Advertisement

Gene Discovery in Congenital Myopathy

  • Laura L. Smith
  • Vandana A. Gupta
  • Alan H. BeggsEmail author
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

The congenital myopathies (CMs) are a heterogeneous group of inherited neuromuscular disorders that manifest as skeletal muscle weakness at birth or early in life and are defined by the predominant morphological features observed on biopsy. However, accurate molecular diagnoses are frequently confounded due to the substantial clinical and histological overlap between different forms of CM and have been limited by traditional sequencing technologies. Today, scientific investigators and clinicians are strongly focused on understanding both the mechanistic basis of these devastating disorders and on gene discovery. The identification of new causative genes will have considerable impact on the approximately 30–40 % of CM cases where the genetic cause remains unknown, on disease management, and on the development of effective gene-specific therapies. This chapter will discuss the most common forms of CM and detail the methods of gene discovery that have shaped this field from past and present.

Keywords

Congenital myopathy Nemaline myopathy Core myopathy Centronuclear myopathy Congenital fiber-type disproportion Disease gene discovery Animal models Skeletal muscle Sarcomere Triad 

Abbreviations

AD

Autosomal dominant

AR

Autosomal recessive

bp

Base pairs

CCD

Central core disease

CFTD

Congenital fiber-type disproportion

CM

Congenital myopathy

CNM

Centronuclear myopathy

COX

Cytochrome c oxidase

EM

Electron microscopy

EMG

Electromyography

FSD

Fiber size disproportion

H&E

Hematoxylin and eosin

KD

Knockdown

KI

Knock-in

KO

Knockout

MmD

Multiminicore disease

MRI

Magnetic resonance imaging

NADH-TR

Nicotinamide adenine dinucleotide–tetrazolium reductase

NGS

Next-generation sequencing

NM

Nemaline myopathy

Tg

Transgenic

WBMRI

Whole body MRI

WES

Whole exome sequencing

WGS

Whole genome sequencing

XLMTM

X-linked myotubular myopathy

References

  1. 1.
    Nance JR, Dowling JJ, Gibbs EM, Bonnemann CG. Congenital myopathies: an update. Curr Neurol Neurosci Rep. 2012;12(2):165–74.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, et al. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord. 2014;24(2):97–116.PubMedCrossRefGoogle Scholar
  3. 3.
    Romero NB, Clarke NF. Congenital myopathies. Handb Clin Neurol. 2013;113:1321–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Romero NB, Monnier N, Viollet L, Cortey A, Chevallay M, Leroy JP, et al. Dominant and recessive central core disease associated with RYR1 mutations and fetal akinesia. Brain. 2003;126(Pt 11):2341–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Ryan MM, Schnell C, Strickland CD, Shield LK, Morgan G, Iannaccone ST, et al. Nemaline myopathy: a clinical study of 143 cases. Ann Neurol. 2001;50(3):312–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K, Donner K, et al. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet. 1999;23(2):208–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Agrawal PB, Greenleaf RS, Tomczak KK, Lehtokari VL, Wallgren-Pettersson C, Wallefeld W, et al. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am J Hum Genet. 2007;80(1):162–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Sambuughin N, Yau KS, Olive M, Duff RM, Bayarsaikhan M, Lu S, et al. Dominant mutations in KBTBD13, a member of the BTB/Kelch family, cause nemaline myopathy with cores. Am J Hum Genet. 2010;87(6):842–7.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ravenscroft G, McNamara E, Griffiths LM, Papadimitriou JM, Hardeman EC, Bakker AJ, et al. Cardiac alpha-actin over-expression therapy in dominant ACTA1 disease. Hum Mol Genet. 2013;22(19):3987–97.PubMedCrossRefGoogle Scholar
  10. 10.
    Ravenscroft G, Miyatake S, Lehtokari VL, Todd EJ, Vornanen P, Yau KS, et al. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet. 2013;93(1):6–18.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Gupta VA, Ravenscroft G, Shaheen R, Todd EJ, Swanson LC, Shiina M, et al. Identification of KLHL41 mutations implicates BTB-Kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am J Hum Genet. 2013;93(6):1108–17.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N, Quinlan KG, et al. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J Clin Invest. 2014;24.Google Scholar
  13. 13.
    Pelin K, Hilpela P, Donner K, Sewry C, Akkari PA, Wilton SD, et al. Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc Natl Acad Sci U S A. 1999;96(5):2305–10.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Quane KA, Healy JM, Keating KE, Manning BM, Couch FJ, Palmucci LM, et al. Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat Genet. 1993;5(1):51–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang Y, Chen HS, Khanna VK, De Leon S, Phillips MS, Schappert K, et al. A mutation in the human ryanodine receptor gene associated with central core disease. Nat Genet. 1993;5(1):46–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Johnston JJ, Kelley RI, Crawford TO, Morton DH, Agarwala R, Koch T, et al. A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am J Hum Genet. 2000;67(4):814–21.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Donner K, Ollikainen M, Ridanpaa M, Christen HJ, Goebel HH, de Visser M, et al. Mutations in the beta-tropomyosin (TPM2) gene--a rare cause of nemaline myopathy. Neuromuscul Disord. 2002;12(2):151–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Laing NG, Wilton SD, Akkari PA, Dorosz S, Boundy K, Kneebone C, et al. A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat Genet. 1995;9(1):75–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Jungbluth H, Sewry CA, Brown SC, Nowak KJ, Laing NG, Wallgren-Pettersson C, et al. Mild phenotype of nemaline myopathy with sleep hypoventilation due to a mutation in the skeletal muscle alpha-actin (ACTA1) gene. Neuromuscul Disord. 2001;11(1):35–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Romero NB, Lehtokari VL, Quijano-Roy S, Monnier N, Claeys KG, Carlier RY, et al. Core-rod myopathy caused by mutations in the nebulin gene. Neurology. 2009;73(14):1159–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Monnier N, Romero NB, Lerale J, Nivoche Y, Qi D, MacLennan DH, et al. An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. Hum Mol Genet. 2000;9(18):2599–608.PubMedCrossRefGoogle Scholar
  22. 22.
    Gommans IM, Davis M, Saar K, Lammens M, Mastaglia F, Lamont P, et al. A locus on chromosome 15q for a dominantly inherited nemaline myopathy with core-like lesions. Brain. 2003;126(Pt 7):1545–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Hung RM, Yoon G, Hawkins CE, Halliday W, Biggar D, Vajsar J. Cap myopathy caused by a mutation of the skeletal alpha-actin gene ACTA1. Neuromuscul Disord. 2010;20(4):238–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Lehtokari VL, Ceuterick-de Groote C, de Jonghe P, Marttila M, Laing NG, Pelin K, et al. Cap disease caused by heterozygous deletion of the beta-tropomyosin gene TPM2. Neuromuscul Disord. 2007;17(6):433–42.PubMedCrossRefGoogle Scholar
