Regenerative Rehabilitation: Synergizing Regenerative Medicine Therapies with Rehabilitation for Improved Muscle Regeneration in Muscle Pathologies

  • Kristen Stearns-Reider
  • Fabrisia AmbrosioEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


With recent advances in the understanding of the molecular basis for tissue regeneration, regenerative medicine therapies for a host of musculoskeletal disorders are becoming available at an ever increasing pace. One promising area for the application of such therapies is toward the regeneration of skeletal muscle tissue. A host of disorders and pathologies contribute to the loss of skeletal muscle, including muscular dystrophies, acute trauma, tumor resection, and age-related sarcopenia. While some of these disorders have a relatively mild impact on the loss of muscle strength and function, others are so severe that they lead to the need for limb amputation or, in the worst cases, death. Therefore, regenerative medicine strategies are critical for the treatment of many musculoskeletal disorders.


Duchenne Muscular Dystrophy Mechanical Stimulation Muscle Regeneration Muscle Satellite Cell PLGA Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ramalho-Santos M, Willenbring H. On the origin of the term “stem cell”. Cell Stem Cell. 2007;1(1):35–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.CrossRefPubMedGoogle Scholar
  3. 3.
    Cezar CA, Mooney DJ. Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev. 2015;84:188–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Tedesco FS, Cossu G. Stem cell therapies for muscle disorders. Curr Opin Neurol. 2012;25(5):597–603.CrossRefPubMedGoogle Scholar
  5. 5.
    Karpati G, et al. Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol. 1993;34(1):8–17.CrossRefPubMedGoogle Scholar
  6. 6.
    Law PK, et al. Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys. Cell Transplant. 1992;1(2–3):235–44.Google Scholar
  7. 7.
    Law PK, et al. Myoblast transfer therapy for Duchenne muscular dystrophy. Acta Paediatr Jpn. 1991;33(2):206–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Mendell JR, et al. Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med. 1995;333(13):832–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Morandi L, et al. Lack of mRNA and dystrophin expression in DMD patients three months after myoblast transfer. Neuromuscul Disord. 1995;5(4):291–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Skuk D, et al. Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol. 2006;65(4):371–86.CrossRefPubMedGoogle Scholar
  11. 11.
    Skuk D, et al. First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord. 2007;17(1):38–46.CrossRefPubMedGoogle Scholar
  12. 12.
    Tremblay JP, et al. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant. 1993;2(2):99–112.PubMedGoogle Scholar
  13. 13.
    Fan Y, Maley M, Beilharz M, Grounds M. Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve. 1996;19(7):853–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Qu Z, et al. Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol. 1998;142(5):1257–67.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Skuk D, et al. Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms. J Neuropathol Exp Neurol. 2003;62(9):951–67.CrossRefPubMedGoogle Scholar
  16. 16.
    Vilquin JT, Catelain C, Vauchez K. Cell therapy for muscular dystrophies: advances and challenges. Curr Opin Organ Transplant. 2011;16(6):640–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Shiras A, et al. Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells. 2007;25(6):1478–89.CrossRefPubMedGoogle Scholar
  18. 18.
    Gilbert PM, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010;329(5995):1078–81.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Montarras D, et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 2005;309(5743):2064–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Sacco A, et al. Self-renewal and expansion of single transplanted muscle stem cells. Nature. 2008;456(7221):502–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cerletti M, et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell. 2008;134(1):37–47.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wolf MT, et al. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv Drug Deliv Rev. 2015;84:208–21.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen J, Xu J, Wang A, Zheng M. Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev Med Devices. 2009;6(1):61–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Gentile NE, et al. Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss. Am J Phys Med Rehabil. 2014;93(11 Suppl 3):S79–87.CrossRefPubMedGoogle Scholar
  25. 25.
    Mase Jr VJ, et al. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics. 2010;33(7):511.PubMedGoogle Scholar
  26. 26.
    Sicari BM, et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med. 2014;6(234):234ra58.CrossRefPubMedGoogle Scholar
  27. 27.
    Badylak SF, et al. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 2008;14(11):1835–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Brown BN, et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 2012;8(3):978–87.CrossRefPubMedGoogle Scholar
  29. 29.
    Brown BN, et al. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33(15):3792–802.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brown BN, et al. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30(8):1482–91.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Valentin JE, Turner NJ, Gilbert TW, Badylak SF. Functional skeletal muscle formation with a biologic scaffold. Biomaterials. 2010;31(29):7475–84.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sicari BM, et al. A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement. Tissue Eng Part A. 2012;18(19–20):1941–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Turner NJ, Badylak JS, Weber DJ, Badylak SF. Biologic scaffold remodeling in a dog model of complex musculoskeletal injury. J Surg Res. 2012;176(2):490–502.CrossRefPubMedGoogle Scholar
  34. 34.
    Keane TJ, et al. Preparation and characterization of a biologic scaffold and hydrogel derived from colonic mucosa. J Biomed Mater Res B Appl Biomater. 2015 Oct 27. [epub ahead of print]Google Scholar
  35. 35.
    Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015;84:25–34.CrossRefPubMedGoogle Scholar
  36. 36.
    Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100.CrossRefPubMedGoogle Scholar
  37. 37.
    Klinge U, Klosterhalfen B, Muller M, Schumpelick V. Foreign body reaction to meshes used for the repair of abdominal wall hernias. Eur J Surg. 1999;165(7):665–73.CrossRefPubMedGoogle Scholar
  38. 38.
    Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17(2):93–102.CrossRefPubMedGoogle Scholar
  39. 39.
    Grizzi I, Garreau H, Li S, Vert M. Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials. 1995;16(4):305–11.CrossRefPubMedGoogle Scholar
  40. 40.
    Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res. 1999;48(3):342–53.CrossRefPubMedGoogle Scholar
  41. 41.
    Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res. 1998;42(3):396–402.CrossRefPubMedGoogle Scholar
  42. 42.
    Peters MC, Polverini PJ, Mooney DJ. Engineering vascular networks in porous polymer matrices. J Biomed Mater Res. 2002;60(4):668–78.CrossRefPubMedGoogle Scholar
  43. 43.
    Smith MK, et al. Locally enhanced angiogenesis promotes transplanted cell survival. Tissue Eng. 2004;10(1-2):63–71.CrossRefPubMedGoogle Scholar
  44. 44.
    Lee JH, Ju YM, Kim DM. Platelet adhesion onto segmented polyurethane film surfaces modified by addition and crosslinking of PEO-containing block copolymers. Biomaterials. 2000;21(7):683–91.CrossRefPubMedGoogle Scholar
  45. 45.
    Li D, Chen H, Glenn McClung W, Brash JL. Lysine-PEG-modified polyurethane as a fibrinolytic surface: effect of PEG chain length on protein interactions, platelet interactions and clot lysis. Acta Biomater. 2009;5(6):1864–71.CrossRefPubMedGoogle Scholar
  46. 46.
    Guelcher SA. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev. 2008;14(1):3–17.CrossRefPubMedGoogle Scholar
  47. 47.
    Leber GE, Garb JL, Alexander AI, Reed WP. Long-term complications associated with prosthetic repair of incisional hernias. Arch Surg. 1998;133(4):378–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Borselli C, et al. The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials. 2011;32(34):8905–14.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res. 2002;60(2):217–23.CrossRefPubMedGoogle Scholar
  50. 50.
    Boontheekul T, et al. Quantifying the relation between bond number and myoblast proliferation. Faraday Discuss. 2008;139:53–70. discussion 105–28, 419–20.CrossRefPubMedGoogle Scholar
  51. 51.
    Urciuolo A, et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat Commun. 2013;4:1964.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.CrossRefPubMedGoogle Scholar
  53. 53.
    Hill E, Boontheekul T, Mooney DJ. Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Eng. 2006;12(5):1295–304.CrossRefPubMedGoogle Scholar
  54. 54.
    Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3(10):589–601.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Page RL, et al. Restoration of skeletal muscle defects with adult human cells delivered on fibrin microthreads. Tissue Eng Part A. 2011;17(21–22):2629–40.CrossRefPubMedGoogle Scholar
  56. 56.
    Nseir N, et al. Biodegradable scaffold fabricated of electrospun albumin fibers: mechanical and biological characterization. Tissue Eng Part C Methods. 2013;19(4):257–64.CrossRefPubMedGoogle Scholar
  57. 57.
    Shandalov Y, et al. An engineered muscle flap for reconstruction of large soft tissue defects. Proc Natl Acad Sci U S A. 2014;111(16):6010–5.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kohno S, et al. Unloading stress disturbs muscle regeneration through perturbed recruitment and function of macrophages. J Appl Physiol (1985). 2012;112(10):1773–82.CrossRefGoogle Scholar
  59. 59.
    Mozdziak PE, Truong Q, Macius A, Schultz E. Hindlimb suspension reduces muscle regeneration. Eur J Appl Physiol Occup Physiol. 1998;78(2):136–40.CrossRefPubMedGoogle Scholar
  60. 60.
    Garay E, et al. Mechanotransduction as a Tool to Influence Musculoskeletal Tissue Biology. Hughes C, ed. ISC 23.2, Applications of Regenerative Medicine to Orthopaedic Physical Therapy. La Crosse, WI: Orthopaedic Section APTA; 2014.Google Scholar
  61. 61.
    Passey S, Martin N, Player D, Lewis MP. Stretching skeletal muscle in vitro: does it replicate in vivo physiology? Biotechnol Lett. 2011;33(8):1513–21.CrossRefPubMedGoogle Scholar
  62. 62.
