scholar
  122. 122.
    Tidball JG, Wehling-Henricks M. The role of free radicals in the pathophysiology of muscular dystrophy. J Appl Physiol (1985). 2007;102(4):1677–86. doi: 10.1152/japplphysiol.01145.2006.CrossRefGoogle Scholar
  123. 123.
    Haycock JW, Mac Neil S, Jones P, Harris JB, Mantle D. Oxidative damage to muscle protein in Duchenne muscular dystrophy. Neuroreport. 1996;8(1):357–61.Google Scholar
  124. 124.
    Chen PC, Wheeler DS, Malhotra V, Odoms K, Denenberg AG, Wong HR. A green tea-derived polyphenol, epigallocatechin-3-gallate, inhibits IkappaB kinase activation and IL-8 gene expression in respiratory epithelium. Inflammation. 2002;26(5):233–41.PubMedCrossRefGoogle Scholar
  125. 125.
    Dorchies OM, Wagner S, Buetler TM, Ruegg UT. Protection of dystrophic muscle cells with polyphenols from green tea correlates with improved glutathione balance and increased expression of 67LR, a receptor for (-)-epigallocatechin gallate. Biofactors. 2009;35(3):279–94. doi: 10.1002/biof.34.PubMedCrossRefGoogle Scholar
  126. 126.
    Valcic S, Muders A, Jacobsen NE, Liebler DC, Timmermann BN. Antioxidant chemistry of green tea catechins. Identification of products of the reaction of (-)-epigallocatechin gallate with peroxyl radicals. Chem Res Toxicol. 1999;12(4):382–6. doi: 10.1021/tx990003t.PubMedCrossRefGoogle Scholar
  127. 127.
    Dorchies OM, Wagner S, Vuadens O, Waldhauser K, Buetler TM, Kucera P, Ruegg UT. Green tea extract and its major polyphenol (-)-epigallocatechin gallate improve muscle function in a mouse model for Duchenne muscular dystrophy. Am J Physiol Cell Physiol. 2006;290(2):C616–25. doi: 10.1152/ajpcell.00425.2005.PubMedCrossRefGoogle Scholar
  128. 128.
    Sarma DN, Barrett ML, Chavez ML, Gardiner P, Ko R, Mahady GB, Low Dog T. Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf. 2008;31(6):469–84.PubMedCrossRefGoogle Scholar
  129. 129.
    Chow HH, Cai Y, Alberts DS, Hakim I, Dorr R, Shahi F, Hara Y. Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E. Cancer Epidemiol Biomarkers Prev. 2001;10(1):53–8.PubMedGoogle Scholar
  130. 130.
    Babcock T, Helton WS, Espat NJ. Eicosapentaenoic acid (EPA): an antiinflammatory omega-3 fat with potential clinical applications. Nutrition. 2000;16(11-12):1116–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Babcock TA, Helton WS, Hong D, Espat NJ. Omega-3 fatty acid lipid emulsion reduces LPS-stimulated macrophage TNF-alpha production. Surg Infect (Larchmt). 2002;3(2):145–9. doi: 10.1089/109629602760105817.CrossRefGoogle Scholar
  132. 132.
    Singer P, Shapiro H, Theilla M, Anbar R, Singer J, Cohen J. Anti-inflammatory properties of omega-3 fatty acids in critical illness: novel mechanisms and an integrative perspective. Intensive Care Med. 2008;34(9):1580–92. doi: 10.1007/s00134-008-1142-4.PubMedCrossRefGoogle Scholar
  133. 133.
    Magee P, Pearson S, Allen J. The omega-3 fatty acid, eicosapentaenoic acid (EPA), prevents the damaging effects of tumour necrosis factor (TNF)-alpha during murine skeletal muscle cell differentiation. Lipids Health Dis. 2008;7:24. doi: 10.1186/1476-511X-7-24.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Machado RV, Mauricio AF, Taniguti AP, Ferretti R, Neto HS, Marques MJ. Eicosapentaenoic acid decreases TNF-alpha and protects dystrophic muscles of mdx mice from degeneration. J Neuroimmunol. 2011;232(1-2):145–50. doi: 10.1016/j.jneuroim.2010.10.032.PubMedCrossRefGoogle Scholar
  135. 135.
    Fogagnolo Mauricio A, Minatel E, Santo Neto H, Marques MJ. Effects of fish oil containing eicosapentaenoic acid and docosahexaenoic acid on dystrophic mdx mice. Clin Nutr. 2013;32(4):636–42. doi: 10.1016/j.clnu.2012.11.013.PubMedCrossRefGoogle Scholar
  136. 136.