  25. 25.
    De Paula AM, Franques J, Fernandez C, Monnier N, Lunardi J, Pellissier JF, et al. A TPM3 mutation causing cap myopathy. Neuromuscul Disord. 2009;19(10):685–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Haan EA, Freemantle CJ, McCure JA, Friend KL, Mulley JC. Assignment of the gene for central core disease to chromosome 19. Hum Genet. 1990;86(2):187–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Boyden SE, Mahoney LJ, Kawahara G, Myers JA, Mitsuhashi S, Estrella EA, et al. Mutations in the satellite cell gene MEGF10 cause a recessive congenital myopathy with minicores. Neurogenetics. 2012;13(2):115–24.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Cullup T, Lamont PJ, Cirak S, Damian MS, Wallefeld W, Gooding R, et al. Mutations in MYH7 cause multi-minicore disease (MmD) with variable cardiac involvement. Neuromuscul Disord. 2012;22(12):1096–104.PubMedCrossRefGoogle Scholar
  29. 29.
    Monnier N, Ferreiro A, Marty I, Labarre-Vila A, Mezin P, Lunardi J. A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. Hum Mol Genet. 2003;12(10):1171–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Moghadaszadeh B, Petit N, Jaillard C, Brockington M, Quijano Roy S, Merlini L, et al. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet. 2001;29(1):17–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Nicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E, et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet. 2007;39(9):1134–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Majczenko K, Davidson AE, Camelo-Piragua S, Agrawal PB, Manfready RA, Li X, et al. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am J Hum Genet. 2012;91(2):365–71.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bitoun M, Maugenre S, Jeannet PY, Lacene E, Ferrer X, Laforet P, et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet. 2005;37(11):1207–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet. 1996;13(2):175–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Wilmshurst JM, Lillis S, Zhou H, Pillay K, Henderson H, Kress W, et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol. 2010;68(5):717–26.PubMedCrossRefGoogle Scholar
  36. 36.
    Agrawal PB, Pierson CR, Joshi M, Liu X, Ravenscroft G, Moghadaszadeh B, et al. SPEG interacts with myotubularin, and its deficiency causes centronuclear myopathy with dilated cardiomyopathy. Am J Hum Genet. 2014;95(2):218–26.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ceyhan-Birsoy O, Agrawal PB, Hidalgo C, Schmitz-Abe K, DeChene ET, Swanson LC, et al. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology. 2013;81(14):1205–14.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR, Kobayashi Y, et al. Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol. 2004;56(5):689–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Ortolano S, Tarrio R, Blanco-Arias P, Teijeira S, Rodriguez-Trelles F, Garcia-Murias M, et al. A novel MYH7 mutation links congenital fiber type disproportion and myosin storage myopathy. Neuromuscul Disord. 2011;21(4):254–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Clarke NF, Waddell LB, Cooper ST, Perry M, Smith RL, Kornberg AJ, et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat. 2010;31(7):E1544–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Clarke NF, Kidson W, Quijano-Roy S, Estournet B, Ferreiro A, Guicheney P, et al. SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol. 2006;59(3):546–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Clarke NF, Waddell LB, Sie LT, van Bon BW, McLean C, Clark D, et al. Mutations in TPM2 and congenital fibre type disproportion. Neuromuscul Disord. 2012;22(11):955–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Clarke NF, Kolski H, Dye DE, Lim E, Smith RL, Patel R, et al. Mutations in TPM3 are a common cause of congenital fiber type disproportion. Ann Neurol. 2008;63(3):329–37.PubMedCrossRefGoogle Scholar
  44. 44.
    Lawlor MW, Dechene ET, Roumm E, Geggel AS, Moghadaszadeh B, Beggs AH. Mutations of tropomyosin 3 (TPM3) are common and associated with type 1 myofiber hypotrophy in congenital fiber type disproportion. Hum Mutat. 2010;31(2):176–83.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bohm J, Leshinsky-Silver E, Vassilopoulos S, Le Gras S, Lerman-Sagie T, Ginzberg M, et al. Samaritan myopathy, an ultimately benign congenital myopathy, is caused by a RYR1 mutation. Acta Neuropathol. 2012;124(4):575–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Bohm J, Biancalana V, Dechene ET, Bitoun M, Pierson CR, Schaefer E, et al. Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy. Hum Mutat. 2012;33(6):949–59.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    North KN. Clinical approach to the diagnosis of congenital myopathies. Semin Pediatr Neurol. 2011;18(4):216–20.PubMedCrossRefGoogle Scholar
  48. 48.
    Al-Qusairi L, Laporte J. T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet Muscle. 2011;1(1):26.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wallgren-Pettersson C, Laing NG. Report of the 70th ENMC international workshop: nemaline myopathy, 11–13 June 1999, Naarden, The Netherlands. Neuromuscul Disord. 2000;10(4–5):299–306.PubMedCrossRefGoogle Scholar
  50. 50.
    North KN, Laing NG, Wallgren-Pettersson C. Nemaline myopathy: current concepts. The ENMC international consortium and nemaline myopathy. J Med Genet. 1997;34(9):705–13.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Howard RS, Wiles CM, Hirsch NP, Spencer GT. Respiratory involvement in primary muscle disorders: assessment and management. Q J Med. 1993;86(3):175–89.PubMedGoogle Scholar
  52. 52.
    Sasaki M, Yoneyama H, Nonaka I. Respiratory muscle involvement in nemaline myopathy. Pediatr Neurol. 1990;6(6):425–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Wallgren-Pettersson C. Congenital nemaline myopathy. A clinical follow-up of twelve patients. J Neurol Sci. 1989;89(1):1–14.PubMedCrossRefGoogle Scholar
  54. 54.
    D'Amico A, Graziano C, Pacileo G, Petrini S, Nowak KJ, Boldrini R, et al. Fatal hypertrophic cardiomyopathy and nemaline myopathy associated with ACTA1 K336E mutation. Neuromuscul Disord. 2006;16(9–10):548–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Jarraya M, Quijano-Roy S, Monnier N, Behin A, Avila-Smirnov D, Romero NB, et al. Whole-Body muscle MRI in a series of patients with congenital myopathy related to TPM2 gene mutations. Neuromuscul Disord. 2012;22 Suppl 2:S137–47.PubMedCrossRefGoogle Scholar
  56. 56.
    Jungbluth H, Sewry CA, Counsell S, Allsop J, Chattopadhyay A, Mercuri E, et al. Magnetic resonance imaging of muscle in nemaline myopathy. Neuromuscul Disord. 2004;14(12):779–84.PubMedCrossRefGoogle Scholar
  57. 57.