    Baraniak PR, et al. Stiffening of human mesenchymal stem cell spheroid microenvironments induced by incorporation of gelatin microparticles. J Mech Behav Biomed Mater. 2012;11:63–71.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Candiani G, et al. Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs. J Appl Biomater Biomech. 2010;8(2):68–75.PubMedGoogle Scholar
  64. 64.
    du Moon G, et al. Cyclic mechanical preconditioning improves engineered muscle contraction. Tissue Eng Part A. 2008;14(4):473–82.CrossRefGoogle Scholar
  65. 65.
    Powell CA, Smiley BL, Mills J, Vandenburgh HH. Mechanical stimulation improves tissue-engineered human skeletal muscle. Am J Physiol Cell Physiol. 2002;283(5):C1557–65.CrossRefPubMedGoogle Scholar
  66. 66.
    Sasai N, et al. Involvement of PI3K/Akt/TOR pathway in stretch-induced hypertrophy of myotubes. Muscle Nerve. 2010;41(1):100–6.CrossRefPubMedGoogle Scholar
  67. 67.
    Vandenburgh HH, Karlisch P. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell Dev Biol. 1989;25(7):607–16.CrossRefPubMedGoogle Scholar
  68. 68.
    Zhao M, et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature. 2006;442(7101):457–60.CrossRefPubMedGoogle Scholar
  69. 69.
    Handschin C, Mortezavi A, Plock J, Eberli D. External physical and biochemical stimulation to enhance skeletal muscle bioengineering. Adv Drug Deliv Rev. 2015;82–83:168–75.CrossRefPubMedGoogle Scholar
  70. 70.
    Guo BS, et al. Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS One. 2012;7(1), e30348.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Distefano G, et al. Neuromuscular electrical stimulation as a method to maximize the beneficial effects of muscle stem cells transplanted into dystrophic skeletal muscle. PLoS One. 2013;8(3), e54922.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Fujita H, Nedachi T, Kanzaki M. Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp Cell Res. 2007;313(9):1853–65.CrossRefPubMedGoogle Scholar
  73. 73.
    Ito A, et al. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation. Sci Rep. 2014;4:4781.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Langelaan ML, et al. Advanced maturation by electrical stimulation: differences in response between C2C12 and primary muscle progenitor cells. J Tissue Eng Regen Med. 2011;5(7):529–39.CrossRefPubMedGoogle Scholar
  75. 75.
    Pedrotty DM, et al. Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. Am J Physiol Heart Circ Physiol. 2005;288(4):H1620–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Serena E, et al. Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold. Neurol Res. 2008;30(2):207–14.CrossRefPubMedGoogle Scholar
  77. 77.
    Machingal MA, et al. A tissue-engineered muscle repair construct for functional restoration of an irrecoverable muscle injury in a murine model. Tissue Eng Part A. 2011;17(17–18):2291–303.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Ambrosio F, et al. Functional overloading of dystrophic mice enhances muscle-derived stem cell contribution to muscle contractile capacity. Arch Phys Med Rehabil. 2009;90(1):66–73.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Palermo AT, et al. Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol. 2005;279(2):336–44.CrossRefPubMedGoogle Scholar
  80. 80.
    Bouchentouf M, Benabdallah BF, Mills P, Tremblay JP. Exercise improves the success of myoblast transplantation in mdx mice. Neuromuscul Disord. 2006;16(8):518–29.CrossRefPubMedGoogle Scholar
  81. 81.
    Ambrosio F, et al. The synergistic effect of treadmill running on stem-cell transplantation to heal injured skeletal muscle. Tissue Eng Part A. 2010;16(3):839–49.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Thelen MH, Simonides WS, van Hardeveld C. Electrical stimulation of C2C12 myotubes induces contractions and represses thyroid-hormone-dependent transcription of the fast-type sarcoplasmic-reticulum Ca2+-ATPase gene. Biochem J. 1997;321(Pt 3):845–8.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Behfar A, Terzic A, Perez-Terzic CM. Regenerative principles enrich cardiac rehabilitation practice. Am J Phys Med Rehabil. 2014;93(11 Suppl 3):S169–75.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Boninger ML, Wechsler LR, Stein J. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery from stroke: updates and advances. Am J Phys Med Rehabil. 2014;93(11 Suppl 3):S145–54.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Braun R, Wang Z, Mack DL, Childers MK. Gene therapy for inherited muscle diseases: where genetics meets rehabilitation medicine. Am J Phys Med Rehabil. 2014;93(11 Suppl 3):S97–107.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Ambrosio F, et al. Guest editorial: emergent themes from second annual symposium on regenerative rehabilitation, Pittsburgh, Pennsylvania. J Rehabil Res Dev. 2013;50(3):vii–xiv.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ambrosio F, et al. The emerging relationship between regenerative medicine and physical therapeutics. Phys Ther. 2010;90(12):1807–14.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Perez-Terzic C, Childers MK. Regenerative rehabilitation: a new future? Am J Phys Med Rehabil. 2014;93(11 Suppl 3):S73–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Integrative Biology and PhysiologyUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghUSA
  3. 3.McGowan Institute for Regenerative Medicine, University of PittsburghPittsburghUSA

Personalised recommendations