    Agostoni C, Bresson JL, Fairweather-Tait S, Flynn A, Golly I, Korhonen H, Lagiou P, Løvik M, Marchelli R, Moseley MB, Neuhäuser-Berthold M, Przyrembel H, Salminen S, Sanz Y, Strain S, Strobel S, Tetens I, Tomé D, van Loveren H, Verhagen H. Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Paper presented at the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA), Parma, Italy. 2012.Google Scholar
  137. 137.
    Henderson GC, Evans NP, Grange RW, Tuazon MA. Compared with that of MUFA, a high dietary intake of n-3 PUFA does not reduce the degree of pathology in mdx mice. Br J Nutr. 2014;111(10):1791–800. doi: 10.1017/S0007114514000129.PubMedCrossRefGoogle Scholar
  138. 138.
    Riediger ND, Othman RA, Suh M, Moghadasian MH. A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc. 2009;109(4):668–79. doi: 10.1016/j.jada.2008.12.022.PubMedCrossRefGoogle Scholar
  139. 139.
    Harris WS. Expert opinion: omega-3 fatty acids and bleeding-cause for concern? Am J Cardiol. 2007;99(6A):44C–6. doi: 10.1016/j.amjcard.2006.11.021.PubMedCrossRefGoogle Scholar
  140. 140.
    Bays HE. Safety considerations with omega-3 fatty acid therapy. Am J Cardiol. 2007;99(6A):35C–43. doi: 10.1016/j.amjcard.2006.11.020.PubMedCrossRefGoogle Scholar
  141. 141.
    Kris-Etherton PM, Harris WS, Appel LJ, American Heart Association. Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106(21):2747–57.PubMedCrossRefGoogle Scholar
  142. 142.
    Bianchi ML, Mazzanti A, Galbiati E, Saraifoger S, Dubini A, Cornelio F, Morandi L. Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos Int. 2003;14(9):761–7. doi: 10.1007/s00198-003-1443-y.PubMedCrossRefGoogle Scholar
  143. 143.
    Soderpalm AC, Magnusson P, Ahlander AC, Karlsson J, Kroksmark AK, Tulinius M, Swolin-Eide D. Low bone mineral density and decreased bone turnover in Duchenne muscular dystrophy. Neuromuscul Disord. 2007;17(11-12):919–28. doi: 10.1016/j.nmd.2007.05.008.PubMedCrossRefGoogle Scholar
  144. 144.
    Quinlivan R, Shaw N, Bushby K. 170th ENMC International Workshop: bone protection for corticosteroid treated Duchenne muscular dystrophy. 27-29 November 2009, Naarden, The Netherlands. Neuromuscul Disord. 2010;20(11):761–9.PubMedCrossRefGoogle Scholar
  145. 145.
    Quinlivan R, Shaw N, Bushby K. Bone protection for corticosteroid treated Duchenne muscular dystrophy. Workshop. 170th ENMC International Workshop. Naarden, Netherlands; 2010.Google Scholar
  146. 146.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109–22. doi: 10.1016/j.cell.2006.11.013.PubMedCrossRefGoogle Scholar
  147. 147.
    Wyke SM, Russell ST, Tisdale MJ. Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-kappaB activation. Br J Cancer. 2004;91(9):1742–50. doi: 10.1038/sj.bjc.6602165.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Wyke SM, Tisdale MJ. Induction of protein degradation in skeletal muscle by a phorbol ester involves upregulation of the ubiquitin-proteasome proteolytic pathway. Life Sci. 2006;78(25):2898–910. doi: 10.1016/j.lfs.2005.11.014.PubMedCrossRefGoogle Scholar
  149. 149.
    Kuno A, Hori YS, Hosoda R, Tanno M, Miura T, Shimamoto K, Horio Y. Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of p300 protein. J Biol Chem. 2013;288(8):5963–72. doi: 10.1074/jbc.M112.392050.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Gordon BS, Delgado Diaz DC, Kostek MC. Resveratrol decreases inflammation and increases utrophin gene expression in the mdx mouse model of Duchenne muscular dystrophy. Clin Nutr. 2013;32(1):104–11. doi: 10.1016/j.clnu.2012.06.003.PubMedCrossRefGoogle Scholar
  151. 151.
    Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, Ducharme MP, et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Biomarkers Prev. 2007;16(6):1246–52. doi: 10.1158/1055-9965.EPI-07-0022.PubMedCrossRefGoogle Scholar
  152. 152.