    Jungbluth H, Davis MR, Muller C, Counsell S, Allsop J, Chattopadhyay A, et al. Magnetic resonance imaging of muscle in congenital myopathies associated with RYR1 mutations. Neuromuscul Disord. 2004;14(12):785–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Jockusch BM, Veldman H, Griffiths GW, van Oost BA, Jennekens FG. Immunofluorescence microscopy of a myopathy. alpha-Actinin is a major constituent of nemaline rods. Exp Cell Res. 1980;127(2):409–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Wallgren-Pettersson C, Clarke A, Samson F, Fardeau M, Dubowitz V, Moser H, et al. The myotubular myopathies: differential diagnosis of the X linked recessive, autosomal dominant, and autosomal recessive forms and present state of DNA studies. J Med Genet. 1995;32(9):673–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wallgren-Pettersson C, Jasani B, Newman GR, Morris GE, Jones S, Singhrao S, et al. Alpha-actinin in nemaline bodies in congenital nemaline myopathy: immunological confirmation by light and electron microscopy. Neuromuscul Disord. 1995;5(2):93–104.PubMedCrossRefGoogle Scholar
  61. 61.
    Miike T, Ohtani Y, Tamari H, Ishitsu T, Une Y. Muscle fiber type transformation in nemaline myopathy and congenital fiber type disproportion. Brain Dev. 1986;8(5):526–32.PubMedCrossRefGoogle Scholar
  62. 62.
    Volpe P, Damiani E, Margreth A, Pellegrini G, Scarlato G. Fast to slow change of myosin in nemaline myopathy: electrophoretic and immunologic evidence. Neurology. 1982;32(1):37–41.PubMedCrossRefGoogle Scholar
  63. 63.
    Ryan MM, Ilkovski B, Strickland CD, Schnell C, Sanoudou D, Midgett C, et al. Clinical course correlates poorly with muscle pathology in nemaline myopathy. Neurology. 2003;60(4):665–73.PubMedCrossRefGoogle Scholar
  64. 64.
    Goebel HH, Warlo I. Nemaline myopathy with intranuclear rods--intranuclear rod myopathy. Neuromuscul Disord. 1997;7(1):13–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Marttila M, Lehtokari VL, Marston S, Nyman TA, Barnerias C, Beggs AH, et al. Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies. Hum Mutat. 2014;35(7):779–90.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wattanasirichaigoon D, Swoboda KJ, Takada F, Tong HQ, Lip V, Iannaccone ST, et al. Mutations of the slow muscle alpha-tropomyosin gene, TPM3, are a rare cause of nemaline myopathy. Neurology. 2002;59(4):613–7.PubMedCrossRefGoogle Scholar
  67. 67.
    van der Pol WL, Leijenaar JF, Spliet WG, Lavrijsen SW, Jansen NJ, Braun KP, et al. Nemaline myopathy caused by TNNT1 mutations in a Dutch pedigree. Mol Genet Genomic Med. 2014;2(2):134–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Ockeloen CW, Gilhuis HJ, Pfundt R, Kamsteeg EJ, Agrawal PB, Beggs AH, et al. Congenital myopathy caused by a novel missense mutation in the CFL2 gene. Neuromuscul Disord. 2012;22(7):632–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ong RW, AlSaman A, Selcen D, Arabshahi A, Yau KS, Ravenscroft G, et al. Novel cofilin-2 (CFL2) four base pair deletion causing nemaline myopathy. J Neurol Neurosurg Psychiatry. 2014;85(9):1058–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Agrawal PB, Strickland CD, Midgett C, Morales A, Newburger DE, Poulos MA, et al. Heterogeneity of nemaline myopathy cases with skeletal muscle alpha-actin gene mutations. Ann Neurol. 2004;56(1):86–96.PubMedCrossRefGoogle Scholar
  71. 71.
    Laing NG, Dye DE, Wallgren-Pettersson C, Richard G, Monnier N, Lillis S, et al. Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum Mutat. 2009;30(9):1267–77.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Nowak KJ, Ravenscroft G, Laing NG. Skeletal muscle alpha-actin diseases (actinopathies): pathology and mechanisms. Acta Neuropathol. 2013;125(1):19–32.PubMedCrossRefGoogle Scholar
  73. 73.
    Citirak G, Witting N, Duno M, Werlauff U, Petri H, Vissing J. Frequency and phenotype of patients carrying TPM2 and TPM3 gene mutations in a cohort of 94 patients with congenital myopathy. Neuromuscul Disord. 2014;24(4):325–30.PubMedCrossRefGoogle Scholar
  74. 74.
    Tan P, Briner J, Boltshauser E, Davis MR, Wilton SD, North K, et al. Homozygosity for a nonsense mutation in the alpha-tropomyosin slow gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscul Disord. 1999;9(8):573–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Wallgren-Pettersson C. Genetics of the nemaline myopathies and the myotubular myopathies. Neuromuscul Disord. 1998;8(6):401–4.PubMedCrossRefGoogle Scholar
  76. 76.
    Ilkovski B, Cooper ST, Nowak K, Ryan MM, Yang N, Schnell C, et al. Nemaline myopathy caused by mutations in the muscle alpha-skeletal-actin gene. Am J Hum Genet. 2001;68(6):1333–43.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Jungbluth H, Sewry CA, Muntoni F. Core myopathies. Semin Pediatr Neurol. 2011;18(4):239–49.PubMedCrossRefGoogle Scholar
  78. 78.
    Magee KR, Shy GM. A new congenital non-progressive myopathy. Brain. 1956;79(4):610–21.PubMedCrossRefGoogle Scholar
  79. 79.
    Greenfield JG, Cornman T, Shy GM. The prognostic value of the muscle biopsy in the floppy infant. Brain. 1958;81(4):461–84.PubMedCrossRefGoogle Scholar
  80. 80.
    Dubowitz V. Muscle disorders in childhood. 2nd ed. London: Elsevier Health Sciences; 1995.Google Scholar
  81. 81.
    Ramsey PL, Hensinger RN. Congenital dislocation of the hip associated with central core disease. J Bone Joint Surg Am. 1975;57(5):648–51.PubMedCrossRefGoogle Scholar
  82. 82.
    Merlini L, Mattutini P, Bonfiglioli S, Granata C. Non-progressive central core disease with severe congenital scoliosis: a case report. Dev Med Child Neurol. 1987;29(1):106–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Gamble JG, Rinsky LA, Lee JH. Orthopaedic aspects of central core disease. J Bone Joint Surg Am. 1988;70(7):1061–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Jungbluth H. Central core disease. Orphanet J Rare Dis. 2007;2:25.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Jungbluth H, Muller CR, Halliger-Keller B, Brockington M, Brown SC, Feng L, et al. Autosomal recessive inheritance of RYR1 mutations in a congenital myopathy with cores. Neurology. 2002;59(2):284–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Klein A, Lillis S, Munteanu I, Scoto M, Zhou H, Quinlivan R, et al. Clinical and genetic findings in a large cohort of patients with ryanodine receptor 1 gene-associated myopathies. Hum Mutat. 2012;33(6):981–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Manzur AY, Sewry CA, Ziprin J, Dubowitz V, Muntoni F. A severe clinical and pathological variant of central core disease with possible autosomal recessive inheritance. Neuromuscul Disord. 1998;8(7):467–73.PubMedCrossRefGoogle Scholar
  88. 88.
    Heckmatt JZ, Dubowitz V. Ultrasound imaging and directed needle biopsy in the diagnosis of selective involvement in muscle disease. J Child Neurol. 1987;2(3):205–13.PubMedCrossRefGoogle Scholar
  89. 89.
    Lynch PJ, Tong J, Lehane M, Mallet A, Giblin L, Heffron JJ, et al. A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. Proc Natl Acad Sci U S A. 1999;96(7):4164–9.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Scacheri PC, Hoffman EP, Fratkin JD, Semino-Mora C, Senchak A, Davis MR, et al. A novel ryanodine receptor gene mutation causing both cores and rods in congenital myopathy. Neurology. 2000;55(11):1689–96.PubMedCrossRefGoogle Scholar
  91. 91.
    Hayashi K, Miller RG, Brownell AK. Central core disease: ultrastructure of the sarcoplasmic reticulum and T-tubules. Muscle Nerve. 1989;12(2):95–102.PubMedCrossRefGoogle Scholar
  92. 92.
    Ferreiro A, Fardeau M. 80th ENMC international workshop on multi-minicore disease: 1st international MmD workshop. 12-13th May, 2000, Soestduinen, The Netherlands. Neuromuscul Disord. 2002;12(1):60–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Ferreiro A, Estournet B, Chateau D, Romero NB, Laroche C, Odent S, et al. Multi-minicore disease--searching for boundaries: phenotype analysis of 38 cases. Ann Neurol. 2000;48(5):745–57.PubMedCrossRefGoogle Scholar
  94. 94.
    Ferreiro A, Monnier N, Romero NB, Leroy JP, Bonnemann C, Haenggeli CA, et al. A recessive form of central core disease, transiently presenting as multi-minicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene. Ann Neurol. 2002;51(6):750–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bonnemann C, et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet. 2002;71(4):739–49.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Jungbluth H, Sewry C, Brown SC, Manzur AY, Mercuri E, Bushby K, et al. Minicore myopathy in children: a clinical and histopathological study of 19 cases. Neuromuscul Disord. 2000;10(4–5):264–73.PubMedCrossRefGoogle Scholar
  97. 97.
    Engel AG, Gomez MR, Groover RV. Multicore disease. A recently recognized congenital myopathy associated with multifocal degeneration of muscle fibers. Mayo Clin Proc. 1971;46(10):666–81.PubMedGoogle Scholar
  98. 98.
    Dubowitz V, Sewry C. Muscle biopsy: a practical approach. 3rd ed. Oxford: Elsevier - Health Sciences Division; 2006.Google Scholar
  99. 99.
    Davis MR, Haan E, Jungbluth H, Sewry C, North K, Muntoni F, et al. Principal mutation hotspot for central core disease and related myopathies in the C-terminal transmembrane region of the RYR1 gene. Neuromuscul Disord. 2003;13(2):151–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Monnier N, Romero NB, Lerale J, Landrieu P, Nivoche Y, Fardeau M, et al. Familial and sporadic forms of central core disease are associated with mutations in the C-terminal domain of the skeletal muscle ryanodine receptor. Hum Mol Genet. 2001;10(22):2581–92.PubMedCrossRefGoogle Scholar
  101. 101.
    Monnier N, Marty I, Faure J, Castiglioni C, Desnuelle C, Sacconi S, et al. Null mutations causing depletion of the type 1 ryanodine receptor (RYR1) are commonly associated with recessive structural congenital myopathies with cores. Hum Mutat. 2008;29(5):670–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Zhou H, Lillis S, Loy RE, Ghassemi F, Rose MR, Norwood F, et al. Multi-minicore disease and atypical periodic paralysis associated with novel mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord. 2010;20(3):166–73.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    DeChene ET, Kang PB, Beggs AH. Congenital fiber-type disproportion. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, et al., editors. GeneReviews®[Internet]. Seattle: University of Washington; 1993.Google Scholar
  104. 104.
    Bharucha-Goebel DX, Santi M, Medne L, Zukosky K, Dastgir J, Shieh PB, et al. Severe congenital RYR1-associated myopathy: the expanding clinicopathologic and genetic spectrum. Neurology. 2013;80(17):1584–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Zhou H, Yamaguchi N, Xu L, Wang Y, Sewry C, Jungbluth H, et al. Characterization of recessive RYR1 mutations in core myopathies. Hum Mol Genet. 2006;15(18):2791–803.PubMedCrossRefGoogle Scholar
  106. 106.
    Jungbluth H, Zhou H, Hartley L, Halliger-Keller B, Messina S, Longman C, et al. Minicore myopathy with ophthalmoplegia caused by mutations in the ryanodine receptor type 1 gene. Neurology. 2005;65(12):1930–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Amburgey K, Lawlor MW, Del Gaudio D, Cheng YW, Fitzpatrick C, Minor A, et al. Large duplication in MTM1 associated with myotubular myopathy. Neuromuscul Disord. 2013;23(3):214–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Amburgey K, Bailey A, Hwang JH, Tarnopolsky MA, Bonnemann CG, Medne L, et al. Genotype-phenotype correlations in recessive RYR1-related myopathies. Orphanet J Rare Dis. 2013;8:117.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lamont PJ, Wallefeld W, Hilton-Jones D, Udd B, Argov Z, Barboi AC, et al. Novel mutations widen the phenotypic spectrum of slow skeletal/beta-cardiac myosin (MYH7) distal myopathy. Hum Mutat. 2014;35(7):868–79.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Ferreiro A, Ceuterick-de Groote C, Marks JJ, Goemans N, Schreiber G, Hanefeld F, et al. Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol. 2004;55(5):676–86.PubMedCrossRefGoogle Scholar
  111. 111.
    Carmignac V, Salih MA, Quijano-Roy S, Marchand S, Al Rayess MM, Mukhtar MM, et al. C-terminal titin deletions cause a novel early-onset myopathy with fatal cardiomyopathy. Ann Neurol. 2007;61(4):340–51.PubMedCrossRefGoogle Scholar
  112. 112.
    Pierson CR, Tomczak K, Agrawal P, Moghadaszadeh B, Beggs AH. X-linked myotubular and centronuclear myopathies. J Neuropathol Exp Neurol. 2005;64(7):555–64.PubMedCrossRefGoogle Scholar
  113. 113.
    Biancalana V, Beggs AH, Das S, Jungbluth H, Kress W, Nishino I, et al. Clinical utility gene card for: centronuclear and myotubular myopathies. Eur J Hum Genet. 2012;20(10). doi:10.1038/ejhg.2012.91Google Scholar
  114. 114.
    Romero NB, Bitoun M. Centronuclear myopathies. Semin Pediatr Neurol. 2011;18(4):250–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Herman GE, Finegold M, Zhao W, de Gouyon B, Metzenberg A. Medical complications in long-term survivors with X-linked myotubular myopathy. J Pediatr. 1999;134(2):206–14.PubMedCrossRefGoogle Scholar
  116. 116.
    McEntagart M, Parsons G, Buj-Bello A, Biancalana V, Fenton I, Little M, et al. Genotype-phenotype correlations in X-linked myotubular myopathy. Neuromuscul Disord. 2002;12(10):939–46.PubMedCrossRefGoogle Scholar
  117. 117.
    Hanisch F, Muller T, Dietz A, Bitoun M, Kress W, Weis J, et al. Phenotype variability and histopathological findings in centronuclear myopathy due to DNM2 mutations. J Neurol. 2011;258(6):1085–90.PubMedCrossRefGoogle Scholar
  118. 118.
    Jeannet PY, Bassez G, Eymard B, Laforet P, Urtizberea JA, Rouche A, et al. Clinical and histologic findings in autosomal centronuclear myopathy. Neurology. 2004;62(9):1484–90.PubMedCrossRefGoogle Scholar
  119. 119.
    Fischer D, Herasse M, Bitoun M, Barragan-Campos HM, Chiras J, Laforet P, et al. Characterization of the muscle involvement in dynamin 2-related centronuclear myopathy. Brain. 2006;129(Pt 6):1463–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Bitoun M, Bevilacqua JA, Prudhon B, Maugenre S, Taratuto AL, Monges S, et al. Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol. 2007;62(6):666–70.PubMedCrossRefGoogle Scholar
  121. 121.
    McLeod JG, Baker Wde C, Lethlean AK, Shorey CD. Centronuclear myopathy with autosomal dominant inheritance. J Neurol Sci. 1972;15(4):375–87.PubMedCrossRefGoogle Scholar
  122. 122.