    Piver B, Berthou F, Dreano Y, Lucas D. Inhibition of CYP3A, CYP1A and CYP2E1 activities by resveratrol and other non volatile red wine components. Toxicol Lett. 2001;125(1-3):83–91.PubMedCrossRefGoogle Scholar
  153. 153.
    Regev-Shoshani G, Shoseyov O, Kerem Z. Influence of lipophilicity on the interactions of hydroxy stilbenes with cytochrome P450 3A4. Biochem Biophys Res Commun. 2004;323(2):668–73. doi: 10.1016/j.bbrc.2004.08.141.PubMedCrossRefGoogle Scholar
  154. 154.
    Higdon J, Drake V, Steward WP. Resveratrol. Available from Oregon State University: Linus Pauling Institute Micronutrient Information Center; 2005. http://lpi.oregonstate.edu/infocenter/phytochemicals/resveratrol/
  155. 155.
    Lawler JM. Exacerbation of pathology by oxidative stress in respiratory and locomotor muscles with Duchenne muscular dystrophy. J Physiol. 2011;589(Pt 9):2161–70. doi: 10.1113/jphysiol.2011.207456.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Williams IA, Allen DG. Intracellular calcium handling in ventricular myocytes from mdx mice. Am J Physiol Heart Circ Physiol. 2007;292(2):H846–55. doi: 10.1152/ajpheart.00688.2006.PubMedCrossRefGoogle Scholar
  157. 157.
    Terrill JR, Radley-Crabb HG, Grounds MD, Arthur PG. N-Acetylcysteine treatment of dystrophic mdx mice results in protein thiol modifications and inhibition of exercise induced myofibre necrosis. Neuromuscul Disord. 2012;22(5):427–34. doi: 10.1016/j.nmd.2011.11.007.PubMedCrossRefGoogle Scholar
  158. 158.
    Terrill JR, Boyatzis A, Grounds MD, Arthur PG. Treatment with the cysteine precursor l-2-oxothiazolidine-4-carboxylate (OTC) implicates taurine deficiency in severity of dystropathology in mdx mice. Int J Biochem Cell Biol. 2013;45(9):2097–108. doi: 10.1016/j.biocel.2013.07.009.PubMedCrossRefGoogle Scholar
  159. 159.
    Bobb AJ, Arfsten DP, Jederberg WW. N-acetyl-L-Cysteine as prophylaxis against sulfur mustard. Mil Med. 2005;170(1):52–6.PubMedCrossRefGoogle Scholar
  160. 160.
    Pendyala L, Creaven PJ. Pharmacokinetic and pharmacodynamic studies of N-acetylcysteine, a potential chemopreventive agent during a phase I trial. Cancer Epidemiol Biomarkers Prev. 1995;4(3):245–51.PubMedGoogle Scholar
  161. 161.
    Pendyala L, Schwartz G, Bolanowska-Higdon W, Hitt S, Zdanowicz J, Murphy M, Creaven PJ. Phase I/pharmacodynamic study of N-acetylcysteine/oltipraz in smokers: early termination due to excessive toxicity. Cancer Epidemiol Biomarkers Prev. 2001;10(3):269–72.PubMedGoogle Scholar
  162. 162.
    Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta. 1995;1271:195–204.PubMedCrossRefGoogle Scholar
  163. 163.
    Hodgson JM, Watts GF, Playford DA, Burke V, Croft KD. Coenzyme Q10 improves blood pressure and glycaemic control: A controlled trial in subjects with type 2 diabetes. Eur J Clin Nutr. 2002;56:1137–42.PubMedCrossRefGoogle Scholar
  164. 164.
    Bhagavan HN, Chopra RK. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radical Research. 2006;40(5):445–53.PubMedCrossRefGoogle Scholar
  165. 165.
    Langsjoen PH, Langsjoen AM. Coenzyme Q10 in cardiovascular disease with emphasis on heart failure and myocardial ischemia. Asia Pac Heart J. 1998;7:160–8.CrossRefGoogle Scholar
  166. 166.
    Ferrante KL, Shefner J, Zhang H, Betensky R, O’Brien M, Yu H, Fantasia M, et al. Tolerance of highdose (3,000 mg/day) coenzyme Q10 in ALS. Neurology. 2005;65(11):1834–6.Google Scholar
  167. 167.
    Kieburtz K, The Huntington Study Group. A randomized placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology. 2001;57:397–404.Google Scholar
  168. 168.