    Susman RD, Quijano-Roy S, Yang N, Webster R, Clarke NF, Dowling J, et al. Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy. Neuromuscul Disord. 2010;20(4):229–37.PubMedCrossRefGoogle Scholar
  123. 123.
    Romero NB. Centronuclear myopathies: a widening concept. Neuromuscul Disord. 2010;20(4):223–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Biancalana V, Caron O, Gallati S, Baas F, Kress W, Novelli G, et al. Characterisation of mutations in 77 patients with X-linked myotubular myopathy, including a family with a very mild phenotype. Hum Genet. 2003;112(2):135–42.PubMedGoogle Scholar
  125. 125.
    Oliveira J, Oliveira ME, Kress W, Taipa R, Pires MM, Hilbert P, et al. Expanding the MTM1 mutational spectrum: novel variants including the first multi-exonic duplication and development of a locus-specific database. Eur J Hum Genet. 2013;21(5):540–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Pierson CR, Agrawal PB, Blasko J, Beggs AH. Myofiber size correlates with MTM1 mutation type and outcome in X-linked myotubular myopathy. Neuromuscul Disord. 2007;17(7):562–8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Bevilacqua JA, Monnier N, Bitoun M, Eymard B, Ferreiro A, Monges S, et al. Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization. Neuropathol Appl Neurobiol. 2011;37(3):271–84.PubMedCrossRefGoogle Scholar
  128. 128.
    Jungbluth H, Zhou H, Sewry CA, Robb S, Treves S, Bitoun M, et al. Centronuclear myopathy due to a de novo dominant mutation in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord. 2007;17(4):338–45.PubMedCrossRefGoogle Scholar
  129. 129.
    Bohm J, Yis U, Ortac R, Cakmakci H, Kurul SH, Dirik E, et al. Case report of intrafamilial variability in autosomal recessive centronuclear myopathy associated to a novel BIN1 stop mutation. Orphanet J Rare Dis. 2010;5:35.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Bohm J, Vasli N, Maurer M, Cowling B, Shelton GD, Kress W, et al. Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy. PLoS Genet. 2013;9(6), e1003430.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Claeys KG, Maisonobe T, Bohm J, Laporte J, Hezode M, Romero NB, et al. Phenotype of a patient with recessive centronuclear myopathy and a novel BIN1 mutation. Neurology. 2010;74(6):519–21.PubMedCrossRefGoogle Scholar
  132. 132.
    Mejaddam AY, Nennesmo I, Sejersen T. Severe phenotype of a patient with autosomal recessive centronuclear myopathy due to a BIN1 mutation. Acta Myol. 2009;28(3):91–3.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Toussaint A, Cowling BS, Hnia K, Mohr M, Oldfors A, Schwab Y, et al. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol. 2011;121(2):253–66.PubMedCrossRefGoogle Scholar
  134. 134.
    Bohm J, Biancalana V, Malfatti E, Dondaine N, Koch C, Vasli N, et al. Adult-onset autosomal dominant centronuclear myopathy due to BIN1 mutations. Brain. 2014;25.Google Scholar
  135. 135.
    Tosch V, Rohde HM, Tronchere H, Zanoteli E, Monroy N, Kretz C, et al. A novel PtdIns3P and PtdIns(3,5)P2 phosphatase with an inactivating variant in centronuclear myopathy. Hum Mol Genet. 2006;15(21):3098–106.PubMedCrossRefGoogle Scholar
  136. 136.
    Brooke MH, Engel WK. The histographic analysis of human muscle biopsies with regard to fiber types. 4. Children's biopsies. Neurology. 1969;19(6):591–605.PubMedCrossRefGoogle Scholar
  137. 137.
    Clarke NF. Congenital fiber-type disproportion. Semin Pediatr Neurol. 2011;18(4):264–71.PubMedCrossRefGoogle Scholar
  138. 138.
    Clarke NF, North KN. Congenital fiber type disproportion--30 years on. J Neuropathol Exp Neurol. 2003;62(10):977–89.PubMedCrossRefGoogle Scholar
  139. 139.
    Dehkharghani F, Sarnat HB, Brewster MA, Roth SI. Congenital muscle fiber-type disproportion in Krabbe's leukodystrophy. Arch Neurol. 1981;38(9):585–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Del Bigio MR, Chudley AE, Sarnat HB, Campbell C, Goobie S, Chodirker BN, et al. Infantile muscular dystrophy in Canadian aboriginals is an alphaB-crystallinopathy. Ann Neurol. 2011;69(5):866–71.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Sarnat HB, Silbert SW. Maturational arrest of fetal muscle in neonatal myotonic dystrophy. A pathologic study of four cases. Arch Neurol. 1976;33(7):466–74.PubMedCrossRefGoogle Scholar
  142. 142.
    Sarnat HB, Roth SI, Jimenez JF. Neonatal myotubular myopathy: neuropathy and failure of postnatal maturation of fetal muscle. Can J Neurol Sci. 1981;8(4):313–20.PubMedCrossRefGoogle Scholar
  143. 143.
    Munot P, Lashley D, Jungbluth H, Feng L, Pitt M, Robb SA, et al. Congenital fibre type disproportion associated with mutations in the tropomyosin 3 (TPM3) gene mimicking congenital myasthenia. Neuromuscul Disord. 2010;20(12):796–800.PubMedCrossRefGoogle Scholar
  144. 144.
    Ottenheijm CA, Lawlor MW, Stienen GJ, Granzier H, Beggs AH. Changes in cross-bridge cycling underlie muscle weakness in patients with tropomyosin 3-based myopathy. Hum Mol Genet. 2011;20(10):2015–25.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Sobrido MJ, Fernandez JM, Fontoira E, Perez-Sousa C, Cabello A, Castro M, et al. Autosomal dominant congenital fibre type disproportion: a clinicopathological and imaging study of a large family. Brain. 2005;128(Pt 7):1716–27.PubMedCrossRefGoogle Scholar
  146. 146.
    Brandis A, Aronica E, Goebel HH. TPM2 mutation. Neuromuscul Disord. 2008;18(12):1005.PubMedCrossRefGoogle Scholar
  147. 147.
    Clarke NF, Smith RL, Bahlo M, North KN. A novel X-linked form of congenital fiber-type disproportion. Ann Neurol. 2005;58(5):767–72.PubMedCrossRefGoogle Scholar
  148. 148.
    Kajino S, Ishihara K, Goto K, Ishigaki K, Noguchi S, Nonaka I, et al. Congenital fiber type disproportion myopathy caused by LMNA mutations. J Neurol Sci. 2014;340(1–2):94–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Benedetti S, Menditto I, Degano M, Rodolico C, Merlini L, D'Amico A, et al. Phenotypic clustering of lamin A/C mutations in neuromuscular patients. Neurology. 2007;69(12):1285–92.PubMedCrossRefGoogle Scholar
  150. 150.
    Barohn RJ, Jackson CE, Kagan-Hallet KS. Neonatal nemaline myopathy with abundant intranuclear rods. Neuromuscul Disord. 1994;4(5–6):513–20.PubMedCrossRefGoogle Scholar
  151. 151.
    Goebel HH, Piirsoo A, Warlo I, Schofer O, Kehr S, Gaude M. Infantile intranuclear rod myopathy. J Child Neurol. 1997;12(1):22–30.PubMedCrossRefGoogle Scholar
  152. 152.
    Goebel HH, Brockman K, Bonnemann CG, Warlo IA, Hanefeld F, Labeit S, et al. Patient with actin aggregate myopathy and not formerly identified ACTA1 mutation is heterozygous for the Gly15Arg mutation of ACTA1, which has previously been associated with actinopathy. J Child Neurol. 2006;21(6):545.PubMedCrossRefGoogle Scholar
  153. 153.
    Rifai Z, Kazee AM, Kamp C, Griggs RC. Intranuclear rods in severe congenital nemaline myopathy. Neurology. 1993;43(11):2372–7.PubMedCrossRefGoogle Scholar
  154. 154.
    Robinson R, Carpenter D, Shaw MA, Halsall J, Hopkins P. Mutations in RYR1 in malignant hyperthermia and central core disease. Hum Mutat. 2006;27(10):977–89.PubMedCrossRefGoogle Scholar
  155. 155.
    North KN, Laing NG. Skeletal muscle alpha-actin diseases. Adv Exp Med Biol. 2008;642:15–27.PubMedCrossRefGoogle Scholar
  156. 156.
    Heckmatt JZ, Leeman S, Dubowitz V. Ultrasound imaging in the diagnosis of muscle disease. J Pediatr. 1982;101(5):656–60.PubMedCrossRefGoogle Scholar
  157. 157.
    Wallefeld W, Krause S, Nowak KJ, Dye D, Horvath R, Molnar Z, et al. Severe nemaline myopathy caused by mutations of the stop codon of the skeletal muscle alpha actin gene (ACTA1). Neuromuscul Disord. 2006;16(9–10):541–7.PubMedCrossRefGoogle Scholar
  158. 158.
    Collins FS. Sequencing the human genome. Hosp Pract (1995). 1997;32(1):35–43. 6–9, 53–4.CrossRefGoogle Scholar
  159. 159.
    Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322(5903):881–8.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32(3):314–31.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, et al. A polymorphic DNA marker genetically linked to Huntington's disease. Nature. 1983;306(5940):234–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Kwon JM, Goate AM. The candidate gene approach. Alcohol Res Health. 2000;24(3):164–8.PubMedGoogle Scholar
  163. 163.
    Collins FS. Positional cloning: let's not call it reverse anymore. Nat Genet. 1992;1(1):3–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Kunkel LM, Hejtmancik JF, Caskey CT, Speer A, Monaco AP, Middlesworth W, et al. Analysis of deletions in DNA from patients with Becker and Duchenne muscular dystrophy. Nature. 1986;322(6074):73–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Monaco AP, Neve RL, Colletti-Feener C, Bertelson CJ, Kurnit DM, Kunkel LM. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature. 1986;323(6089):646–50.PubMedCrossRefGoogle Scholar
  166. 166.
    Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger PE, Baehner RL, et al. Cloning the gene for the inherited disorder chronic granulomatous disease on the basis of its chromosomal location. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):177–83.PubMedCrossRefGoogle Scholar
  167. 167.
    Darnfors C, Larsson HE, Oldfors A, Kyllerman M, Gustavson KH, Bjursell G, et al. X-linked myotubular myopathy: a linkage study. Clin Genet. 1990;37(5):335–40.PubMedCrossRefGoogle Scholar
  168. 168.
    Liechti-Gallati S, Muller B, Grimm T, Kress W, Muller C, Boltshauser E, et al. X-linked centronuclear myopathy: mapping the gene to Xq28. Neuromuscul Disord. 1991;1(4):239–45.PubMedCrossRefGoogle Scholar
  169. 169.
    Thomas NS, Williams H, Cole G, Roberts K, Clarke A, Liechti-Gallati S, et al. X linked neonatal centronuclear/myotubular myopathy: evidence for linkage to Xq28 DNA marker loci. J Med Genet. 1990;27(5):284–7.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Dahl N, Samson F, Thomas NS, Hu LJ, Gong W, Herman G, et al. X linked myotubular myopathy (MTM1) maps between DXS304 and DXS305, closely linked to the DXS455 VNTR and a new, highly informative microsatellite marker (DXS1684). J Med Genet. 1994;31(12):922–4.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Hu LJ, Laporte J, Kress W, Kioschis P, Siebenhaar R, Poustka A, et al. Deletions in Xq28 in two boys with myotubular myopathy and abnormal genital development define a new contiguous gene syndrome in a 430 kb region. Hum Mol Genet. 1996;5(1):139–43.PubMedCrossRefGoogle Scholar
  172. 172.
    Smolenicka Z, Laporte J, Hu L, Dahl N, Fitzpatrick J, Kress W, et al. X-linked myotubular myopathy: refinement of the critical gene region. Neuromuscul Disord. 1996;6(4):275–81.PubMedCrossRefGoogle Scholar
  173. 173.
    Alkuraya FS. Discovery of rare homozygous mutations from studies of consanguineous pedigrees. Curr Protoc Hum Genet;2012. Chapter 6:Unit6 12.Google Scholar
  174. 174.
    Alkuraya FS. Impact of new genomic tools on the practice of clinical genetics in consanguineous populations: the Saudi experience. Clin Genet. 2013;84(3):203–8.PubMedCrossRefGoogle Scholar
  175. 175.
    Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature. 2012;488(7412):471–5.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Muhammad E, Reish O, Ohno Y, Scheetz T, Deluca A, Searby C, et al. Congenital myopathy is caused by mutation of HACD1. Hum Mol Genet. 2013;22(25):5229–36.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Stamm DS, Aylsworth AS, Stajich JM, Kahler SG, Thorne LB, Speer MC, et al. Native American myopathy: congenital myopathy with cleft palate, skeletal anomalies, and susceptibility to malignant hyperthermia. Am J Med Genet A. 2008;146A(14):1832–41.PubMedCrossRefGoogle Scholar
  178. 178.
    Zhu M, Zhao S. Candidate gene identification approach: progress and challenges. Int J Biol Sci. 2007;3(7):420–7.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation. Science. 1997;278(5343):1580–1.PubMedCrossRefGoogle Scholar
  180. 180.
    Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med. 2014;17:444–51.PubMedCrossRefGoogle Scholar
  181. 181.
    Abel HJ, Al-Kateb H, Cottrell CE, Bredemeyer AJ, Pritchard CC, Grossmann AH, et al. Detection of gene rearrangements in targeted clinical next-generation sequencing. J Mol Diagn. 2014;16(4):405–17.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11(1):31–46.PubMedCrossRefGoogle Scholar
  183. 183.
    Ku CS, Cooper DN, Polychronakos C, Naidoo N, Wu M, Soong R. Exome sequencing: dual role as a discovery and diagnostic tool. Ann Neurol. 2012;71(1):5–14.PubMedCrossRefGoogle Scholar
  184. 184.
    Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Tan R, Wang Y, Kleinstein SE, Liu Y, Zhu X, Guo H, et al. An evaluation of copy number variation detection tools from whole-exome sequencing data. Hum Mutat. 2014;35(7):899–907.PubMedCrossRefGoogle Scholar
  186. 186.
    Mook OR, Haagmans MA, Soucy JF, van de Meerakker JB, Baas F, Jakobs ME, et al. Targeted sequence capture and GS-FLX titanium sequencing of 23 hypertrophic and dilated cardiomyopathy genes: implementation into diagnostics. J Med Genet. 2013;50(9):614–26.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Rossor AM, Polke JM, Houlden H, Reilly MM. Clinical implications of genetic advances in Charcot-Marie-Tooth disease. Nat Rev Neurol. 2013;9(10):562–71.PubMedCrossRefGoogle Scholar
  188. 188.
    Trump N, Cullup T, Verheij JB, Manzur A, Muntoni F, Abbs S, et al. X-linked myotubular myopathy due to a complex rearrangement involving a duplication of MTM1 exon 10. Neuromuscul Disord. 2012;22(5):384–8.PubMedCrossRefGoogle Scholar
  189. 189.
    Kiiski K, Laari L, Lehtokari VL, Lunkka-Hytonen M, Angelini C, Petty R, et al. Targeted array comparative genomic hybridization--a new diagnostic tool for the detection of large copy number variations in nemaline myopathy-causing genes. Neuromuscul Disord. 2013;23(1):56–65.PubMedCrossRefGoogle Scholar
  190. 190.
    Lehtokari VL, Pelin K, Sandbacka M, Ranta S, Donner K, Muntoni F, et al. Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Hum Mutat. 2006;27(9):946–56.PubMedCrossRefGoogle Scholar
  191. 191.