    Shultz CW, Oakes D, Kieburtz K, Beal FL, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M, Parkinson Study Group. Effects of coenzyme Q10 in early Parkinson disease. Arch Neurol. 2002;59:1541–50.CrossRefGoogle Scholar
  169. 169.
    Spurney CF, Rocha CT, Henricson E, Florence J, Mayhew J, Gorni K, Pasquali L, et al. CINRG pilot trial of coenzyme Q10 in steroid‐treated duchenne muscular dystrophy. Muscle & Nerve. 2011;44(2):174–8.CrossRefGoogle Scholar
  170. 170.
    Geng J, Dong J, Jiang K, Shen L, Wu T, Ni H, Shi LL, Wang G, Wu H. Idebenone for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2010;8:Art. No. CD008647. doi:  10.1002/14651858.CD008647
  171. 171.
    Gemperli A, Hufschmid M, Courdier-Fruh I, Haefeli R, Erb M, Dallmann R, et al. Restoring mitochondrial function in Duchenne muscular dystrophy by idebenone. Neuromuscular Disorders. 2009;19(8):616–7.CrossRefGoogle Scholar
  172. 172.
    Buyse GM, Voit T, Schara U, Straathof CSM, Grazia D’Angelo M, Bernert G, Cuisset J, Finkel RS, Goemans N, McDonald CM, Rummey C, Meier T. Efficacy of idebenone on respiratory function in patients with Duchenne muscular dystrophy not using glucocorticoids (DELOS): a double-blind randomised placebo-controlled phase 3 trial. Lancet. 2015;385(9979):1748–57.PubMedCrossRefGoogle Scholar
  173. 173.
    Di Prospero NA, Sumner CJ, Penzak SR, Ravina B, Fischbeck KH, Taylor JP. Safety, tolerability, and pharmacokinetics of high-dose idebenone in patients with Friedreich ataxia. Archives of Neurology. 2007;64(6):803–8.Google Scholar
  174. 174.
    Braun L. An introduction to: drug-nutrient interactions. IMER Meet March, Monash University, 1-41; 2012.Google Scholar
  175. 175.
    Ötles S, Ahmet S. Food and drug interactions: a general review. Acta Sci Pol, Technol Aliment. 2014;13(1):89–102.CrossRefGoogle Scholar
  176. 176.
    Mycek MJ. Interaction of drugs with foods and nutrients. Nutrition assessment: a comprehensive guide for planning intervention. 1995;135.Google Scholar
  177. 177.
    Boullata JI, Hudson ML. Drug-nutrient interactions: A broad view with implications for practice. Acad Nutr Diet. 2012;112(4):506–17.Google Scholar
  178. 178.
    Bushra R, Aslam N, Khan AY. Food-drug interactions. Oman medical journal. 2011;26(2):77.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Zyl VM. The effects of drugs on nutrition. S Afr J Clin Nutr. 2011;24(3):38–41.Google Scholar
  180. 180.
    Gambertoglio JG, Amend Jr WJ, Benet LZ. Pharmacokinetics and bioavailability of prednisone and prednisolone in healthy volunteers and patients: a review. Journal of pharmacokinetics and biopharmaceutics. 1980;8(1):1–52.PubMedCrossRefGoogle Scholar
  181. 181.
    Burckhardt P. Corticosteroids and bone: a review. Hormone Res. 1984;20:59–64.PubMedCrossRefGoogle Scholar
  182. 182.
    Gennari C. Differential effect of glucocorticoids on calcium absorption and bone mass. Br J Rheumatol. 1993;32 suppl 2:11–4.PubMedCrossRefGoogle Scholar
  183. 183.
    Lindholm TS, Sevastikoglou JA, Lingren U. Treatment of patients with senile, post-menopausal and corticosteroid-induced osteoporosis with l-hydroxyvitamin D3 and calcium: short- and long-term effects. Clin Endocrinol. 1977;7:l83s–9.CrossRefGoogle Scholar
  184. 184.
    Shult TD, Bollman S, Kumar R. Decreased intestinal calcium absorption in vivo and normal brush border membrane vesicle calcium uptake in cortisol-treated chickens: Evidence for dissociation of calcium absorption from brush border vesicle uptake. Proc Natl Acad Sci USA. 1982;79:3542–6.CrossRefGoogle Scholar
  185. 185.
    Borradale D, Kimlin M. Vitamin D in health and disease: an insight into traditional functions and new roles for the ‘sunshine vitamin’. Nutr Res Rev. 2009;22:118–36.PubMedCrossRefGoogle Scholar
  186. 186.
    Rao N, Eller M, Brougham T, Weir S. The effect of food on the relative bioavailability of deflazacort. Eur J Drug Metab Pharmacokinet. 1996;21:241–5.PubMedCrossRefGoogle Scholar
  187. 187.
    Tembo AV, Sakmar E, Hallmark MR, Weidler DJ, Wagner JG. Effect of food on the bioavailability of prednisone. The Journal of Clinical Pharmacology. 1976;16(11):620–4.PubMedCrossRefGoogle Scholar
  188. 188.
    Henderson RG, Wheatley T, English J, Chakraborty J, Marks V. Variation in plasma prednisolone concentrations in renal transplant recipients given enteric-coated prednisolone. British medical journal. 1979;1(6177):1534.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Uribe M, Schalm SW, Summerskill WHJ, Go VLW. Effect of liquid diet on serum protein binding and prednisolone concentrations after oral prednisone. Gastroenerology. 1976;71:362–4.Google Scholar
  190. 190.
    Lee DA, Taylor GM, Walker JG, James VH. The effect of food and tablet formulation on plasma prednisolone levels following administration of enteric‐coated tablets. British journal of clinical pharmacology. 1979;7(5):523–8.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Al-Habet S, Rogers HJ. Pharmacokinetics of intravenous and oral prednisolone. Br J Clin Pharmacol. 1980;10:503–8.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Hollander AA, van Rooij J, Lentjes GW, Arbouw F, van Bree JB, Schoemaker RC, van Es LA, van der Woude FJ, Cohen AF. The effect of grapefruit juice on cyclosporine and prednisone metabolism in transplant patients. Clinical Pharmacology & Therapeutics. 1995;57(3):318–24.CrossRefGoogle Scholar
  193. 193.
    McAllister WA, Thompson PJ, Al-Habet SM, Rogers HJ. Rifampicin reduces effectiveness and bioavailability of prednisolone. Br Med J. 1983;286:923–5.CrossRefGoogle Scholar
  194. 194.
    Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334(9):574.PubMedCrossRefGoogle Scholar
  195. 195.
    Weatherspoon SE, Collins J, Sucharew H, Wong BL, Rybalsky I, Rose SR, et al. TP 51 Metformin reduces weight and BMI in Duchenne muscular dystrophy patients on long term glucocorticoid therapy. Neuromuscular Disorders. 2012;22(9):866.CrossRefGoogle Scholar
  196. 196.
    Kibirige D, Mwebaze R. Vitamin B12 deficiency among patients with diabetes mellitus: is routine screening and supplementation justified. J Diabetes Metab Disord. 2013;12(1):17.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Bauman WA, Shaw S, Jayatilleke E, Spungen AM, Herbert V. Increased intake of calcium reverses vitamin B12 malabsorption induced by metformin. Diabetes Care. 2000;23(9):1227–31.PubMedCrossRefGoogle Scholar
  198. 198.
    Mazokopakis EE, Starakis IK. Recommendations for diagnosis and management of metformin-induced vitamin B12 (Cbl) deficiency. Diabetes Research and Clinical Practice. 2012;97(3):359–67.PubMedCrossRefGoogle Scholar
  199. 199.
    Bell DS. Metformin-induced vitamin B12 deficiency presenting as a peripheral neuropathy. Southern Medical Journal. 2010;103(3):265–7.PubMedCrossRefGoogle Scholar
  200. 200.
    Buvat DR. Use of metformin is a cause of vitamin B12 deficiency. Am Fam Physician. 2004;69:264.PubMedGoogle Scholar
  201. 201.
    Sahin M, Tutuncu NB, Ertugrul D, Tanaci N, Guvener ND. Effects of metformin or rosiglitazone on serum concentrations of homocysteine, folate, and vitamin B < sub > 12</sub > in patients with type 2 diabetes mellitus. Journal of Diabetes and Its Complications. 2007;21(2):118–23.PubMedCrossRefGoogle Scholar
  202. 202.
    Metzmann K, Schnell D, Jungnik A, Ring A, Theodor R, Hohl K, Meinicke T, Friedrich C. Effect of food and tablet-dissolution characteristics on the bioavailability of linagliptin fixed-dose combination with metformin: evidence from two randomized trials. Int J Clin Pharmacol Ther. 2014;52(7):549–63.PubMedGoogle Scholar
  203. 203.
    Houlihan CA, Allen TJ, Baxter AL, Panangiotopoulos S, Casley DJ, Cooper ME, Jerums G. A lowsodium diet potentiates the effects of losartan in type 2 diabetes. Diab Care. 2002;25(4):663–71.Google Scholar
  204. 204.
    Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E. Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers. Therapeutic drug monitoring. 2001;23(4):369–73.PubMedCrossRefGoogle Scholar
  205. 205.
    Singhvi SM, McKinstry DN, Shaw JM, Willard DA, Migdalof BH. Effect of food on the bioavailability of captopril in healthy subjects. The Journal of Clinical Pharmacology. 1982;22(2‐3):135–40.PubMedCrossRefGoogle Scholar
  206. 206.
    Patel AM, Majmudar F, Sharma N, Patel BN. Food effect on pharmacokinetic parameters of Losartan & its active metabolite. 2013.Google Scholar
  207. 207.
    Massarella JW, DeFeo TM, Brown AN, Lin A, Wills RJ. The influence of food on the pharmacokinetics and ACE inhibition of cilazapril. British Journal of Clinical Pharmacology. 1989;27(S2):205S–9.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Liedholm H, Melander A. Mechanisms and variations in the food effect on propranolol bioavailability. European Journal of Clinical Pharmacology. 1990;38(5):469–75.PubMedCrossRefGoogle Scholar
  209. 209.
    Ogiso T, Iwaki M, Tanino T, Kawafuchi R, Hata S. Effect of food on propranolol oral clearance and a possible mechanism of this food effect. Biol Pharm Bull. 1994;17:112–6.PubMedCrossRefGoogle Scholar
  210. 210.
    Semple HA, Xia F. Interaction between propranolol and amino acids in the single-pass isolated, perfused rat liver. Drug metabolism and disposition. 1995;23(8):794–8.PubMedGoogle Scholar
  211. 211.
    Gordon KE, Dooley JM, Sheppard KM, MacSween J, Esser MJ. Impact of bisphosphonates on survival for patients with Duchenne muscular dystrophy. Pediatrics. 2011;127(2):e353–8.PubMedCrossRefGoogle Scholar
  212. 212.
    Laitinen K, Patronen A, Harju P, Löyttyniemi E, Pylkkänen L, Kleimola T, Perttunen K. Timing of food intake has a marked effect on the bioavailability of clodronate. Bone. 2000;27(2):293–6.PubMedCrossRefGoogle Scholar
  213. 213.
    Jaffe KM, McDonald CM, Ingman E, Haas J. Symptoms of upper gastrointestinal dysfunction in Duchenne muscular dystrophy: case-control study. Archives of physical medicine and rehabilitation. 1990;71(10):742–4.PubMedGoogle Scholar
  214. 214.
    Food and Drug Administration. Guidance for industry: food-effect bioavailability and fed bioequivalence studies. Rockville, MD: Food and Drug Administration; 2002.Google Scholar
  215. 215.
    Kishi H, Kishi T, Folkers K. Bioenergetics in clinical medicine. III. Inhibition of coenzyme Q10-enzymes by clinically used anti-hypertensive drugs. Res Commun Chem Pathol Pharmacol. 1975;12:533–40.PubMedGoogle Scholar

Reports found at www.nap.edu

  1. Biotin, and Choline; 1998. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; 2000. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron.Google Scholar
  2. Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid; 1997.Google Scholar
  3. Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; 2001. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; 2005. and Dietary Reference Intakes for Calcium and Vitamin D; 2011.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zoe E. Davidson
    • 1
    Email author
  • Greg Rodden
    • 2
  • Davi A. G. Mázala
    • 3
  • Cynthia Moore
    • 4
  • Carol Papillon
    • 5
  • Angela J. Hasemann
    • 6
  • Helen Truby
    • 1
  • Robert W. Grange
    • 2
  1. 1.School of Clinical SciencesMonash UniversityMelbourneAustralia
  2. 2.Human Nutrition, Foods, and ExerciseVirginia TechBlacksburgUSA
  3. 3.Department of KinesiologySchool of Public Health, University of Maryland College ParkCollege ParkUSA
  4. 4.Nutrition Counselling CenterUniversity of VirginiaCharlottesvilleUSA
  5. 5.Human Nutrition, Foods and ExerciseVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  6. 6.School of Clinical SciencesUniversity of Virginia Children’s HospitalCharlottesvilleUSA

Personalised recommendations