    Anderson SL, Ekstein J, Donnelly MC, Keefe EM, Toto NR, LeVoci LA, et al. Nemaline myopathy in the Ashkenazi Jewish population is caused by a deletion in the nebulin gene. Hum Genet. 2004;115(3):185–90.PubMedCrossRefGoogle Scholar
  192. 192.
    Lehtokari VL, Greenleaf RS, DeChene ET, Kellinsalmi M, Pelin K, Laing NG, et al. The exon 55 deletion in the nebulin gene--one single founder mutation with world-wide occurrence. Neuromuscul Disord. 2009;19(3):179–81.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Abel HJ, Duncavage EJ. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet. 2014;206:432–40.CrossRefGoogle Scholar
  194. 194.
    Beall CJ, Sepanski MA, Fyrberg EA. Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. Genes Dev. 1989;3(2):131–40.PubMedCrossRefGoogle Scholar
  195. 195.
    Haigh SE, Salvi SS, Sevdali M, Stark M, Goulding D, Clayton JD, et al. Drosophila indirect flight muscle specific Act88F actin mutants as a model system for studying congenital myopathies of the human ACTA1 skeletal muscle actin gene. Neuromuscul Disord. 2010;20(6):363–74.PubMedCrossRefGoogle Scholar
  196. 196.
    Crawford K, Flick R, Close L, Shelly D, Paul R, Bove K, et al. Mice lacking skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Mol Cell Biol. 2002;22(16):5887–96.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Nowak KJ, Ravenscroft G, Jackaman C, Filipovska A, Davies SM, Lim EM, et al. Rescue of skeletal muscle alpha-actin-null mice by cardiac (fetal) alpha-actin. J Cell Biol. 2009;185(5):903–15.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Ravenscroft G, Jackaman C, Bringans S, Papadimitriou JM, Griffiths LM, McNamara E, et al. Mouse models of dominant ACTA1 disease recapitulate human disease and provide insight into therapies. Brain. 2011;134(Pt 4):1101–15.PubMedCrossRefGoogle Scholar
  199. 199.
    Ravenscroft G, Jackaman C, Sewry CA, McNamara E, Squire SE, Potter AC, et al. Actin nemaline myopathy mouse reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression. PLoS ONE. 2011;6(12), e28699.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Nguyen MA, Joya JE, Kee AJ, Domazetovska A, Yang N, Hook JW, et al. Hypertrophy and dietary tyrosine ameliorate the phenotypes of a mouse model of severe nemaline myopathy. Brain. 2011;134(Pt 12):3516–29.PubMedCrossRefGoogle Scholar
  201. 201.
    Delauche AJ, Cuddon PA, Podell M, Devoe K, Powell HC, Shelton GD. Nemaline rods in canine myopathies: 4 case reports and literature review. J Vet Intern Med. 1998;12(6):424–30.PubMedCrossRefGoogle Scholar
  202. 202.
    Cooper BJ, De Lahunta A, Gallagher EA, Valentine BA. Nemaline myopathy of cats. Muscle Nerve. 1986;9(7):618–25.PubMedCrossRefGoogle Scholar
  203. 203.
    Razzaq A, Robinson IM, McMahon HT, Skepper JN, Su Y, Zelhof AC, Jackson AP, Gay NJ, O'Kane CJ. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev. 2001;15(22):2967–79.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD. AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol. 2009;11(12):1399–410.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Smith LL, Gupta VA, Beggs AH. Bridging integrator 1 (Bin1) deficiency in zebrafish results in centronuclear myopathy. Hum Mol Genet. 2014;23(13):3566–78.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Muller AJ, Baker JF, DuHadaway JB, Ge K, Farmer G, Donover PS, et al. Targeted disruption of the murine bin1/amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol Cell Biol. 2003;23(12):4295–306.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Estes PS, Roos J, van der Bliek A, Kelly RB, Krishnan KS, Ramaswami M. Traffic of dynamin within individual Drosophila synaptic boutons relative to compartment-specific markers. J Neurosci. 1996;16(17):5443–56.PubMedGoogle Scholar
  208. 208.
    Kosaka T, Ikeda K. Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets1. J Cell Biol. 1983;97(2):499–507.PubMedCrossRefGoogle Scholar
  209. 209.
    Ramaswami M, Krishnan KS, Kelly RB. Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions. Neuron. 1994;13(2):363–75.PubMedCrossRefGoogle Scholar
  210. 210.
    Gibbs EM, Davidson AE, Telfer WR, Feldman EL, Dowling JJ. The myopathy-causing mutation DNM2-S619L leads to defective tubulation in vitro and in developing zebrafish. Dis Model Mech. 2014;7(1):157–61.PubMedCrossRefGoogle Scholar
  211. 211.
    Gibbs EM, Clarke NF, Rose K, Oates EC, Webster R, Feldman EL, et al. Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy. J Mol Med (Berl). 2013;91(6):727–37.CrossRefGoogle Scholar
  212. 212.
    Gibbs EM, Davidson AE, Trickey-Glassman A, Backus C, Hong Y, Sakowski SA, et al. Two dynamin-2 genes are required for normal zebrafish development. PLoS ONE. 2013;8(2), e55888.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Ferguson SM, Raimondi A, Paradise S, Shen H, Mesaki K, Ferguson A, et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev Cell. 2009;17(6):811–22.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Durieux AC, Vignaud A, Prudhon B, Viou MT, Beuvin M, Vassilopoulos S, et al. A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice. Hum Mol Genet. 2010;19(24):4820–36.PubMedCrossRefGoogle Scholar
  215. 215.
    Cowling BS, Toussaint A, Amoasii L, Koebel P, Ferry A, Davignon L, et al. Increased expression of wild-type or a centronuclear myopathy mutant of dynamin 2 in skeletal muscle of adult mice leads to structural defects and muscle weakness. Am J Pathol. 2011;178(5):2224–35.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Garg A, O'Rourke J, Long C, Doering J, Ravenscroft G, Bezprozvannaya S, et al. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy. J Clin Invest. 2014;124(8):3529–39.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Ribeiro I, Yuan L, Tanentzapf G, Dowling JJ, Kiger A. Phosphoinositide regulation of integrin trafficking required for muscle attachment and maintenance. PLoS Genet. 2011;7(2), e1001295.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Velichkova M, Juan J, Kadandale P, Jean S, Ribeiro I, Raman V, et al. Drosophila Mtm and class II PI3K coregulate a PI(3)P pool with cortical and endolysosomal functions. J Cell Biol. 2010;190(3):407–25.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Xue Y, Fares H, Grant B, Li Z, Rose AM, Clark SG, et al. Genetic analysis of the myotubularin family of phosphatases in Caenorhabditis elegans. J Biol Chem. 2003;278(36):34380–6.PubMedCrossRefGoogle Scholar
  220. 220.
    Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, et al. Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet. 2009;5(2), e1000372.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Smith LL, Beggs AH, Gupta VA. Analysis of skeletal muscle defects in larval zebrafish by birefringence and touch-evoke escape response assays. J Vis Exp. 2013;82:e50925.Google Scholar
  222. 222.
    Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF, et al. The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci U S A. 2002;99(23):15060–5.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Joubert R, Vignaud A, Le M, Moal C, Messaddeq N, Buj-Bello A. Site-specific Mtm1 mutagenesis by an AAV-Cre vector reveals that myotubularin is essential in adult muscle. Hum Mol Genet. 2013;22(9):1856–66.PubMedCrossRefGoogle Scholar
  224. 224.
    Beggs AH, Böhm J, Snead E, Kozlowski M, Maurer M, Minor K, Childers MK, Taylor SM, Hitte C, Mickelson JR, Guo LT, Mizisin AP, Buj-Bello A, Tiret L, Laporte J, Shelton GD. MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers. Proc Natl Acad Sci USA. 2010;107(33):14697–702.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Telfer WR, Nelson DD, Waugh T, Brooks SV, Dowling JJ. Neb: a zebrafish model of nemaline myopathy due to nebulin mutation. Dis Model Mech. 2012;5(3):389–96.PubMedCrossRefGoogle Scholar
  226. 226.
    Bang ML, Li X, Littlefield R, Bremner S, Thor A, Knowlton KU, et al. Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J Cell Biol. 2006;173(6):905–16.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Witt CC, Burkart C, Labeit D, McNabb M, Wu Y, Granzier H, et al. Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J. 2006;25(16):3843–55.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Ottenheijm CA, Buck D, de Winter JM, Ferrara C, Piroddi N, Tesi C, et al. Deleting exon 55 from the nebulin gene induces severe muscle weakness in a mouse model for nemaline myopathy. Brain. 2013;136(Pt 6):1718–31.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Yamamoto DL, Vitiello C, Zhang J, Gokhin DS, Castaldi A, Coulis G, et al. The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse. J Cell Sci. 2013;126(Pt 23):5477–89.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Hirata H, Watanabe T, Hatakeyama J, Sprague SM, Saint-Amant L, Nagashima A, et al. Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development. 2007;134(15):2771–81.PubMedCrossRefGoogle Scholar
  231. 231.
    Takeshima H, Iino M, Takekura H, Nishi M, Kuno J, Minowa O, et al. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature. 1994;369(6481):556–9.PubMedCrossRefGoogle Scholar
  232. 232.
    Chelu MG, Goonasekera SA, Durham WJ, Tang W, Lueck JD, Riehl J, et al. Heat- and anesthesia-induced malignant hyperthermia in an RyR1 knock-in mouse. FASEB J. 2006;20(2):329–30.PubMedGoogle Scholar
  233. 233.
    Durham WJ, Aracena-Parks P, Long C, Rossi AE, Goonasekera SA, Boncompagni S, et al. RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell. 2008;133(1):53–65.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Yang T, Riehl J, Esteve E, Matthaei KI, Goth S, Allen PD, et al. Pharmacologic and functional characterization of malignant hyperthermia in the R163C RyR1 knock-in mouse. Anesthesiology. 2006;105(6):1164–75.PubMedCrossRefGoogle Scholar
  235. 235.
    Zvaritch E, Kraeva N, Bombardier E, McCloy RA, Depreux F, Holmyard D, et al. Ca2+ dysregulation in Ryr1(I4895T/wt) mice causes congenital myopathy with progressive formation of minicores, cores, and nemaline rods. Proc Natl Acad Sci U S A. 2009;106(51):21813–8.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Deniziak M, Thisse C, Rederstorff M, Hindelang C, Thisse B, Lescure A. Loss of selenoprotein N function causes disruption of muscle architecture in the zebrafish embryo. Exp Cell Res. 2007;313(1):156–67.PubMedCrossRefGoogle Scholar
  237. 237.
    Jurynec MJ, Xia R, Mackrill JJ, Gunther D, Crawford T, Flanigan KM, et al. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci U S A. 2008;105(34):12485–90.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Moghadaszadeh B, Rider BE, Lawlor MW, Childers MK, Grange RW, Gupta K, et al. Selenoprotein N deficiency in mice is associated with abnormal lung development. FASEB J. 2013;27(4):1585–99.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Rederstorff M, Castets P, Arbogast S, Laine J, Vassilopoulos S, Beuvin M, et al. Increased muscle stress-sensitivity induced by selenoprotein N inactivation in mouse: a mammalian model for SEPN1-related myopathy. PLoS ONE. 2011;6(8), e23094.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Davidson AE, Siddiqui FM, Lopez MA, Lunt P, Carlson HA, Moore BE, et al. Novel deletion of lysine 7 expands the clinical, histopathological and genetic spectrum of TPM2-related myopathies. Brain. 2013;136(Pt 2):508–21.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Corbett MA, Akkari PA, Domazetovska A, Cooper ST, North KN, Laing NG, et al. An alpha Tropomyosin mutation alters dimer preference in nemaline myopathy. Ann Neurol. 2005;57(1):42–9.PubMedCrossRefGoogle Scholar
  242. 242.
    Steffen LS, Guyon JR, Vogel ED, Howell MH, Zhou Y, Weber GJ, et al. The zebrafish runzel muscular dystrophy is linked to the titin gene. Dev Biol. 2007;309(2):180–92.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, et al. The syntenic relationship of the zebrafish and human genomes. Genome Res. 2000;10(9):1351–8.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Lin YY. Muscle diseases in the zebrafish. Neuromuscul Disord. 2012;22(8):673–84.PubMedCrossRefGoogle Scholar
  245. 245.
    Kawahara G, Karpf JA, Myers JA, Alexander MS, Guyon JR, Kunkel LM. Drug screening in a zebrafish model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2011;108(13):5331–6.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Dowling JJ, Arbogast S, Hur J, Nelson DD, McEvoy A, Waugh T, et al. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain. 2012;135(Pt 4):1115–27.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006;14(3):316–27.PubMedCrossRefGoogle Scholar
  248. 248.
    Buj-Bello A, Fougerousse F, Schwab Y, Messaddeq N, Spehner D, Pierson CR, et al. AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Hum Mol Genet. 2008;17(14):2132–43.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Childers MK, Joubert R, Poulard K, Moal C, Grange RW, Doering JA, et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med. 2014;6(220), 220ra10.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Lawlor MW, Armstrong D, Viola MG, Widrick JJ, Meng H, Grange RW, et al. Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy. Hum Mol Genet. 2013;22(8):1525–38.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Lawlor MW, Read BP, Edelstein R, Yang N, Pierson CR, Stein MJ, et al. Inhibition of activin receptor type IIB increases strength and lifespan in myotubularin-deficient mice. Am J Pathol. 2011;178(2):784–93.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Cowling BS, Chevremont T, Prokic I, Kretz C, Ferry A, Coirault C, et al. Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. J Clin Invest. 2014;124(3):1350–63.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Marino M, Stoilova T, Giorgi C, Bachi A, Cattaneo A, Auricchio A, et al. SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum Mol Genet. 2015;24(7):1843–55.PubMedCrossRefGoogle Scholar
  254. 254.
    Arbogast S, Beuvin M, Fraysse B, Zhou H, Muntoni F, Ferreiro A. Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann Neurol. 2009;65(6):677–86.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Laura L. Smith
    • 1
  • Vandana A. Gupta
    • 1
  • Alan H. Beggs
    • 1
    Email author
  1. 1.Division of Genetics and GenomicsThe Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations